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Abstract, Using a variational method, a general three-dimensional solution to the problem of a
sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper.
The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a
thin interface layer with interphase anisotropic properties, The displacements in the matrix and
the.inclusion are expressed as polynomial series of the cartesian coordinate components. Using
the virtual work principle, a set of linear algebraic equations about unknown coefficients are
obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on
this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with
a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical
behaviour of sliding polycrystals is given in detail. Numerical results are given to show the
significant effect of grain boundary sliding on the overall mechanical properties of aggregate

polycrystals.

1. Introduction

Theoretical prediction of the elastic—plastic behaviour of polycrystalline materials on the
basis of single-crystal properties has played an important role in the field of physical theories
of plasticity [1-5]. The finite element method provides a direct numerical solution of a
boundary value problem which takes account of interaction between grains.

A semi-analytical method is used out on the basis of some averaging techniques. A
powerful averaging scheme is the self-consistent method, originally proposed by Kroner
[6], and Budiansky and Wu [7] and elaborated by Hill er af [1]. However, most of these
theories are based on the assumption that the interfacial displacements and tractions across
the boundary must be continuous.

The assumption of perfect bonding is sometimes inadequate. The interface damage due
to cyclic loading, thermo-impact, high-temperature, intensive deformation and chemical
interaction is a common phenomenon. Grain boundary sliding in granular media like rock,
s0il, sand, ete, is also a common feature.

Recently, the new technology of thin coating on reinforcement particles and fibres has
been widely used. This has resulted in considerable interest in imperfect interface conditions.

Inclusion problems with imperfect interface have been treated by Walpole [8], Mura et
al [9], Ghahremani [10], Benvenise [11], Hashin [12], Luo and Weng [13], and Luo and
Chen [14] among others. But most works only deal with an inclusion which is embedded
in an infinite isotropic elastic medium. Up to now, very few works have considered the
effect of interface damage on the overall behaviour of aggregate polycrystals. Yang et al
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[15] have given a stress—strain relation of a sliding polycrystal, assuming perfect normal
interface bonding and ideally tangential free sliding.

A general solution of a sliding spherical inclusion which is embedded in an infinite
anisotropic medium is presented in this paper. Using this solution, a self-consistent model
for sliding polycrystals is proposed. A systematic analysis of the mechanical behaviour of
sliding polycrystals is given in detail.

2. Sliding spherical inclusion

Consider an infinite anisotropic elastic body containing a spherical inclusion in a domain
. The infinite body is subject to uniform stresses at infinity. The remote displacement
field u; is

;= &K, whenr — o<, ¢))

The spherical inclusion with radius # is glso a general anisotropic elastic medium. The
interface is treated as an interface layer with inner radius ¢ and outer radius R (R = a + k).
Suppose the thickness i of the interface layer to be very small (& <« a). The strain
components in the interface layer can be approximately expressed as

g =[ul/h Yro = [ugl/h Vrp = [ugl/ h. (2)

Other strain components are assumed to be negligibly small in comparison with the
above components.

It is a very hard task to derive an analytical solution using the Green’s function of
an anisotropic elasticity for the present three-phase boundary problem, In order to get an
analytical solution, the variational method is employed in this paper.

The virtual work principle, which is equivalent to the equilibrium equation in the body
and the traction condition on the surface, is given by

811 = 8Uy -+ 86U -l-f {oi; — G'f?o)aé';‘j dv -{—f Ji?ngéuj ds=0 (3)
Vs st

where U/; is the elastic strain energy of the inclusion, U; is the elastic deformation energy of

the interface layer, S; is the internal surface of the matrix, and V3 is the volume occupied

by the infinite matrix, as shown in figure 1.
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The displacements u; in the inclusion can be represented as

co
Uy = Z amnkxmy"zk
m,nk=0
o
iy = Z bmiﬂ.ﬁ:xmyﬂzlt )
m,n,k=0
00
p= Y Cuma™y2E,
m,n, k=0

The strain components of the inclusion are given by

)
&y = E D X i (1] X)
m,n,k=0

o0
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m,n, k=0

=]
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Here
Kmng = x" ynzk' 6)

