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Abstraet Using a variational method, a general three-dimensional solution to the problem of a 
sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. 
The inclusion itself is also a general anisotropic elastic medium. The interface is vested as a 
lhin interface layer with interphase anisotropic properties. The displacements in the matrix and 
the.inclusion are expressed as polynomial series of the Cartesian coordinate components. Using 
the virmal work principle, a set of linear algebraic equations about unknown coefficients ace 
obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on 
this solution, a self-consistent method for sliding polycrystals is pmposed. Combining this with 
a hvo-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical 
behaviour of sliding polycrystals is given in detail. Numerical results are given to show the 
significant effect of grain boundary sliding on the overall mechanical properties of aggregate 
polycrystals, 

1. Introduction 

Theoretical prediction of the elastic-plastic behaviour of polycrystalline materials on the 
basis of single-crystal properties has played an important role in the field of physical theories 
of plasticity [l-51. The finite element method provides a direct numerical solution of a 
boundary value problem which takes account of interaction between grains. 

A semi-analytical method is used out on the basis of some averaging techniques. A 
powerful averaging scheme is the self-consistent method, originally proposed by Kroner 
[6], and Budiansky and Wu [7] and elaborated by Hill et al [l]. However, most of these 
theories are based on the assumption that the interfacial displacements and tractions across 
the boundary must be continuous. 

The assumption of perfect bonding is sometimes inadequate. The interface damage due 
to cyclic loading, thermo-impact, high-temperature, intensive deformation and chemical 
interaction is a common phenomenon. Grain bounday sliding in granular media like rock, 
soil, sand, etc, is also a common feature. 

Recently, the new technology of thin coating on reinforcement particles and fibres has 
been widely used. This has resulted in considerable interest in imperfect interface conditions. 

Inclusion problems with imperfect interface have been treated by Walpole [SI, Mura et 
al 191, Ghahremani [lo], Benvenise [ll], Hashin [12], Luo and Weng [13], and Luo.and 
Chen [ 141 among others. But most works only deal with an inclusion which is embedded 
in an infinite isotropic elastic medium. Up to now, very few works have considered the 
effect of interface damage on the overall behaviour of aggregate polycrystals. Yang er al 
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Figure 2 Tensile stless-sVain curves of 20 (0) and 30 
(0) Hill’s model with non-hardening single crystal. 

[15] have given a stress-strain relation of a sliding polycrystal, assuming perfect normal 
interface bonding and ideally tangential free sliding. 

A general solution of a sliding spherical inclusion which is embedded in an infinite 
anisotropic medium is presented in this paper. Using this solution, a self-consistent model 
for sliding polycrystals is proposed. A systematic analysis of the mechanical behaviour of 
sliding polycrystals is given in detail. 

2. Sliding spherical inclusion 

Consider an infinite anisotropic elastic body containing a spherical inclusion in a domain 
n. The infinite body is subject to uniform swsses at infinity. The remote displacement 
field ui is 

when r --f 00. (1) I(. -,$Em,. 
I -  tJ  J 

The spherical inclusion with radius a is also a general anisotropic elastic medium. The 
interface is treated as an interface layer with inner radius a and outer radius R ( R  = a + h). 
Suppose the thickness h of the interface layer to be very small (k  << a). The strain 
components in the interface layer can be approximately expressed as 

lurl/h Y ~ O  1 I u ~ l / h  ~ r +  1 [u+llk .  (2) 

Other strain components are assumed to be negligibly small in comparison with the 
above components. 

It is a very hard task to derive an analytical solution using the Green’s function of 
an anisotropic elasticity for the present three-phase boundary problem. In order to get an 
analytical solution, the variational method is employed in this paper. 

