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ABSTRACT: Molecular dynamics (MD) simulations using Morse interaction po-
tential are performed in studies of [110] symmetrical tilt grain boundary (GB) struc-
tures with mis-orientation angles 50.5°(X11), 129.5°(X11), 70.5°(X3) and 109.5°(X3)
at various tempratures. The GB structures are found to start local disordering
at about 0.5T,,,(T., is the melting point of aluminium) for 50.5°(%11), 0.32T,, for
129.5°(X11) and 0.38T;, for 70.5°(X3), respectively. These results agree with con-
clusions deduced from the anelastic measurements. But, for twin-boundary structure
109.5°(X3), this disordering has not been found even when temperature increases up
to 0.97,,.

KEY WORDS: molecular dynamics simulation, grain boundary disordering, alu-
minium bicrystal

I. INTRODUCTION

The stability of grain boundary (GB) structure at high temperatures has long been
a problem in dispute. The main point is whether the grain boundary would change into
a structure similar to that of the super-cooled liquid at temperatures much lower than the
melting point T,.

In respect of the experimental measurements, there are many different results by using
electron microscopel! 4. Glicksman and Vold[!! observed that the GB structures in bismuth
bicrystals are replaced by a liquid-like layer at temperatures much lower than T,,. Erb and
Gleiter!?! obtained that the GB structures in copper remain ordered at temperatures up
to the melting point. Bulluffi et al.[®¥ found that the GB structures are not replaced by
any liquid-layer and melting is not observed in aluminium even when the temperature rises
to 0.999% T.,,. Ke et al.l5?] performed the anelastic measurements for the multi-crystal,
bamboo-crystal and a series of aluminium bicrystals with different mis-orientation angles.
They found that the physical quantities in anelastic relaxation have a sudden change at
about 0.57, which appears to be caused by the behavior of GB[5—10],
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In respect of the theoretical studies, Kikuchi and Cahn!ll used a two-dimensional
lattice gas model for a symmetric £5 tilt grain boundary and found that the boundary
starts to be disordered upon heating to about 0.57,,. The degree of disorderness increases
continuously with the increase of temperature until melting takes place at T,,. Ciccotti et
al.'?l employed molecular dynamics and Lennard-Jones potential to simulate a symmetric
35 tilt grain boundary and obtained results which are similar to those of Kikuchi and Cahn
qualitatively. The difference between boundary structure and liquid structure disappears
only at T, 13, Broughton and Gilmer!'¥ also found that GB melting can not occur under
any spec1ﬁc temperature lower than T,,,. Nguyen and Yip['® found that the disordering can
occur in the interfacial region at about 0.8 to 0.97,,.

On the basis of our anelastic experimental results!®1%, the present article attempts to
clarify the above-metioned dispute through the molecular dynamics simulations with Morse
interaction potential. In order to compare with our experimental results, the simulation sys-
tems are chosen as [110] symmetrical tilt grain boundaries of aluminium with mis-orientation
angles 70.5°(X3), 109.5°(X3), 50.5°(£11) and 109.5°(X11) whose experimental results are
reported in Refs.[7-10]. From the GB structures at different temperatures, it can be found
whether the GB structures start to be disordered at the temperature Ty which is much lower
than T),,. The difference between two angles with a same X number is also investigated and
corﬁpared with the anelastic measurement results.

II. PRINCIPLE AND PROCEDURE OF SIMULATIONS

2.1 Simulation Principles
The dynamic equations of N atoms with mass m are

dz'l‘,'
dt?

Fi=m i=12,..,N (1)
In Eq.(1), the r; and F; are the coordinate vector of i-th atom and the force exerted on it.
F; can be derived by the atomic interaction potential U(r;;)

=-3 :aU(T"’) . i=1,2,..,N (2)
Ory; J
J#i

r;; and r?j are the distance and the unit displacement vector of i-th atom relative to j-
th atom, respectively. - The initial velocities of the atoms are given with a Maxwellian
distribution corresponding to the given temperature. Equation (1) can be solved by using
centeral difference method.

