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Abstract-A void growth relation for ductile porous materials under intense dynamic general 
loading conditions is presented. The mathematical model includes the influence of inertial effects, 
material rate sensitivity, as well as the contribution of void surface energy and material work- 
hardening. Numerical analysis shows that inertia appears to resist the growth of voids. The inertial 
effects increase quickly with the loading rates. The theoretical analysis suggests that the inertial 
effects cannot be neglected at high loading rates. Plate-impact tests of aluminum alloy are performed 
with light gas gun. The processes of dynamic damage in aluminum alloy are successfully simulated 
with a finite-difierence dynamic code in which the theoretical model presented in this paper is 
incorporated. 

1. INTRODUCTION 

Dynamic ductile fracture with different loading conditions, such as high speed impact, 
explosive loading, dynamic tension of smooth or notched bar specimens, is a consequence 
of the nucleation, growth and coalescence of voids in a triaxial stress field. In comparison 
to ductile damage under static loading, dynamic ductile damage is much more complex. 
The inertial effects, rate-dependence and thermal influence from rapid plastic deformation 
are the characteristics under intense dynamic loading. The literature on this subject is 
extensive. By investigating the behavior of dynamic damage and fracture in solids in detail, 
Curran and co-workers (Barber et al., 1972; Seaman et al., 1976 ; Curran et al., 1977,1987) 
established computational models called NAG (nucleation and growth) models for ductile 
and brittle fracture. In their models, two internal state variables N (the number of mic- 
rovoids or microcracks per unit volume) and R (the average size of a microvoid or mic- 
rocrack) are introduced to describe the processes of dynamic damage and fracture in solids. 
The NAG models have sufficient generality to include the statistical distribution of one or 
more variables such as porosity, void density, etc., but require numerous phenomenological 
constants that are difficult to obtain. Carroll and Holt (1972) developed static and dynamic 
pore-collapse relations for ductile porous materials. The material was assumed to be rate 
insensitive and ideally plastic. They suggested that the effect of elastic compressibility in 
the matrix material is small, and can go immediately to the case of fully plastic deformation 
around the void. Johnson (1981) applied Carroll and Holt’s approach to void growth in a 
viscoplastic medium. Cochran and Banner (1977) studied spallation in uranium using a 
simple theoretical model. Rajendran et al. (1989) proposed a new dynamic failure model 
to describe void nucleation, growth and coalescence in ductile metals. Nash (Nash and 
Cullis 1984 ; Nash, 1985) directly used Rice’s static model to model ductile fracture in 
triaxial states of stress. Cortes (1992) adopted Carroll and Holt’s assumption to investigate 
the growth of a microvoid under intense dynamic loading. Review articles (Meyers and 
Aimone 1983; Curran et al., 1987; Grady, 1988) on dynamic ductile fracture explain in 
some detail the most relevant results of experimental and theoretical studies. 
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Fig. 1. A spherical element of material of radius b containing a single void of radius a is subjected 
to an applied external stress Z,. 

The inertial effects are the major feature of intense dynamic loading. Our theoretical 
analysis shows that their influence on the growth of dynamic ductile voids is significant. 
Since the problem is quite complicated, most investigators neglected them. 

The influence of deviatoric stresses is also important for most of the processes of 
dynamic ductile fracture. Although in the past several authors have studied the void growth 
problem under triaxiality conditions (Rice and Tracey, 1969; Gurson, 1977; Duva and 
Hutchinson, 1984; Cocks, 1989), they have limited their analysis to static loading, ignoring 
the influence of inertial effects. In this paper, we deal with dynamic growth of voids in 
ductile materials under extremely high rates of general loading. A void growth relation, in 
which the inertial effects, rate-dependence, the contribution of the void surface energy are 
considered, is presented by means of the energy principles. 

To simplify theoretical analysis, we assume that the matrix material is incompressible 
during the void growth. We also assume that the void remains spherical all the time. These 
assumptions lead to great simplification of the theoretical analysis, so that we can obtain 
the exact relation for void growth. 