The virtual work principle, which is equivalent to the equilibrium equation in the body 
and the traction condition on the surface, is given by 

6i7 = 6 9  + 6Uz + J 3 ( q j  - qy)6&i j  dV + jq u ~ n i 6 u j  dS = 0 (3) 

where U, is the elastic strain energy of the inclusion, U2 is the elastic deformation energy of 
the interface layer, S: is the internal surface of the matrix, and V3 is the volume occupied 
by the infinite matrix, as shown in figure 1. 
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The displacements ui in the inclusion can be represented as 

m 

m.n,k=O 

The strain components of the inclusion are given by 

Ex = 5 amntxmna(m/x) 
m.n,k=O 

m 

74 I 

Introduce the standard stress vector = [uJ, uy, uz, ryz. r,,, rZylT and strain vector 
T 

E = [Ex, Ey, & I .  Yyc- Y U ,  Y x y l  . 
The elastic constitutive relation for the inclusion is 

U = QE (7) 

where gij are the elastic moduli of the inclusion. 
The displacements ui in the matrix take the form 
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The strain components ~ j j  in the matrix are 

T C Wang and W K Pan 

where (Ym.k = -2(m + n + k ) .  
The elastic constitutive relation is 

U=GE 

where Gij are the elastic moduli of the matrix. 
For the interface layer, the constitutive relation is 

o r  = &E, 5r.g = G y r e  G6 = G + Y ~ + .  
Introduce the following notations: 

= [mi mz m31= [m n kl P = [ P I  PZ p31= [ p  q SI - 
x m  = x m n k  x p  = x p q s  0, amnk Ap = A p q s  

Let bold numbers 1 ,2 ,3  correspond to the rows of 11 6 51, [6 2 41 and [5 4 31, 
respectively. After lengthy manipulation, one obtains 

1 6 5  1 6 5  5 4 3  
g l l = ( l  6 5 ) ,  g n = ( 6  2 4), '.' 933=(5  4 3), 
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On the other hand, we have 

m 

- C[6Ap S E p  GCp]amTp 
P=O 

5 4 3  
... G33=(5 4 3), 

1 6 5  1 6 5  
G 1 l = ( l  6 5 ) ,  G12=(6 2 4), 
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ru = i* lx .fm.fp(E, sin' 8 + GO cos' 8 + G+ cot2 @) sin' @ sin8 d8d@ 

rs = l Z n L n g m . f p ( E r  - Gg)sin28cos8sin@d8d@ 
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Here rij = rji ( i .  j = 1,2,3) 

2 n n  
HI =l 1 krpl( . E, sin' 0 + Ge cos' 0 + G+ tan' q5) cos' @ 

+&~f l j (E , s in ' 8+G~cos28-  G+)sin@cos@ 

+E$nj(E, - G e ) s i n 0 ~ 0 ~ 8 c o s @ } ~ ~ s S i n 8 d 8 d @  

+e~n j (E , s in20+Gecos26+  G+cot2@)sinZ@ 

+ EEflj(E, - G e ) s i n B c o ~ B s i n @ } ~ ~ s i n 0 d 8 d @  

H3 = L* l n { E E n , ( E ,  - Ge)sin8cos8cos@ 

+ & ~ n j ( E , - G e ) s i n e c o s e s i n ~  

+~Enj(E,cos'B + G~sin2B)}&,sin0d8d@ 

gm = sinm+" 8 cosk 8 sin" 6 COP 6. 

Am, &,, and cm can be represented as follows: 

a, 2, = R-b+n+k+I)A, - 
j - R-(m+ntk+l)B - p + n + k - l b  

e - R-(mtn+k+i)C - mtnfk-1 

m -  m m 

m -  m a  Cm 

(30) 

and ni is the outside unit normal of the spherical surface. Using the virtual work principle, 
one can get a set of linear algebraic equations.about the unknown coefficients umnk and Amnk, 
Therefore the stress and strain fields of the sliding inclusion can be accurately calculated. 

3. Self-consistent model for sliding polycrystals 

The sliding polycrystal is considered as the aggregate of numerous randomly orientated 
grains with imperfect grain boundaries. 

Macroscopic stress and strain rates associated with the aggregate polycrystals are 
denoted by 2 and E. We have 

9 = L E .  (31) 
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For a perfect interface, the macro stress and strain rates are the volume average of 
the corresponding stress and strain in the single crystal constituents. For the case of an 
imperfect interface, there are displacement discontinuities across the grain boundary. From 
the average strain theorem, it follows that 

Eij = (&jj} + E; (32) 

Here [ & j }  is the volume average of the strain rate in the singlecrystal constituents and 
qj is the volume average of the strain rate in the interface layers. In equation (33), the 
integral is taken over all interfaces. 