Introduce the standard stress vector o = [0y, 0y, 07, Tyz, Tyxs Try]' and strain vector

€ = [&x, &y, &2, Vyz1 Yers }’xy]T-
The elastic constitutive relation for the inclusion is

o =ge 7

where g;; are the elastic moduli of the inclusion.
The displacements #; in the matrix take the form

oo
", = Z Amnkxmynzk/r2(m+n+k) + E??.?Cj
m.n,k=0
o)
Uy = Z Bm"kxmynzk/r2(m+n+k) + eg?xj (3)
m,n k=0
00
iy = Z Coomx ™y gt [ p 2ty o £52x;.
i, k=0
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The strain components &;; in the matrix are
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where dpynp = —2(m +n + k).
The elastic constitutive relation is

o=0Ge (10)

where G;; are the elastic moduli of the matrix.
For the interface layer, the constitutive relation is

or = E.& g = Goyra Trgp = Gqﬂ"rrﬁ' (11)
Introduce the following notations:
= [my my m3] = [m n k] p=1p1 p2 ps1=1[pq 5]
Xm = Kok kp = qus Qm = Amnk Ap = Apgs
(4 % 5), o o 5]
g 8 8ish 8, 8ish

Let bold numbers 1,2,3 correspond to the rows of [1 6 5], [6 2 4] and [5 4 3],
respectively. After lengthy manipulation, one obtains

50y = f @)V = > Udusam + diabm + diocm)Scp
m,p=0
+ (dn1am + dazbp, + dzscm)ﬂbp + (ds1am + da2bm -+ ds3cm)dcp) (12)

where
dry=gm: 3 (13)
{165 {1 65 {5 4 3
=t 6 5], T 6 2 4), =S 43,
m; p;
ﬁ,-,_f xmxpx' xj, dv. (14)
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On the other hand, we have

: =)
f (aij — a§°)83,-_,- dVv + f oﬁ“niﬁu_; ds = Z [(DuAm + DlzBm + D13Cm)3Ap
Vi st m,p=0
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o0
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Dij=Gp: 8 (16)
16 5 1 6 5 5 4 3
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o %% °n
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T
where 9, ¢ are the Euler angles along the longitudinal and latitudinal directions, respectively.
The deformation energy of the interface layer is U3,

oG
$Ur= Y UTnhm+TiBm + Tl + Hi)S4p
m,p=0

4+ (T Am + DB + T'23Crn + H2)8 B,
+ (T31 A + T3aB, + T3l + Ha)8CplR%a% /R (24)
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T
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A, By, and Cpy, can be represented as follows:

ﬁm — R—(m-i-n+k+l)Am _ am+n+k—1am

Em _ R—(m+n+k+l)Bm _ am+"+k_lbm (30)

Cin = R—(rn+n+k+l)cm — gkl Cm

and #; is the outside unit normal of the spherical surface. Using the virtual work principle,
one can get a set of linear algebraic equations-about the unknown coefficients @y and A .
Therefore the stress and strain fields of the sliding inclusion can be accurately calculated.

3. Self-consistent model for sliding polycrystals

The sliding polycrystal is considered as the aggregate of numerous randomly orientated
grains with imperfect grain boundaries.

Macroscopic stress and strain rates associated with the aggregate polycrystals are
denoted by 3} and E. We have

S =LE. 3D
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For a perfect interface, the macro stress and strain rates are the volume average of
the corresponding stress and strain in the single crystal constituents. For the case of an
imperfect interface, there are displacement discontinuities across the grain boundary. From
the average strain theorem, it follows that

E; = {&51 + E,"; 32)
E::I 21V [s‘ ([ui]nj -+ [u;]ni)ds. (33)

Here {&;;} is the volume average of the strain rate in the single-crystal constituents and
Ex*: is the volume average of the strain rate in the interface layers. In equation (33), the
integral is taken over all interfaces.