2. VOID GROWTH RELATION 

We assume that the porous material consists of a suspension of pores in a matrix of 
homogeneous isotropic ductile solid materials which is subjected to an external stress &, 
and that the porous material is statistically homogeneous and isotropic so that it can be 
effectively modeled by a homogeneous isotropic solid material. With these assumptions, we 
can study the void growth by considering a hole sphere with inner radius a and outer radius 
b (see Fig. 1). Distention a is defined as 

b3 MC- 
b3 -a3 

(1) 

We investigate the response of this hole sphere to time-dependent external stress and 
zero internal pressure, and try to obtain the relation between the applied stress Xii and 
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distention a(t). We expect that the relation will adequately describe the void growth for the 
effective homogeneous material. 

Taking the matrix material and void as a system, work done by the applied external 
stress C, is equal to the change of the system energy, namely 

W= AEk+AEs+AEi, (2) 

where AE,, AE, and AEi denote the changes of the kinetic energy EK, the void surface 
energy Es, and the internal energy Ei in the system, respectively. W denotes the work done 
by the applied external stress &. Since the contribution of the initial elastic and elastic- 
plastic phases of the process for the void growth is small (Carroll and Holt, 1972), we 
directly begin to consider fully plastic deformation in the solid around the void. From the 
assumption of incompressibility in the matrix material surrounding the void, the following 
expressions can be derived (Johnson, 198 1) : 

r3 = r&-B(t) 

B(t) = u:z 
0 

B(t) a0 -a -=- 
a3 a-l (5) 

B(t) ao-a -=- 
b3 a’ (6) 

where r is Eulerian radial position of a Lagrangian point that travels with the material. The 
initial radius of that point is r,. B (t) is a function related to the rate of void growth. a, is 
the initial radius of the void. Let us consider A&, AEs, AEi and W, respectively. AEk is 
given by 

with 

A& = E,(a) -&(ad (7) 

s 

b 

&@) = f i’ p,4 rc r2 dr, (8) 
L2 

where (‘) denotes the differential with respect to time t. ps is the density of the matrix 
material. With the aim of eqn (1) and eqns (3)-(6), eqn (8) becomes 

(9) 

In the same way, we can also obtain the expression of AE, : 

A& = Eda) -~%(a~) (10) 
with 

“(‘) = 
4zai 

[ 1 9(a, _ 1) 
9(a0 ;01)“3y (a_ 1)2/3, (11) 

where y is the surface energy expended per unit area during the hole expansion. 
The matrix material is assumed to be linear work-hardening, and viscoplastic. Consti- 

tutive relation is supposed to be (Perzyna, 1986) 
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CT =I” = Y, + HE,p9y + qcv, (12) 

where ~~~~~ E& and .$FqV denote the effective stress, the effective plastic strain and the effective 
plastic strain rate in the matrix material, respectively. Y,, is the yield stress of the matrix 
material, His a linear work-hardening coefficient, and ye is the material viscosity. Since we 
assume a plastic deformation process with spherical symmetry, the effective plastic strain 
sFqV is given by Johnson and Mellor (1973) : 

E& = 21nY. (13) 
r0 

The change of internal energy AEi in the system is 

L\E, = f 
b s u &P 

=I’ rseqv(sP) dsP 47rpr’ dr. 
(I 0 1 

By means of eqns (3)-(6) and eqns (12)-(13), we finally have 

AEi = [ 1 4nnai [F3(a)+F,(a)+F,(a)oi], 
9(ao - 1) 

where 

F(a) = 
s 

hlln(h+l) 
h dh, 

ho 

with 

&J-c1 
ho=cl-l, h,=F, F,(a) = ~Y,J 

a-1 
In - 

Lx 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Functions F3(cr), F4(a) and F5(a) denote the influence of the yield stress of the matrix 
material, the linear work-hardening and the material viscosity on the increment of internal 
energy, respectively. 

The work W done by external stress is as follows : 

a; = 
w=$--J s [$Z,,(d) - P (a’)] du’. 