According to the self-consistent method of Hill, the stress and strain rates in an individual 
grain can be calculated by replacing the grain under consideration by an equivalent spherical 
grain which is embedded in an infinite homogeneous matrix where instantaneous moduli 
are the overall moduli of the aggregate polycrystal. 

As Eshelby [I61 pointed out, the stress and strain rates in the equivalent spherical 
inclusion, uc and & will be uniform if the interface is perfectly bounded, 

uc = L,i, (34) 

& = ACE. (35) 

For the imperfect grain boundary, the stress and strain in the inclusion is no longer 
uniform. Based on the solutions of the sliding inclusion problems, one can get the following 
relation: 

and 

where C2 is the domain occupied by the grain, Si is the surface of the 0, and ni is the,unit 
normal of the surface S i .  It is clear that the .& is the average strain of the pain. and EC is 
the average strain of the grain and the interface layer including the grain boundary sliding 
and expansion. 

of single-crystal constituents becomes The average stress 

iC = Lc& = L c A E .  (40) 

2 = (LeAc}E. (41) 

The macroscopic stress rate 2 is taken to be the volume average of the stress rate of 
the single-crystal constituents, 

Comparing equations (31) and (41), we obtain 

L = ~L4Cl .  
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Figure3. RelaIionship of overall shear modulus plotted 
against different boundary sliding parameters. Go is the 
overall shear modulus with non-sliding- boundaries 
K, = E,a/Eh. K+ = G+a/Eh.  

Figure 4. Tensile-stress-strain e w e s  for sliding and 
non-sliding boundaries (Taylor hardening, holG 
0.1). 

4. Elastic-plastic behaviour of sliding polycrystals 

Now we are ready to calculate the stress-strain relations of the sliding polycrystals based 
on the elastic-plastic properties of the single-crystal constituents. 

A three-dimensional simulation will obviously take too much computation time. For the 
sake of simplification, a two-dimensional model of an aggregate polycrystal is introduced 
in this paper which is similar to the models proposed by Rice et al [I71 and Mohan et al 
[181. 

Each single crystal in the two-dimensional model contains three equivalent slip systems 
(altogether six slip systems, including reverse slip systems). Each slip system is reduced 
from a pair of crystallographic slip systems in an FCC crystal. If the FCC crystal has the 
initial yield stress ro associated with each slip system, then the initial yield stresses of the 
e uivalent slip systems in the two-dimensional model will be equal to ZZO/& and h r o ,  respectively. 

Meanwhile, all single-crystal constituents have a common crystal axis [loll, which is 
parallel to the z axis in the two-dimensional model of the aggregate polycrystal. 

In order to prove the validity of the two-dimensional model, tension stress-strain 
relations for the Fcc polycrystal are first calculated under the classical situation of perfect 
interface bonding. 

Figure 2 shows the results of the calculation for the FCC polycrystal with randomly 
orientated, non-hardening single crystals. The curve marked with full circles indicates the 
calculated ?suits of Hill's model for the threedimension simulation given by Hutchinson 
[3]. The iuve marked with open circles represents the present results of the two-dimensional 
model. In the early stages of deformation, the predictions of the two-dimensional model 
are slightly higher than that of the three-dimensional simulation, due to the constraint of the 
plane-strain condition. As the plastic deformation increases, the predictions of two models 
are essentially identical. 

4.1. Elastic constaids of FCC polycrystals with imperfect grain boundaries 

We now calculate the elastic constants of the FCC sliding polycrystal made of cylindrical 
grains. For a FCC single crystal, the elastic modulus tensor in the crystal axes can be specified 
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by three parameters q l ,  q2 and q3 due to the cubic symmetry. The instantaneous overall 
moduli of the FCC polycrystal in the two-dimensional model display transverse isotropy with 
respect to the z axis so that the non-zero independent moduli are 

LI1 LlZ L13 0 
[LIZ Lll L13 0 1 

where L.56 = i(L11 -Liz) .  
In the case of plane strain, we have 

yrx = yYI = 0 Ez = 0. (4) 

y& = yJz = 0 &,p = 0. (45) 

In the two-dimensional model, all slip systems are in plane systems, so that 

From equations (44) and (43, one arrives at 

E: = (1/E3)[Uz - U3(Ux -k ay)] = 0 Uz = U3(Ux + U y )  

where E3 and y are the elastic modulus and Poisson’s ratio of the polycrystal in the z axis 
direction, respectively. Obviously the out-plane overall elastic modulus and Poisson’s ratio 
in the two-dimensional model are equal to the out-plane elastic modulus and Poisson’s ratio 
of the singlecrystal constituents. 

