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We propose here a local exponential divergence plot which is capable of providing a new means of characterizing chaotic time
series. The suggested plot defines a time dependent exponent 4 and a *“plus” exponent A4, which serves as a criterion for estimat-
ing simultaneously the minimal acceptable embedding dimension, the proper delay time and the largest Lyapunov exponent.

In recent years much progress has been made in
understanding and characterizing chaotic dynamical
systems. Much of the progress has been brought about
by the important discovery that an appropriate state
space can be reconstructed from a scalar time series
[1]. Calculation of the correlation dimension and of
the K, entropy by the Grassberger—Procaccia algo-
rithm [2], and estimation of the Lyapunov expo-
nents [3-6] have become standard procedures for
analyzing chaotic signals. However, one may not gain
much understanding by routine calculations under
certain circumstances, since there are difficulties in
interpreting correlation integral results [7], which
are intimately related to the problem of how to dis-
tinguish chaos from stochastic processes. Therefore,
it would be very helpful if a geometric method could
be devised to view the dynamics, especially the local
exponential divergence dominated behavior of a time
series, so that a glance at this divergence plot would
provide some insight into the dynamic system.

We report here a kind of local exponential diver-
gence plot which enables one to view the dynamics
on a chaotic attractor. The simple plot provides a
criterion for the selection of the minimal acceptable
embedding dimension and an optimal delay time.
When the unstable motion on the chaotic attractor
only is extracted, a proper estimation of the largest
positive Lyapunov exponent can also be obtained.

Assume we have a time series x;, X», ..., With sam-

pling time & and construct vectors of the form
Xi= (X, Xis1s ooy Xit (m—1)r.)> With m the embedding
dimension and L delay time. Hence a dynamics F:
X;— X+, is defined, which is assumed to be repre-
sentative of the original system. The distance be-
tween X; and X}, denoted by dis(X;, X;), is mapped
to dis( X4, X;4x) after k iterations of F. The local
exponential divergence plot is defined by plotting
In[dis(X;+r Xjii)/dis(X;, X;)] versus In[dis(X,
X;)] when dis(X;, X;) is smaller than a prescribed
small distance r*. If we assume that most of these
sufficiently small distances dis(.X;, X;) can be re-
garded as distances between orbits, then if the mo-
tion is truly chaotic, points with dis( X4, Xjvx)>
dis(X;, X;) will dominate and lie above the zero level
line in the plot.

Figure 1 shows divergence plots with different m
and L for the Rossler attractor (a=0.15, b=0.20,
¢=10.0, 8t=n/25, the dynamics is reconstructed
from the x component of the flow). We will show
below that the difference between these plots gives
a hint to optimal embedding, and m=3, L=8 cor-
respond to optimal parameter values. The zero level
line 1s added to fig. 1b for a clear view of the diver-
gence dominated behavior.

A problem of significant practical importance is to
determine the minimum acceptable embedding di-
mension .. A basic idea is that in the passage from
dimension m to m+1 one can differentiate between
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Fig. 1. Local exponential divergence plots for the Rossler attractor, k=9.

points on the orbit X(») that are “true” neighbors
and points which are *“false” neighbors — points which
appear to be neighbors because the orbit is being
viewed in too small an embedding space. Based on
this basic idea, several methods are now available
{8-11], which differ in implementations either by
way of graphic display or by defining some appro-
priate statistical quantity. When the embedding di-
mension is increased from m_.— 1 to m,, the structure
of the graphic representation and/or the value of the
statistical quantity will undergo a radical change
while further increasing m causes little change. Our
divergence plot implements this basic idea dynam-
ically. When the embedding space is too small, the
ill-defined dynamics F and the false neighbors will
generate many points of In[dis( X, X)) /dis( X,
X;) ] with excessively large positive values in the di-
vergence plot. This is clearly shown by the difference
between figs. 1a and 1b.

Figure 1 also points out how to select the proper
delay time L. Dynamically, when L is either too small
or too large the dynamics F will not be very well de-
fined, in the sense that excessively large values of
In[dis( X34, Xj4r)/dis(X;, X;)] frequently appear.