0 % 

(20) 

Here we assume Zleqv and P to be the functions of distention a, that is, Z&q” = C,,(cl> and 
P = P (a). Substitution of expressions of AE,, AE,, AEi and W into eqn (2) gives 

where 

F, (a)~? + F5 (a)& + F7 (a) = 0 (21) 
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(22) 

F7(a)=F2(cr)+F,(cr)+F&)-3 
s 

OL [~C,,(a’)-P(a’)lda’-F,(cr,)~~-F2(cl,) (23) 

% 

E;(a) = 9(cro ;01)“3y @_ 1)2/3. (24) 

Equation (21) is the relationship from which we obtain the rate-dependent response 
of the void growth under dynamic loading. F2(a) represents the influence of change of the 
void surface energy on the void growth. The terms in eqn (21) have a clear physical 
significance. The first term F, (a)dr2 -F, (cr,-,)&~ on the left of eqn (21) represents inertial 
resistance to the void growth. The second term I;,(a)& denotes the influence of the material 
viscosity, which describes the effect of the rate sensitivity and is one of the major features 
differing from the quasi-static growth of voids. Other researchers’ studies, such as Curran 
et al. (1987), Johnson (1981) and Cortes (1992), have resulted in the same fact. The third 
term F,(a) is the total effects of the applied external stress, the change of the void surface 
energy, work-hardening and the yield stress in the solid surrounding the void on the void 
growth. These effects also can be isolated and studied in great depth. Dynamic ductile 
fracture is a consequence of the nucleation, growth and coalescence of voids in a triaxial 
stress field. Besides the mean stress, the deviatoric stress, no doubt, may affect the void 
growth. The influence of the deviatoric stress (or the deviatoric strain) on the void growth 
is considered in Rice and Tracey’s model (1969) and Gurson’s model (1977). A modified 
Gurson’s model was successfully applied to model the cup-cone fracture in a round tensile 
bar (Tvergaard and Needleman, 1984). But the effect of the deviatoric stress was not 
included in Carroll and Holt’s (1972) as well as Seaman et d’s (1976) models of dynamic 
ductile fracture. From eqn (21), the void growth rates dr can be given by 

a =~{-F'(or)+~[F~(a)l'-4F,(a)F,(a)). (25) 

Since & is a real variable, the following condition must be satisfied for the condition of the 
void growth : 

[Fs ($1” - 4F, (a)F, (a) > 0. (26) 

If the inertial effects are neglected, from eqn (21), ti is reduced to 

~2 = -[F,(cr)+F~(ao)~~]/F~(cr). (27) 

3. THRESHOLD STRESSES FOR DYNAMIC GROWTH OF VOIDS 

Define a quantity C as 

I: = fxc,,-P. (28) 

Obviously, X represents the total external stress acting on the spherical element. It shows 
that either the mean stress -P or the effective stress C,, has a contribution to the void 
growth. We consider the condition of the void growth, namely, d 2 0. From eqn (25), the 
following inequality must be satisfied : 
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Distention a 
Fig. 2. The threshold stress Z,,,(a) for the void growth decreases along with increase of distention a. 

+ dF3 (4 + dF4 G-4 - - 
da 1 da ’ (29) 

With the help of eqns (16)-(17) and (24), inequality (29) becomes 

E(a) “f[~(~~3+~~(a)-~~ln~+2Y01n~]. (30) 

Let 

+2Y,lna 1 a-l ’ (31) 

where &tit(a) is the threshold stress for dynamic growth of voids in general dynamic loading 
conditions. The critical conditions that the applied external stress must satisfy for the void 
growth is that 

W 2 Lit(a). (32) 

If the contributions of the change of the void surface energy and material work- 
hardening, as well as the action of the external deviatoric stress are neglected, eqn (31) is 
reduced to 

Pc,it(a) = - 3 Y. In 2. (33) 

This is the result obtained by Carroll and Holt (1972). 