Morse potential satisfies the conditions based on Born’s analysis of the crystal elasticity
and can be used to explain the general behaviour of solid cohesion and chemisorption. It
has also been used in many fields of solid state physics. The valence electronic structure of
aluminium is 3s23p! and there is only one electron on its outer shell porbital. So, it can be
approximately considered to have spherical symmetry. That is to say, the Morse pootential
is a good aproximation for the atomic interaction potential of aluminium. Therefore, we use
it in this work. The formula of Morse potential is

U(rij) = Do{exp[—2a(rs; — 0)] — 2exp[—a(ri; — 0)]} (3)
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For aluminium, the parameters Dy, r9 and « in above equation are taken from Refs.[16-17],
where, Dp=0.12 eV, 19=2.86x10"1% m and ¢=2.35x101° m—1.

2.2 Simulation Models

According to coincidence site lattice (CSL) modell®! the GB structures in the sim-
ulations are chosen as Y.=11 and X =3 tilt boundaries in FCC aluminium bicrystals. The
311 boundaries are generated by a rotation of 50.5° and 129.5° about an axis along [110] and
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Fig.1 The initial, translated and relaxed structures at different tempera-
tures for =50.5°(X11)

shown in Figs.1(a) and 2(a), respectively. Similarly, the £3 boundaries are generated by a
rotation of 70.5° and 109.5° about the same axis and shown in Figs.3(a) and 4(a), respec-
tively. In these figures, Z axis is along [110], which is perpendicular to the paper, X axis
is in the GB plane, and then, the Y axis is the normal line of GB plane. In the X and
Z directions, periodic border conditions are taken into account according to their natural
periods. In the X direction, 4 CSL periods are considered for 50.5°, 129.5° and 70.5°, but,
8 CSL periods -are considered for 109.5°. In the Z direction, 4 atomic layers are taken.
However, in the Y direction, a movable border condition is used. By this condition we mean
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that, from the main block two Y-border regions are divided out. In these two regions, atoms
do not move according to Eq.(1), but move with motions of the neighbor atoms in the rest
of the block. The total numbers of atom for the four systems are 1040,1464,760 and 1056,
respectively.

In the simulations, the unit of length is taken to be the cystal lattice constant, the unit
of time is ro(m/Dy)'/2= 4.26x10~13 s, and the time step in the central difference method
is taken as 1.7 x 10714 s which is approximately 1/25 of the time unit. :

In order to improve the efficiency of simulations; a two-stage procedure is used. Firstly,
give the two crystals a relative solid translation and make the system to have a relative
stable structure which is in a state of the lowest energy. The convergence criterion is that
the variation of total energy of the system is smaller than 108, Secondly, for each system,
the atomic relaxation is carried out, i.e., the atoms move according to Eq.(1). It means,
positions and velocities of the atoms are obtained by solving Eq.(1) step by step, in which
the structure after translation is taken as the initial atomic configuration and the initial
velocities of atoms are given with a Maxwellian distribution corresponding to the given
temperature. The potential energy and kinetic energy can be obtained also. From these,
the dynamic behavior of the system can be described completely. When the system is in
equillibrium, the average total force on each particle is near zero, and each particle vibrates
around its equillibrium position. From our simulation, it is seen that when the number
of time step is over 3000, the average positions of the particles do not change any more.
Therefore, the number of time step is taken as 4000 in our computation. In order to keep
the temperature constant, the atomic velocities are adjusted corresponding to the given
temperature after each 25 time steps.

III. RESULTS AND DISCUSSIONS

3.1 The Results from the Solid Translation
The structures after solid translation for the four systems are shown in Figs.1(b) to
4(b) and the values of the translation in three directions are summarized in Table 1.

Table 1

The number of atoms and the solid translations for each system

angle (°) system border total number X-translation Y-translation Z-translation

50.5 624 416 1040 —1.93x 1073 _—B577Tx1072 —298x107°
129.5 904 560 1064 —0.29591 —0.39565 —3.92 x 1071
70.5 472 288 760 —0.28868 —0.10349 —5.70 x 10710
109.5 672 384 1056 —9.10x 107 _498x10"® —3.12x 1071

From Table 1, it can be found that the displacements in Z direction are small for all
of the four systems because of the lattice periodicity in this direction. But, in the X and
Y directions, the displacements are much larger and play important role in reducing the
energy of the systems. Therefore, the extent of the difference between real structure and
CSL structure can be shown from the value of the displacemients. Smaller displacements
mean that the system is nearer to the ideal CSL structure and has a larger stability. So,
the structure of 109.5° is more stable than that of 70.5°, and the structure of 50.5° is more
stable than that of 129.5°. From Table 1, it can be found that stabilities of the four systems
are in the order: 109.5° > 50.5° > 70.5° > 129.5°.
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3.2 The Results from Atomic Relaxation

The atomic relaxed structures for the four systems at various temperatures, which

belong to two X’s with 4 angles, are shown in Figs.1 to 4.