154

The key to selecting a proper delay time L is that the
orbital motion should be as uniform as possible, and
distortion be small. This can be achieved by requir-
ing that the number of points In[dis(X;4z Xirz)/
dis(X,, X;)] with excessively large positive values in
the divergence plot be as small as possible and the
structure of the divergence plot be as compact as
possible. This is the reason that the structure of fig.
1b is preferred to fig. 1c or 1d. Actually, fig. 1b is
representative of that constructed from the original
system and does not change much when m is further
increased.

For a quantitative description, we define the time
dependent divergence exponent 4 by

A(k, m, L) = (n[dis(Xi1x, X;4i) /dis(X;, X;) 15,
(1)

with dis(X;, X;)<r* The evolution time corre-
sponding to k is k3¢ and the angular brackets denote
the ensemble average of all possible pairs (X;, X;).
Points with positive values of In[dis(X; 44, Xj+i)/
dis(X;, X;)] are especially important since we are
more concerned with points In{dis( X4z, Xjix)/
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Fig. 2. A(L) and A, (L) curves with different m for the Réssler attractor, k=9.
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Fig. 3. A(k) curves with different m and L for the Rossler
attractor.

dis(X;, X;)] with excessively large positive values.
Thus we also define the “plus” exponent 4, by

A (k,m, L)
=In[dis(Xiri, Xjii) /dis(X;, Xj) 14 >, (2)

where + simply denotes that points with positive
values of In[dis( X4« Xj+x)/dis(X;; X;)] only are
averaged. In the following discussion, when only one
variable is considered, we will simply write A(k),
A(L) and 4, (L) for convenience.

Now the problem of properly reconstructing the

radically, or equivalently, that 4 and 4, do not de-
crease significantly by further increasing m. When m
is thus selected, for a series of L, the minima of
A, (L) and A(L) determine an optimal delay time.

The physical significance of the quantity A is ob-
vious. When the evolution time k8¢ is very small,
A/kdt is the mean value of the so-called largest local
Lyapunov exponent [12,13]. After several itera-
tions, the separation vector between X; and X; will
align with the eigendirection for the largest positive
Lyapunov exponent, and A/k8¢ is equivalent to the
standard estimation of this exponent. Hence when
the proper reconstruction of the state space has been
achieved, we would require that the 4(k) curve for
k&t not very small be a straight line which passes
through the origin when extrapolated. Otherwise,
different values of the largest Lyapunov exponent will
be obtained with different selections of k. This kind
of situation has been observed by Zeng et al. [6],
however. Therefore, in practice at least we would re-
quire that A(k) depend linearly on k for ke (kyin,
kmax ), and the interval (Kmax—Kmin)8¢ be not too
small. The largest positive Lyapunov exponent can
be objectively estimated by [A(k,)—A(ky)]/
(ki —k3)8t, with ky, k€ (Kmin, Kmax)-

Let us continue to discuss the Rossler system. Fig-

155



Volume 181, number 2

Table 1

PHYSICS LETTERS A

4 October 1993

Simultaneous minimal embedding dimension m and optical delay time L, and the largest Lyapunov exponent A. The total number of

points N is given in the table for different model systems.

System Optimal embedding parameters A
others present results (NV=2000) others present results
Henon map {15]
(a=1.4,b=03) m=2 m=2,L=1 0.418 [5] 0.421+0.003
(N=5000) {9] (N=2000)
Rossler [16]
(8t=7/25,a=0.15, m=3,L=7 m=3,L=8 0.09 [5] 0.067+0.006
b=0.20, c=10.0) (N=10000) [10] (N=2000)
Lorenz [17]
(6t=0.03, 6=10, m=3,L=3 1.497 (5] 1.48+0.03
b=%,r=4592) (N=3000)
Mackey-Glass [18]
(8t=1.5,a=0.2, m=4, [§t=0.3I" m=4, L6t=0.3I" 0.0071 [4] 0.0072 +0.0006
b=0.1, c=10, '=30) (N=9000) [10] (N=4000)
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Fig. 4. Original (w=1) and modified (w=54) local exponential divergence plots for the Lorenz system constructed from the x compo-

nent of the flow, m=3, L=27, k=30.

ure 2 shows the A(L) and A, (L) curves, and we see
that the combination of m=3 and L=8 is an opti-
mal choice. Note that improper embedding (under-
estimated m or improper L) always results in over-
estimated positive exponent. Figure 3 gives the A (k)
curves for different m and L. We see that when m =3,
the A(k) curve for L=8 shows a clear linear depen-
dence, while curves for the smaller value of L=6 or
the larger value of L=12 (approximately the opti-
mal value suggested by ref. [14]) are less satisfac-
tory. Figure 3 also shows two curves for m=4, L=6
and m=8, L=4, with improved linearity. Note that
the degree of the linearity is “saturated”” when m is
increased to 4, while the minimum acceptable value
of m is 3. The estimated value of the largest Lya-
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punov exponent from the slope of the linear A(k)
curve of m=3 and L=38 is 0.067. These results, to-
gether with results for other known model chaotic
systems, are summarized in table 1.