4. NUMERICAL ANALYSIS OF THE MODEL 

In this section, copper-like material is selected to be the material for the numerical 
analysis with the density p = 8.92 (g cmV3), the yield stress Y, = 0.26 (GPa), the linear 
work-hardening coefficient H = 0.25 (GPa), viscosity r~ = 0.1 (GPa ps), and the surface 
energy expended per unit area y = 9 x lop4 (GPa cm-‘). 

The relation of the threshold stress &t(a) and distention a for the void growth in 
terms of eqn (31) is depicted in Fig. 2. It shows that the threshold stress &+(a) decreases 
quickly as distention a increases. The maximum value of the threshold stress &i,(a) is 
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Fig. 3. Influence of inertia on the rate of increase of distention a under the different loading rates. 

(a) G = 0.3. (b) G = 0.01. 
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about 1.76 (GPa) which depends on the initial radius of the void a, and the initial distention 
~1~. Our experimental observation (Wang, 1993) shows that the initial radius of the void a0 
is in the range l-10 (pm), a0 and cl, are given by 0.0005 (cm) and 1.0003. The results of 
spa11 experiments in copper (Grady, 1988) show that the spa11 strength of copper is in the 
range 1.0-2.5 (GPa). Theoretical calculation in this paper is consistent with experimental 
measurements. The threshold stress of dynamic fracture of voids is larger than that of 
quasi-static fracture. This may be due to the inertia or the kinetics associated with the 
micromechanisms controlling the damage process. 

To investigate the effects of inertia on the behavior of the void growth under the 
different loading rate, we numerically analyze eqns (25) and (27). In order to simplify the 
analysis, the material is assumed to be subjected to a linearly increasing external stress : 

X(a) = &+G(a-a,), (34) 

where Co = &.JIz~) and G is a constant. Figure 3 indicates that the influence of inertial 
effects becomes larger with the increase of loading rates. The computational results of 
numerical analysis in Fig. 3 suggest that the influence of inertial effects play, which appears 
to resist the void growth, an important role in void growth under high rate loading 
conditions. On the other hand, the numerical analysis in Fig. 3(b) also shows the fact that, 
if the rate of applied external stress becomes much lower, the inertial effects can be ignored. 
This result implies that the inertial effects are a mechanical phenomenon which appears 
significantly in the condition of intense dynamic loading. 

5. APPLICATION OF THE MODEL 

5.1. Plate-impact tests 
As an application of the foregoing theory, two spa11 experiments of aluminum alloy 

are simulated. Specimens were machined into circular plates 70 mm in diameter. The 
experiments were performed with a 101 mm bore single-stage light gas gun. The schematic 
arrangement for the experiment is shown in Fig. 4. The impact velocities and size of flyers 
and targets are listed in Table 1. The specimens were softly recovered with a specially 
designed catcher to prevent any secondary damage. Measured stress-time histories recorded 
with a manganin gauge in two spalled specimens of aluminum alloy are shown in Fig. 5. It 
shows clearly the loading plateau and the signals of spallation. Peak stresses taken from 
the manganin gauge reading are listed in Table 1. 
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Bane1 Sabot Flyer Probe TarRet holder Soft catcher Buffer 

I 
Target 

/ 
PMMA 

Mangakn gauge 
Fig. 4. Plate impact apparatus for spa11 study 

5.2. One-dimensionalfinite-difference calculations 
The one-dimensional flow equations in terms of the Lagrangian position coordinate x 

are 

(35) 

where E s 1 - (p,,/p), t is the time, p is the macroscopic average density of the porous 
materials (p,, is the initial density), u is the particle velocity in the x direction, (r is the 
longitudinal stress component, and E is the internal energy per unit mass. 

The material constitutive equation is written in terms of the macroscopic mean stress 
-P and the deviatoric stress components S,. In the model described here, void growth is 
related only to the mean stress -P (pressure P is assumed negative in tension). The 
deviatoric stress components depend on the shear modulus p and yield strength Y, which 
are each functions of distention a. The plastic yield condition for the porous materials is 

gijsij < Y2. (36) 

No attempt was made to include work-hardening and rate-dependent terms of the type 
used in eqn (12) for calculations of the wave profiles. These effects are still poorly understood 
themselves and do not greatly influence the fracture process. This treatment can greatly 
simplify calculation. 