According to the self-consistent method of Hill, the stress and strain rates in an individual
grain can be calculated by replacing the grain under consideration by an equivalent spherical
grain which is embedded in an infinite homogeneous matrix where instantaneous moduli
are the overall moduli of the aggregate polycrystal.

As Eshelby [16] pointed out, the stress and strain rates in the equivalent spherical
inclusion, &, and &, will be uniform if the interface is perfectly bounded,

o = Leé. (34)
Ee = Ac.E.'. (35)

For the imperfect grain boundary, the stress and strain in the inclusion is no longer
uniform. Based on the solutions of the sliding inclusion problems, one can get the following
relation:

£, = AE (36)
s = AKE 37)
and
- I 1 . .
(Eedij = Vo Jo & dV = Vo j;(u: nj+u; n;)ds (38)
= 1 . .
Gou =72 f GiFn +iing) ds (39)

where 2 is the domain occupied by the grain, §; is the surface of the £2, and n; is the unit
normal of the surface S5;. It is clear that the £, is the average strain of the grain, and £ sc is
the average strain of the grain and the interface layer including the grain boundary sliding
and expansion.

The average stress & of single-crystal constituents becomes

Go = Leg, = L AE. (40)

The macroscopic stress rate ¥ is taken to be the volume average of the stress rate of
the single-crystal constituents,

¥ = {L.AE. (41)
Comparing equations (31) and (41}, we obtain
L ={L.A}. (42)
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Figure 3. Relationship of overall shear modulus plotted  Figure 4. Tensile-stress-strain curves for sliding and
against different boundary sliding parameters. Gpisthe non-sliding boundaries (Taylor hardening, fhp/G ==
overall shear modulus with non-sliding grain boundaries  0.1).

K; = E,a/Eh, Ky = Gpa/Eh.

4. Elastic-plastic behaviour of sliding polycrystals

Now we are ready to calculate the stress—strain relations of the sliding polycrystals based
on the elastic—plastic properties of the single-crystal constituents.

A three-dimensional simulation will obviously take too much computation time. For the
sake of simplification, a two-dimensional model of an aggregate polycrystal is introduced
in this paper which is similar to the models proposed by Rice et al {17] and Mohan et a!
[18]).

Each single crystal in the two-dimensional model contains three equivalent slip systems
(altogether six slip systems, including reverse slip systems). Each slip system is reduced
from a pair of crystallographic slip systems in an FCC crystal. If the FCC crystal has the
initial yield stress 7p associated with each slip system, then the initial yield stresses of the
equivalent slip systems in the two-dimensional model will be equal to 27p/+/3, 279/+/3 and
‘351:0, respectively.

Meanwhile, all single-crystal constituents have a common crystal axis [101], which is
parallel to the z axis in the two-dimensional model of the aggregate polycrystal.

In order to prove the validity of the two-dimensional model, tension stress—strain
relations for the FCC polycrystal are first caleulated under the classical situation of perfect
interface bonding.

Figure 2 shows the results of the calculation for the FCC polycrystal with randomly
orientated, non-hardening single crystals. The curve marked with full circles indicates the
calculated —sults of Hill’s model for the three-dimension simulation given by Hutchinson
[3]. The surve marked with open circles represents the present results of the two-dimensional
model. In the early stages of deformation, the predictions of the two-dimensional model
are slightly higher than that of the three-dimensional simulation, due to the constraint of the
plane-strain condition. As the plastic deformation increases, the predictions of two models
are essentially identical.

4.1. Elastic constants of FCC polycrystals with imperfect grain boundaries

We now calculate the elastic constants of the FCC sliding polycrystal made of cylindrical
grains. For a FCC single crystal, the elastic modulus tensor in the crystal axes can be specified
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by three parameters 1, 1, and 73 due to the cubic symmetry. The instantaneous overall
moduli of the FCC polycrystal in the two-dimensional model display transverse isotropy with
respect to the z axis so that the non-zero independent moduli are