We introduce the two-dimensional stress vector U = [q un q21T and strain vector 
E = [ E I I  &n y121T for the two-dimensional model. The non-zero instantaneous elastic 
moduli are 

The in-plane overall shear modulus G and Poisson’s ratio i can he evaluated as follows: 

(47) G = i(Ll1 - LIZ) c = Ll2/(L11 + L l d .  

The calculation has been carried out for a sliding polycrystal made of AI-single-crystal 
constituents with parameters = 23.5 GPa, t / g  = 28.5 GPa. The calculated 
results of overall shear modulus are shown in figure 3. The full curve indicates the results 
for very stiff normal interface modulus, while the small squares represent the results for 
moderate stiff interface normal elastic modulus. It is clear that when the interface tangential 
shear modulus G+ tends to zero, the relative overall shear modulus G/Go will approach 
0.46 for K, = 1.476 x IO5. This value is slightly lower than the value 0.54 given by Yang 
et al [ 151 for frex sliding aggregate polycrystals made of cubic grains. Cubic grains possess 
edges and corners, while cylindrical grains have smooth boundaries. Obviously the present 
aggregate polycrystal made of cylindrical grains slides more easily along gain boundaries. 
This results in the reduction of overall shear modulus 5. Here GO represents the overall 
shear modulus of the polycrystal with perfect grain boundaries. 

= 76.9 GPa, 
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4.2. The concentration factor tensor 

We now iniroduce two non-dimensional parameters: K ,  = E,a/Eh, K+ = GgafEh where 
a is the radius of a cylindrical grain, and h is the thickness of the interface layer. E,  and 
GQ are the normal elastic modulus and the tangential shear modulus of interface layers, 
respectively. 

Using the present method, one can easily calculate the strain (or stress) concentration 
factor tensor A, of the inclusion problem when both the matrix and the inclusion are 
isotropic or anisotropic materials. For comparison with Eshelby’s solution, we choose an 
isotropic matrix with elastic modulus E = 1000 GPa and Poisson’s ratio v = f. In order to 
simulate the perfect bonding condition, the interface layer is assumed to be extremely stiff 
with K, = lo6, K+ = lo6. The calculation was carried out for the two-dimensional model. 

’ b o  types of inclusions are discussed. First, the inclusion is isotropic with Et. = 
900 GPa, Poisson’s ratio vio = f. Using the present method and Eshelby’s solution, we 
can get the concentration factor tensor and (&)Bah&y (see table 1). 

Table 1. Concentration factor tensor. 

Ail An A33 

1.072 1.071 1.062 
( A e ) ~ f i , ~ l b ~  1.074 1.074 1.067 

Comparing diagonal terms of with (&)&,by, we can see that the maximum 
relative error is less than 0.5%. By the way, the off-diagonal terms of the concentration 
factor are very small compared with the diagonal terms in the above example. We can 
conclude that the present result for the concentration factor is essentially identical with 
Eshelby’s accurate solution. 

Second, the inclusion is anisotmpic with elastic moduli g$ = gi, + Ag, where gij  

are isotropic elastic modulus tensor components for the Yang’s modulus Eh = 900 GPa, 
Poisson’s ratio win = and Ag = SO GPa. The diagonal terms of the concentration factor 
tensors and (&)Eshelby are given in table 2. 

Table 2. Concentration factor tensor. 

Ai l  A n  A33 

(A&,, 1.054 1.055 0.984 
(Achhribv 1.057 1.057 0.982 

Here Eshelby’s solution for the concentration factor was obtained using the elastic 
potential and the Green’s function. The present calculated result for the concentration 
factor is in good agreement with Eshelby’s solution. 

When the mairix is isotropic and the inclusion is spheroidal or cylindrical, Eshelby’s 
solutions for the concentration factor provide very simple analytical formnlae. When the 
matrix is a general anisotropic medium, the calculation of the concentration factor of 
Eshelby’s solution is very complicated. 