We note that, with regard to the proper reconstruc-
tion of the state space, the results of refs. [9,10] can
be easily obtained by our method with a very small
data set. Our method has the additional advantage
that the approach is simpler, more natural and easier
to understand and implement, and capable of pro-
viding more information.

Finally we examine the assumption that most suf-
ficiently small distances dis(.X;, X;) can be regarded
as distances between orbits. A problem related to this
is that whether and how the divergence plot for a
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Fig. 5. A(k) curves corresponding to fig. 4.

continuous system changes with the sampling time
6t. Let us discuss the Lorenz system with a much
smaller 8¢ of 0.003 than the one taken in table 1. Fig-
ure 4a shows the divergence plot for m=3, L=27.
We see that the plot consists of two parts, a dotted
curve-like part and a heavy black part. Do they have
the same origin? Figure 5a shows the A(k) curve,
which is by no means linear. Hence we should con-
clude that each part has its distinct origin, and that
the above assumption does not hold in this case.

The answer is rather simple, however. There are
certain small distances like dis( X}, X;,,.), with w very
small, and their kth iterations can also be very small.
These points obviously correspond to the orbital
motion, and cannot be regarded as small distances
between orbits. Points in the divergence plot corre-
sponding to these points merely reflect changes of
the phase velocity along the orbit, and such points
will increase if 8¢ is decreased. Let us call this part
of the motion tangential motion. The tangential mo-
tion contributes a dimension nearly one, corre-
sponding to a Lyapunov exponent equal to zero [19].
Hence this motion should be excluded when calcu-
lating the fractal dimension and estimating the larg-
est Lyapunov exponent. A possible way of doing this
is to add an additional condition to expression (1),
namely

j—izw. (3)
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Expression (1) corresponds to w=1. Theiler [20]
has proposed a similar improvement to the calcu-
lation of the correlation dimension, and suggests w
to be selected as the auto-correlation time. In our
case, theoretically, it does not matter if a very big w
is selected. However, we have tested numerically that
putting w equal to the embedding window (m—1)L
already does the job.

Figure 4b is a modified divergence plot. It can be
seen easily that the curve-like part of fig. 4a, espe-
cially the part corresponding to very small distances
where statistics is poor, is largely suppressed. Figure
5b is the modified 4(k) curve. It is now nearly lin-
ear. Actually the slope of the modified A(k) curve
gives the correct Lyapunov exponent. Thus we know
that the heavy black part in the divergence plot orig-
inates from the unstable motion, and a linear A(k)
curve is a property of the unstable motion and char-
acteristic of chaotic motions.

Let us summarize. Two kinds of motion, tangen-
tial motion and unstable motion, can be discerned
from the structure of the divergence plot. The former
is irrelevant in the calculation of the fractal dimen-
sion and estimation of the largest positive Lyapunov
exponent. Hence, the former should be removed as
much as possible in these calculations. Since the
damaging effect of the tangential motion is enhanced
when 8¢ is decreased, too small a sampling time is
not recommended. Also 3¢ is suggested not to exceed
the optimal delay time.

A note on the Lorenz system needs be made. This
system is very complicated in that, even when &8¢ is
not small (for example, 8:=0.009), the tangential
motion still occupies a large fraction in the diver-
gence plot, and the A(k) curve is not linear by
expression (1), if condition (3) is not imposed. This
was probably the reason that Wolf et al. [5] used a
very large 8¢ to estimate the largest Lyapunov ex-
ponent for this attractor.

Another important note should also be made. The
optimal values of m and L&¢ do not change with the
sampling time &¢. Though condition (3) is suggested
when calculating the A4 (k) curve to estimate the Lya-
punov exponent, it is not needed when reconstruct-
ing a state space, since the tangential motion is an
integral part of the motion on the attractor.

This work is partly supported by the National Ba-
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