Ly Lp Liz 0 0 0
Ly Ly Lp 0 0 O
Lis Lz Ly 0 0 O

I=1% 0o 0 14 0 o 43)
0 0 0 0 Ly O
0 0 0 0 0 Lg
where Lgg = $(L11 — L12).
In the case of plane strain, we have
Yox = ¥y =0 g =0. (44)
In the two-dimensional model, all slip systems are in plane systems, so that
yzﬂ = y}; =0 ef,_’ ={. (45)

From equations (44) and (45), one arrives at
5: = (1/E3)[o; — vs(ox + oy}] = 0 o, = v3{0x +°'y)

where E; and v; are the elastic modulus and Poisson’s ratio of the polycrystal in the z axis
direction, respectively. Obviously the out-plane overall elastic modulus and Poisson’s ratio
in the two-dimensional mode] are equal to the out-plane elastic modulus and Poisson’s ratio
of the single-crystal constituents.

We introduce the two-dimensional sfress vector o = [y o2 Ti2]7 and sirain vector
€ = [g1 & y12)* for the two-dimensional model. The non-zero instantaneous elastic

moduli are

En L O

L=|Ly Ln 0| (46)
0 0 Leg

The in-plane overall shear modulus & and Poisson’s ratio v can be evaluated as follows:

=Ly —Lp) ¥ = L2/(Lu + L12). @7

The calculation has been carried out for a sliding polycrystal made of Al-single-crystal
constituents with parameters 1, = 76.9 GPa, ;2 = 23.5 GPa, 13 = 28.5 GPa. The calculated
results of overall shear modulus are shown in figure 3. The full curve indicates the results
for very stiff normal interface modulus, while the small squares represent the results for
moderate stiff interface normal elastic modulus. It is clear that when the interface tangential
shear modulus G, tends to zero, the relative overall shear modulus G/Go will approach
0.46 for X, = 1.476 x 10°. This value is slightly lower than the value 0.54 given by Yang
et al [15] for free sliding aggregate polycrystals made of cubic grains. Cubic grains possess
edges and corners, while cylindrical grains have smooth boundaries. Obviously the present
aggregate polycrystal made of cylindrical grains slides more easily along grain boundaries,
This results in the reduction of overall shear modulns G. Here Gy represents the overall
shear modulus of the polycrystal with perfect grain boundaries.
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4.2. The concentration factor tensor

We now introduce two non-dimensional parameters: K, = E,a/Eh, Ky = Gya/Eh where
a is the radius of a cylindrical grain, and % is the thickness of the interface layer. E; and
G are the normal elastic modulus and the tangential shear modulus of interface layers,
respectively.

Using the present method, one can easily calculate the strain (or stress) concentration
factor tensor A, of the inclusion problem when both the matrix and the inclusion are
isotropic or anisotropic materials. For comparison with Eshelby’s solution, we choose an
isotropic matrix with elastic modulus £ = 1000 GPa and Poisson’s ratio v = % In order to
simulate the perfect bonding condition, the interface layer is assumed to be extremely stiff
with K, = 108, Ky = 108, The calculation was carried out for the two-dimensional mode].

Two types of inclusions are discussed. First, the inclusion is isotropic with Ej, =
900 GPa, Poisson’s ratio viy = % Using the present method and Eshelby’s solution, we
can get the concentration factor tensor (A¢)present and (Ac)Eshelby (See table 1).

Table 1. Concentration factor tensor,

Ay Az Az

(Ac)present i.072 1.071 1.062
{Ac)Eshelby 1.074 1.074 1067

Comparing diagonal terms of (Ac)gresens With (Ac)eshelby, We can see that the maximum
relative error is less than 0.5%. By the way, the off-diagonal terms of the concentration
factor are very small compared with the diagonal terms in the above example. We can
conclude that the present result for the concentration factor is essentially identical with
Eshelby’s accurate solution.

Second, the inclusion is anisotropic with elastic moduli g} = gi; + Ag, where g;;
are isotropic elastic modulus tensor components for the Yang's modulus Ej, = 900 GPa,
Poisson’s ratio vy, = % and Ag = 50 GPa. The diagonal terms of the concentration factor
tensors (Ac)presens and (Ac)Eshelny are given in table 2.