The present method can easily deal with the inclusion problems with anisotropic matrix. 
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4.3. Elastic-plastic behaviour f o r  sliding FCC polyc ystals 

In this section, two kinds of singlecrystal hardening law are chosen for calculation, 
(1) Taylor’s isotropic hardening law with h,8 = h; (2) Asaro’s hardening law with 
ha8 = ho[q + (1 - q)&p19 

We assume that all single crystals are elastic isotropic with Yang’s modulus E = 1oOOc,~, 
Poisson’s ratio v = f .  

First we calculate the macro stress-strain curves of an aggregate polycrystal under tensile 
or shear loading for the classical situation of perfect bonding conditions. The calculation 
was carried out using the self-consistent method proposed in section 3. 

In figures 4 and 5 ,  the curves with open circles represent the present results for very 
stiff grain boundaries with ( K r  = 1.0 x lo4, K+ = 1.0 x IO4), while the curves with full 
circles or small squares represent the results of perfect grain boundaries based on Eshelby’s 
solution. The single crystal is assumed to obey Taylor’s hardening law with ho = 0.1G. 
These figures clearly show that the present results are essentially identical to that of perfect 
grain boundaries. 

2.5 

2.0 
2 .2  

s % 

t- 1.0 

< 1.8 
.t, b - sliding wi th  1.4 

K,=10000 0.5 

0 1 2 3 4 5 6  0 2 4 6 8  

Y/YYS 

Figure 5. Shear-stress-sheamtrain curves for sliding 
and mn-sliding boundaries (Taylor hardening, ho/G = 
0.1). 

Figure 6. Tensile-Ness-plastic-strain curves for sliding 
and non-sliding boundaries (Asaro hardening. ho/C = 
0.1, p = 1.2, r, fro = 1.8). 

In figure 6, the open and full circles have the same meaning as above, but all single 
crystals obey Asaro’s hardening law with ho = O.lG, q = 1.2, rS/% = 1.8. The two curves 
are very close to each other. 

Figure I contains plots of the macro responses under shear loading. The two curves are 
very close in the range of 0 < y / ~  < 5.0 but, as the shear loading increases further, 
the difference between these two curves also increases. This is due to the effect of grain 
boundary sliding. It means that, in order to simulate perfect bonding conditions, we need 
to use larger K, and K4. 
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Figure 7. Shear-stress-plastic-shearavain Curves for 
sliding and nonaliding boundaries (Asm hardening, 
holG = 0.1. q = 1.2, rS/m = 1.8). 

R 

1 

0 
1 .o 1.2 1.4. 1.6 1.8 

Figure 8. Tensile-stressplastic-slrain curves for different boundary sliding resistances (K, = 
10000, Taylor hardening, hafG = 0.02). 

1.0 J-, 
0 1 2 3 4 5  

E P / E y s  

5 7  

ff/VYS 

Figure 9. Tensile-stress-plastic-slrajn curves for different baundvy sliding resisfananCes ( E ,  = 
IOOOO, Taylor hardening, ho/C =0.04). 

Now we consider sliding polycrystals. Three types of grain boundaries with very stiff, 
moderate stiff and soft tanggntial shear moduli were used for calculations, while the normal 
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2.2 , 
2.0 

1.8 < 1.6 
1.4 

3l 

- K,=10000 - K,=O.2 
I .2 - K,=O.O 

.o -5 Figure 10. Tensile-suwsplastic-strain curves for different 
boundary sliding resistances (K, = 10000, Taylor 
hardening. ho/G =0.1). 

1 
1.6 

1 . 4  

1.2 

?-3 4l 
1 -I 
1.0 1.2 1.6 1.8 

7 Tys 

Figure 11. Shear-suess-plastic-shear-shain curves for different boundary sliding resistances 
(K,  = 10000, Taylor hardening, hofC = 0.02). 

interface modulus parameter K, = 1.0 x lo4. 
The overall stress-plastic-strain curves of the aggregate polycrystal are presented in 

figures 8-10 for the case where all single crystals obey Taylor’s isotropic hardening law 
with hardening parameters ho/G = 0.02, 0.04, 0.1, respectively. In these figures, 
the open circles, squares and full circles represent the results for 4 = lo4, 0.2 and 0.0, 
respectively. These three figures clearly show that the smaller the interface tangential shear 
modulus, the softer is the aggregate polycrystal. 