Comparing Figs.1(c) to 1(h) with Fig.1(b), it can be found that between 250K to 450K
the GB of 50.5°(X11) is nearly the same as its translated structure. When temperature

to 500K (approximately 0.5Ty,), the quadrilateral structure in GB has a little

distortion. When temperature is higher than 600K, there is obvious change in GB region

mcreases

and the ordered structure of GB has large distortions. Some parts of the GB start to be

disordered.

Comparing Figs.2(c) to 2(f) with Fig.2(b), it can be found that below 250K (Fig.2(c))
the GB of 129.5°(X11) is nearly the same as its translated structure (Fig.2(b)). When tem-
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Fig.3 The initial, translated and relaxed structures at different tempera-
tures for §=70.5°(X3)

In the same way, comparing Figs.3(c) to 3(h) with Fig.3(b), it can be found that below
300K (Fig.3(c)) the GB of 70.5°(X3) is nearly the same as its translated structure (Fig.3(b)).
When the temperature increases to 350K (approximately 0.387,,), the quadrilateral struc-
ture in GB has a little distortion. When temperature rises up to 400K (Figs.3(e)), there is
an obvious change in GB region and some parts of the GB start to be disordered. When the
temperature is higher, the structure of CSL is damaged and the disordered region around
GB becomes wider. With further increase of temperature (up to 800K), this disordered
region extends from GB to the single crystal regions.

Comparing Fig.4(c) with Fig.4(b), their structures are in the same without any differ-
ence even when temperature increases to 900K. In other words, there is no transformation
temperature from order to disorder in this twin-crystal GB. The $3(109.5°) bicrystal GB
has special characteristics. Actually, its GB structure is a twin-lattice one. All atoms in
GB are at the co-lattice points. The coordinate number in GB is the same as in grains and
there is very little different coordinate distances between them. Therefore, the structure of
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109.5°(X3) is the most stable structure among the four systems. It can be predicted that the
transformation temperature in this GB is quite near to its melting point. Perhaps, when the
temperature increases to T),, the GB will melt into liquid together with the crystal regions.
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Fig.4 The initial, translated and relaxed structures at different tempera-
tures for =109.5°(23)

Comparing Fig.1 with Fig.2, it can be found that the transformation temperature from
order to disorder in ¥11 GB with angle 129.5°(0.32T},) is much lower than that with angle
50.5°(0.5T,;,). Although the ¥ number and rotation axis are the same in these two systems,
but, the CSL period of GB with 129.5° is much longer than that with 50.5° and the atomic
arrangement and the coordinate number in their GB zones are quite different from each
other. The former one has higher GB energy and lower stability than the X11 with 50.5°
does. So, it has a lower transformation temperature from order to disorder.

In order to compare with the experimental results of anelastic measurements, The
simulation results are summarized in Table 2. The anelastic measurement results of T are
also listed in Table 2.

Table 2
Temperatures of GB disordering and the anelastic measurement results

Angle (°) ¥ T, of GB disordering Experimental results
50.5 11, 0.50T,, 0.427,,
129.5 11 0.32T., 0.37T,, 1"
705 3 0.38T, 0.40T,, !
1095 3 ~ T —

From Table 2, it can be seen that the transformation temperatures of GB from order to
disorder are in agreement with the sudden change temperature T of the anelastic physical
quantities qualitatively. That is to say, the temperature T is related with the disordering in
GB region, which depends upon the angles and the ¥ numbers of GB. Therefore, GB plays
an important role in bicrystal anelastic relaxation.

IV. CONCLUSIONS

1. MD simulation shows that the transformation temperatures from order to disorder are
0.50Z,,,, 0.327};, and 0.387,, in the GB’s 50.5°(¥11), 129.5°(X11) and 70.5°(%3), respec-
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tively, which are much lower than the meltir 5 point T,,. However, in the 109.5°(23)
GB, such a transformation temperature is not found.

2. The stabilities of the four GB structures are in the order: 109.5° > 50.5°>70.5° >
129.5°.

3. The transformation temperatures from order to disorder in the GB 50.5°(£11), 129.5°(3211)
and 70.5°(X3) are qualitatively in agreement with the sudden change temperature Tp of
the anelastic physical quantities in anelastic relaxation measurements.
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