Table 2. Concentration factor tensor.

Ayt Axn Az

(Ac)present 1.054 1055 0984
(Ac)Eshelby 1.057 1.057 0982

Here Eshelby’s solution for the concentration factor was obtained using the elastic
potential and the Green’s function. The present calculated result for the concentration
factor is in good agreement with Eshelby’s solution,

When the matrix is isotropic and the inclusion is sphercidal or cylindrical, Eshelby’s
solutions for the concentration factor provide very simple analytical formulae. When the
matrix is a general anisotropic medium, the calculation of the concentration factor of
Eshelby’s solution is very complicated.

The present method can easily deal with the inclusion problems with anisotropic matrix.
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4.3. Elastic-plastic behaviour for sliding FCC polycrystals

In this section, two kinds of single-crystal hardening law are chosen for calculation,
(1) Taylor's isotropic hardening law with k. = h; (2) Asaro’s hardening law with
haﬁ = hﬂ[q + (1 - Q)saﬂ]s

= 2 _hoy N @
A = hgsec 'y—Zy .

=]

We assume that all single crystals are elastic isotropic with Yang’s modulus £ = 10001,

Poisson’s ratio v = 1.

First we calculate the macro stress—strain curves of an aggregate polycrystal under tensile
or shear loading for the classical situation of perfect bonding conditions. The calculation
was carried out using the self-consistent method proposed in section 3.

In figures 4 and 5, the curves with open circles represent the present results for very
stiff grain boundaries with (X, = 1.0 x 10%, Ky =10x 10%), while the curves with full
circles or small squares represent the results of perfect grain boundaries based on Eshelby’s
solution. The single crystal is assumed to obey Taylor’s hardening law with hy = 0.1G.
These figures clearly show that the present results are essentially identical to that of perfect
grain boundaries,

2.6
2.5 7
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2.0 - @
[}
o ]
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} e-ee-eo non-sliding ) s-e-e++ non-sliding
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Figure 5. Shear-stress-shear-strain curves for sliding  Figure 6. Tensile-stress—plastic-strain curves for sliding
and non-sliding boundaries (Taylor hardening, hg/G =  and non-sliding boundaries (Asaro hardening, hp/G =
0.1). 01,9 =12, /g = L.B).

In figure 6, the open and full circles have the same meaning as above, but all single
crystals obey Asaro’s hardening law with 2o = 0.1G, ¢ = 1.2, t; /1y = 1.8, The two curves
are very close to each other. :

Figure 7 contains plots of the macro responses under shear loading. The two curves are
very close in the range of 0 £ y/®w < 5.0 but, as the shear loading increases further,
the difference between these two curves also increases. This is due to the effect of grain
boundary sliding. It means that, in order to simulate perfect bonding conditions, we need
to use larger K, and Kj.
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Figure 8. Tensile-stress—plastic-strain curves for different boundary sliding resistances (&, =
10000, Taylor hardening, ho/G = 0.02).

Figure 9. Tensile-stress-plastic-strain curves for different boundary sliding resistances (K, =
10000, Taylor hardening, fip/ G = 0.04).

Now we consider sliding polycrystals. Three types of grain boundaries with very stiff,
moderate stiff and soft tangential shear moduli were used for calcuiations, while the normal
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Figure 10, Tensile-stress—plastic-strain curves for different
boundary sliding resistances (K, = 10000, Taylor
ha.rdening, h()j'G = 0.1).
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Figure 11. Shear-stress-plastic-shear-strain curves for different boundary sliding resistances
(K, = 10000, Taylor hardening, kg/G = 0.02).

interface modulus parameter K, = 1.0 x 10

The overall stress-—plastic-strain curves of the aggregate polycrystal are presented in
figures 8~10 for the case where all single crystals obey Taylor’s isotropic hardening law
with hardening parameters #o/G = 0.02, 0.04, 0.1, respectively. In these figures,
the open circles, squares and full circles represent the results for Ky = 10% 0.2 and 0.0,
respectively. These three figures clearly show that the smaller the interface tangential shear
modulus, the softer is the aggregate polycrystal.

