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ABSTRACT 

A H~GHEK-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has 
been carried out for plane strain, Mode I. The extent to which elasticity affects the near-tip tields is 
determined by the strain hardening exponent II. Five terms in the asymptotic series for the stresses have 
been derived for n = 3. However, only three amplitudes can he independently prescribed. These are K,, K, 
and K, corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic 
series have been obtained for n = 5, 7 and 10: in these cases, the independent amplitudes are K,, Kz and 
K,. It is found that appropriate choices of Kz and K, can reproduce near-tip fields representative of a 
broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized 
by distinctly different stress triaxiaiity levels (established by finite element analysis) have been matched by 
the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about IO 
crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. 
Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of 
adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure 
of near-tip stress triaxiality can describe the full range of near-tip states. 

I. INTRODUCTION 

THE CHANGES in near-tip stress triaxiality as plastic flow advances beyond well- 
contained yielding provide a strong argument for a two-parameter description of 
plane strain Mode T near-tip fields. At low loads, the near-tip stresses and deformations 
evolve according to a self-similar field. This field, characterized by a high level of stress 
triaxiality, also describes the development of the near-tip stresses and deformations as 
plastic flow progresses beyond contained yielding in so-called high-constraint crack 
geometries. While this high triaxiality field is only one of many possible states that 
can exist under fully yielded conditions, it is the only field that has received careful 
study until recently. When the high triaxiality field (HUTCNINSON, 1968; RICE and 
ROSENGREN, 1968), scaled by the J-integral (RICE, 1968), prevails over distances of 
several crack tip openings, J alone sets the near-tip stress level and the size scale of 
the zone of high stresses and large deformations. This is the basis for correlating the 
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onset of crack growth in different crack geometries with a single parameter, JIc, and 
for relating Jlc to fracture mechanisms operative on the microscale [see works by RJCE 
and JOHNSON (1970), MCMEEKINC; (1977), MCMEEKINC; and PARKS (1979), SHIH and 
GERMAN (1981) and NEEDIEMAN and TVERC;AARD (1983), and review articles by 
HUTCHINSON (1983), RIT~HIE and THOMPSON ( 198.5), and PARKS (1992)]. 

Arguments that a single parameter might not suffice to characterize the dis- 
similar near-tip states observed in fully yielded crack geometries have been raised by 
MCCLINTO(_‘K (1971). He noted that non-hardening plane strain crack tip fields of 
fully yielded bodies are not unique but exhibit levels of stress triaxiality that depend 
upon crack geometry. Since stress triaxiality and deformation are weakly coupled 
under fully yielded conditions. it may be argued that the description of near-tip states 
must require more than one parameter in general. 

An investigation along this direction was made by LI and WAIK; (1986). They 
performed a two-term asymptotic analysis for power-law hardening materials and 
proposed that J and a second parameter li, could describe crack tip fields of varying 
stress triaxiality. Here k, is the amplitude of the second-order stress field whose value 
can be determined by matching the two-term expansion with full-field solutions of 
crack geometries. A higher-order analysis of crack tip fields has been carried out by 
SHARMA and ARAVAS (199 1) taking account of possible elasticity effects. However, it 
is apparent that more than two terms in the asymptotic series are required to match 
representative descriptions of complete fields near the crack tip. 

Another two-parameter approach has its origin in studies by LARSS~N and CARLS- 
SON (1973) and RICE (1974) who employed a modified boundary layer (MBL) for- 
mulation to investigate the effect of the elastic T-stress on the elastic-plastic fields in 
the vicinity of the crack tip. BKBY et ~1. (1986) have performed large deformation 
analysis for a non-hardening material. They found that the fields which evolve near 
blunting tips in finite width geometries are similar to those which exist near the tip of 
a crack loaded by J and T. BETE( and HANCKK (1991), AI,-ANI and HAKO~K 
(1991). and Du and HANC’OCK (1991) investigated hardening and non-hardening 
materials. They correlated near-tip states in tension and bend geometries with a family 
of near-tip fields generated by using the MBL formulation. These investigators have 
proposed to parameterize crack tip stress triaxiality in fully yielded crack geometries 
in terms of the elastic T-stress (see PARKS, 1992). 