Figures 11-13 indicate the plots of macro shear stress against plastic shear strain 
of the aggregate polycrystal subject to shear loading for the case where all single- 
crystal constituents also obey Taylor’s isotropic hardening law with hardening parameters 
ho le  = 0.02, 0.04, 0.1, respectively. From these figures, the same conclusions can be 
reached. 

Figures 14 and 15 show macro stress-strain curves of the aggregate polycrystal’under 
tension and shear loading, but the singlecrystal constituents have Asaro’s hardening 
properties with parameters ho = O.lG, q = 1.2 and s , / q  = 1.8. A similar tendency 
is clearly shown in these figures. 
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FiguR 12 Shear-sm~plasticshear-strain curves for different boundary sliding resistlnces 
(K, = 10000, Taylor hardening. ha/G = 0.04). 
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Gl 

1.8 < 1.6 

’ 1 .4  

1 .2  

R ba 1.8 

\ 1.5 

1.4 

1.2 

b 

Figure 13. Shear-stres~lasric-shear-strain curves for Figure 14. Tensile-stress-plastistic-shain c w e s  for 
different boundary sliding resistances (K, = 10000, different boundvy sliding resistances (K, = 10000, 
Taylor hardening, ha/G = 0.1). Asaro hardening, halG = 0.1, o / r o  2 1.8, q = 1.2). 

General speaking, the stresses in the interface layers will increase as the tension or shear 
loading increases, while the stiffness of the interface layers will decrease. This means that 
the stiffness of the interface layers depends on deformation history. In order to simulate 
this mechanism, the shear-stress-shear-strain relationship of the interface layers takes the 
form 

Using rate formation, we have 
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Figure 15. Shear-suess-plastic-shear-sbain CUNS for Figure 16. Tensile-stressplastic-strain awes for 
different boundary sliding resistances (K, = IOOW, different boundary sliding resistances (K, = 10000, 
Asm hardening, ho/G = 0.1, r&o = 1.8, q = 1.2). Taylor hardening, ho/C = 0.1. rO/ro = 1.05. n = 0.1). 

Open circles, K+ varying as equation (49): full circles, 
K+ = K: = 10, K: = G$n/Eh. 

Y F i m  17. Shear-stress-olastic-shear-strain c w e s  for - 
different boundary sliding resistances (K, = 10000, 
Taylor hardening, ho/G = 0.1. rQ/m = 1.05, n = 0.1). 
open circles, K+ varying as equation (49): full circles, 
K+ = K$ = IO, K: = G$a/Eh. 

1 0  
0 ' l o  

Here, TO and y o  are the yield shear stress and yield shear strain of the interface layers 
respectively, and G$ is the elastic tangential shear modulus of the interface layers. 
Fi,wes 16 and 17 compare the results of constant interface modulus with those of an 
interface tangential shear modulus that varies according to equations (48) and (49). From 
these two figures we can see how the interface properties influence the macro behaviour of 
the aggregate polycrystal. 
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5. Conclusions 

From this study one can draw the following conclusions. 

1. A general analytical solution of the sliding spherical inclusion which is embedded in 
an infinite general anisotropic matrix is presented in this paper. The interface sliding and 
expansion can be easily simulated using this solution. 

2. The variational method is a powerful tool for dealing with spherical inclusion 
problems with a general anisotropic matrix. In particular. for an imperfect interface, the 
variational method shows great benefits compared with the elastic potential method and the 
Green’s function method. 

3. Incorporating the above solution into the self-consistent method, a generalized self- 
consistent method is proposed for predicting the overall mechanical behaviour of aggregate 
sliding polycrystals. 

Using the two-dimensional model of an aggregate polycrystal, the numerical 
cdculations for the sliding polycrystals have been carried out. The numerical calculations 
include the elastic properties of the polycrystals, the concentration factor tensors of inclusion 
problems with imperfect interfaces, and the elastic-plastic behaviour of sliding polycrystals. 

5. The numerical results clearly show that the sliding and expansion of the grain 
boundaries have significant effects on the mechanical behaviour of aggregate polycrystals. 

T C Wag and W K Pan 
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