In the elastic region (3S,S, < 2 Y*) the stress deviatoric rates are given by 

(37) 

where sij is the macroscopic strain tensor component. 
It is assumed that the function that relates pressure specific volume and specific internal 

energy for the matrix material in the porous state is the same as that which relates these 
quantities for the matrix material in its nonporous state (Carroll and Holt, 1972 ; Seaman 
et al., 1976). With this assumption, the P-u model gives the pressure in the porous material 
as a function of specific volume, specific internal energy, and porosity. The form of this 
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(a) 

(b) 

No.92-11 Vi 403.7 m/s 

Peak stress 1.18 GPa 

No.92-14 Vi 316.9 m/s 

Peak stress 0.95 GPa 

Fig. 5. Stress record from manganin gauge in PMMA behind aluminum alloy specimens. (a) Test 1 
and (b) test 2. 
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Table 1 
- 

Impact Thickness Peak stress 
Test velocity (mm) cma. 
IlO. (mm ps-i) Flyer Target PMMA (GPa) 

- 
1 0.404 6.0 9.9 11.7 1.18 
2 0.317 6.3 9.8 11.9 0.95 

- 

Table 2. Material parameters for spallation 
calculations 

Aluminum PMMA* 

Po(g cm’) 2.78 1.185 
&(GPa) 79.57 8.13 

ICI 1.7 
y,(GPa) 0.55 
H (GPa) 0.5 
p,(GPa) 25.0 

n(GPa ps) 0.001 
y(GPa cm-‘) 1 x 1o-4 

&it 1.35 

* PMMA is treated in these calculations as 
a fluid (no shear strength). 

function is determined by the pressure-specific volume-specific internal energy (PVE) func- 
tion for the matrix material in its nonporous state. We use the following PVE relation for 
the porous material (Seaman et al., 1976) : 

P = Pd 0, -W, (38) 

where V is the macroscopic specific volume for the porous material which is defined as 
V = p,,/p. The specific internal energy for the matrix material is the same in the porous and 
nonporous conditions, and the specific internal energy of the porous material is that of the 
matrix material, that is, the surface energy of the pores is neglected. The PVE relation of 
the matrix material is given by (Seaman et al., 1976) 

+I-psE, 

where & is the adiabatic bulk modulus at zero pressure, I is the Gruneisen coefficient, and 
here psT is assumed to be a constant given by its low-pressure value pOIo. Relation between 
the macroscopic yield strength Y and distention a is given by (Johnson, 198 1) 

Y = Y,/a. (40) 

The shear modulus is assumed to be degraded by the presence of voids. Relation between 
the shear modulus ~1 and distention c( is suggested by (Mackenzie, 1950) 

6K,+12~, a-1 
9K,,+8fi, tl ’ 

(41) 

where pL, is the material shear modulus in the solid surrounding the void. 
It is assumed that coalescence takes place when the distention IX is equal to or greater 

than a threshold value Cl,,it which is given in Table 2. We also assume that, when macroscopic 
stress Z [defined as eqn (28)] is equal or greater than the threshold stress Xctit [eqn (31)], 
microvoids appear and begin to grow. Otherwise, the material is intact. 
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- (a> - - - cxperimc.ntsl 

- theoretical 

Time (ps) 

@I - - - cxperimcntrl 

- theoretical 

I 
1 2 3 4 

Time (ps) 

Fig. 6. Comparison of stress record from manganin gauge in PMMA behind aluminum alloy with 
computed stress. (a) Test 1 and (b) test 2. 

Application of the dynamic failure analysis to the problem of time-dependent spallation 
in aluminum alloy gives very good representations of the data (as shown in Fig. 6) withthe 
material parameters listed in Table 2. 