Figures 11-13 indicate the plots of macro shear stress against plastic shear strain
of the aggregate polycrystal subject to shear loading for the case where all single-
crystal constituents also obey Taylor's isotropic hardening law with hardening parameters
hy/G = 0.02, 0.04, 0.1, respectively. From these figures, the same conclusions can be
reached.

Figures 14 and 15 show macro stress—strain curves of the aggregate polycrystal under
tension and shear loading, but the single-crystal constituents have Asaro’s hardening
properties with parameters fig = 0.1G, ¢ = [.2 and 7,/rp = 1.8. A similar tendency
is clearly shown in these figures.



752 T C Wang and W K Pan

T/Tys

Figure 12, Shear-stress—plastic-shear-strain curves for different boundary sliding resistances
(KX, = 10000, Taylor hardening, ho/G = 0.04).
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Figure 13. Shear-stress-plastic-shear-strain curves for  Figure 14,  Tensile-stress~plastic-strain curves for
different boundary sliding resistances (K, = 10000, different boundary sliding resistances (X, = 10000,
Taylor hardening, ha/C = 0.1). Asare hardening, be/G = 0.1, 7/ = 1.8, g = 1.2).

—
5

General speaking, the stresses in the interface layers will inérease as the tension or shear
loading increases, while the stiffness of the interface layers will decrease. This means that
the stiffness of the interface layers depends on deformation history. In order to simulate
this mechanism, the shear-stress—shear-strain relationship of the interface layers takes the
form

{r/'f°= y/¥° y <¥° 48
0 (1191 0 ( )
/T =/vY) y>v
Using rate formation, we have
I t=GYy ¥ <y°

. - . {49)
t=n(y/Y°y Gy y >yt
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Figure 15. Shear-stress-plastic-shear-strain curves for
different boundary sliding resistances (K, = 10000,
Agaro hardening, hng =01, 1'5/':0 =13, g = 1.2).
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Figure 16. Tensile-stress—plastic-strain curves for

different boundary sliding resistances (X, = 10000,
Taylor hardening, fip/ G = 0.1, ro,/ro = 1.05,n=0.1).
Open circles, Ky varying as equation (49); full circles,
Ky = K3 =10, K3 = G3a/Eh,

Figure 17. Shear-stress—plastic-shear-strain curves for
different boundary sliding resistances (K, = 10000,
Taylor hardening, ko/G = 0.1, t% /70 = 1.05,n = 0.1).
Open circles, Ky varying as equation (49); full circles,
Ky = K) =10, K = G3a/Eh.

Here, 7% and ¥° are the yield shear stress and yield shear strain of the interface layers
respectively, and Gg is the elastic tangential shear modulus of the interface layers.
Figures 16 and 17 compare the results of constant interface modulus with those of an
interface tangential shear modulus that varies according to equations (48) and (49). From
these two figures we can see how the interface properties influence the macro behaviour of

the aggregate polycrystal,
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8, Conclusions

From this study one can draw the following conclusions.

1. A general analytical solution of the sliding spherical inclusion which is embedded in
an infinite general anisotropic matrix is presented in this paper. The interface sliding and
expansion can be easily simulated using this sclution.

2. The variational method is a powerful tool for dealing with spherical inclusion
problems with a general anisotropic matrix. In particular, for an imperfect interface, the
variational method shows great benefits compared with the elastic potential method and the
Green’s function method.

3. Incorporating the above solution into the self-consistent method, a generalized seli-
consistent method is proposed for predicting the overall mechanical behaviour of aggregate
sliding polycrystals.

4. Using the two-dimensional model of an aggregate polycrystal, the numerical
calculations for the sliding polycrystals have been carried out. The numerical calculations
include the elastic properties of the polycrystals, the concentration factor tensors of inclusion
problems with imperfect interfaces, and the elastic—plastic behaviour of sliding polycrystals.

5. The pumerical results clearly show that the sliding and expansion of the grain
boundaries have significant effects on the mechanical behaviour of aggregate polycrystals.
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