6. DISCUSSION 

A great many experimental observations (Meyers and Aimone, 1983 ; Curran et al., 
1987 ; Wang, 1993) show that the dynamic ductile fracture in solids is a complicated process 
which, in general, involves nucleation, growth and coalsecence of microvoids. The most 
common sites for void nucleation are hard second-phase particles or inclusions. The differ- 
ent distributions of hard second-phase particles or inclusions have a significant influence 
on the process of fracture in ductile materials. Besides these facts, rate-dependence of the 
materials, local inertial effects, thermal effects from the high rate plastic flow localization, 
as well as the physical properties of the materials are also very important factors in 
influencing the fracture modes. Description of the whole process of dynamic ductile fracture 
in detail is quite difficult or almost impossible. To develop a model to investigate the event 
of dynamic ductile fracture, we must make some assumptions. In our theoretical analysis, 
the following assumptions are made : 

(1) The matrix is incompressible during pore growth. Based on the assumption of 
matrix incompressibility, we derived the pore-growth model. This assumption and the 
spherical geometry afforded a great simplification of the theoretical analysis. After com- 
paring the porosity profiles, which were computed by a finite-difference computer code, for 
an incompressible hollow-sphere with those for a hollow aluminum sphere, Carroll and 
Holt (1972) suggested that compressibility of the matrix material greatly complicates the 
analysis, while the effect on the behavior of the porosity should not be great. Luk et al. 
(1991) used the models considering the material as incompressible and compressible to 
investigate dynamic spherical cavity expansion of strain-hardening materials. They found 
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that, for an incompressible material, closed-form solutions could be obtained, whereas the 
compressible results required the numerical solution of differential equations. That is, it is 
difficult to obtain the closed form of the pore-growth relation if we consider the com- 
pressibility of the materials. 

(2) The porous ductile material is statistically homogeneous and isotropic, that is, 
pores are fairly well distributed through the whole material. These assumptions neglect the 
distributions of microvoids with different radius. With these assumptions, we can study the 
behavior of dynamic damage in ductile materials by considering a hollow sphere of the 
matrix material of inner radius u and outer radius b or the ratio of total volume to matrix 
volume CI. Seaman et al. (1976) made detailed microscopic observations before and after 
shock-wave loading, and developed a statistical model of dynamic fracture called the NAG 
model. In the model, the distributions of radii of voids are included. But there are numerous 
phenomenological constants that are difficult to obtain. In fact, it is inconvenient to use 
the NAG model in practice. 

(3) The equation of state for the material in the porous state is the same as in its 
nonporous state. Therefore, we can describe the behavior of dynamic damage and fracture 
in ductile materials in terms of continuum mechanics. 

Thermal effects from high rate plastic deformation are not considered in our theoretical 
analysis. Johnson (1981) once numerically analyzed the change of temperature at expanding 
pore wall for copper-like material, and showed that if all the plastic work went into heat, 
the temperature at the expanding pore wall could be a substantial fraction of the melting 
temperature. Cortes (1992) investigated the thermal softening of the matrix material. He 
indicated that thermal softening was found to have a negligible influence on the dynamic 
tensile strength in the case of aluminum and copper-like materials, due to an excessively 
localized heat generation near the surface of the voids. How thermal effects influence the 
dynamic growth of a ductile void and how large thermal effects are comprise the work we 
want to carry on in the future. 

The dynamic ductile model presented in this work contains many of the essential 
features of the process, such as rate-dependent sensitivity, inertial effects, etc. It is a 
simplified theoretical model in which only a few parameters (Y, the yield strength, ye the 
viscosity coefficient, H the linear work-hardening coefficient and y the density of void 
surface energy) need to be determined. This makes it easy to apply in studies of the behavior 
of dynamic ductile damage and fracture in solids. 

7. SUMMARY 

A dynamic du.ctile failure model is developed in which the inertial effects, the material 
rate sensitivity, the action of deviatoric stress and the effect of void surface energy are 
considered. Spa11 fracture of aluminum alloy for plate-impact conditions are successfully 
described with the model. Numerical calculations show that the inertial effects appear to 
resist the growth of voids. The higher the loading rates are, the greater the inertial effects 
are. It suggests that inertial effects should not be neglected in the whole process of spa11 
fracture. 
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