The character of the high and low triaxiality stress fields surrounding the finite 
strain zone has been examined by O’Dowr~ and SHIH (1991. 1992a). They undertook 
a full-field finite deformation analysis and systematically investigated the difference 
field, defined as the full-field solution less the HRR field. They found that the difference 
field, constructed for the full range of MBL loadings, describes a spatially uniform 
hydrostatic stress field (of adjustable level) ahead of the crack tip; furthermore, the 
difference field exists over a broad range of plastic yielding in finite-width crack 
geometries. The implication of their finding is this : J, a deformation parameter, and 
Q, a stress triaxiality parameter, can characterize the full range of near-tip states 
surrounding the fracture process zone. SHIH ct ul. (1991) also observed that the 
difference field, which is precise in the context of MBL loadings. can be regarded as 
equivalent to the sum of second- and higher-order terms of an asymptotic expansion. 

The above findings provided the impetus for this study. A rigorous eigen-expansion 
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for an elastic power-law hardening material is performed. Up to five terms in the 
asymptotic series have been derived. For a moderate to low hardening material, it is 
shown that four terms in the asymptotic series (only three amplitudes are independent) 
can consistently reproduce the full range of near-tip states constructed by the MBL 
formulation. Moreover, the higher-order terms collectively describe a uniform hydro- 
static stress field ahead of the crack tip. 

2. J-Q THEORY 

The central points of the J-Q theory are summarized here to provide the back- 
ground for subsequent sections. 

2.1. Q-family qf jields-MBL ,formulution 

The existence of the Q-family of fields can be made by appealing to a modified 
boundary layer (MBL) formulation in which the remote tractions are given by the 
two-term WILLIAMS’ (1957) expansion : 

~/L? = - J~~.&(s)+Td~~~~~?.~ (2.1) 

Here r and 0 are polar coordinates centered at the crack tip with 8 = 0 corresponding 
to the line ahead of the crack. Within the MBL formulation and for plane strain 
deformation, 

J= 1-v2 ~ K:, 
E (2.2) 

where E is Young’s modulus, v is Poisson’s ratio and J is RICE’S (1968) J-integral. 
Crack tip fields characterized by different triaxiality levels can be induced by 

loading to different values of T. Let CJ” denote the material’s tensile yield stress. From 
dimensional considerations, these fields can be organized into a family of crack tip 
fields parameterized by T/a0 : 

(2.3) 

That is, the loading parameter T/o0 can provide a convenient means to investigate 
specimen geometry effects on near-tip stress triaxiality under conditions of well- 
contained yielding. Indeed, such studies have been carried out by BILBY et al. (1986), 

BETEG~N and HANCOCK (1991), and HARLIN and WILLIS (1988). Nevertheless, the 
result in (2.3) cannot have general applicability since the elastic solution (2.1), upon 
which the T-stress is defined, is an asymptotic condition which is increasingly violated 
as plastic flow progresses beyond well-contained yielding. 

Recognizing the above limitation O’DOWD and SHIH (1991, 1992a), henceforth 
referred to as OS, identified members of the family of fields by the parameter Q which 
arises naturally in the plasticity analysis. OS write : 
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(2.4) 

The form in (2.4) constitutes a one-parameter family of self-similar solutions, or in 
short a Q-family of solutions. Each member field is characterized by its level of 
deformation, as measured by J/o”, and by its level of crack tip stress triaxiality, as 
measured by Q, which also identifies that field as a particular member of the family. 
For example, the self-similar solution of RICE and JOHNSON (I 970), and MCMEEKINC; 
(I 977) (or the HRR field), can be regarded as the Q = 0 member field. 

2.2. D~~rrence ,field and near-tip stress tricrriulit~~ 

OS considered an elastic power-law hardening material. Using the MBL for- 
mulation and by applying different values of T/a ,,, they generated the full range of 
plane strain small scale yielding solutions, designated by (cJ,]~)~~~. OS directed atten- 
tion to the difference field defined by 

(a,i,)d,fi. = (~/Jn)MHf. - (~,I/)HRR (2.5) 

where (G,~,,),,~~ is the HRR field. They systematically investigated the character of the 
difference field within the forward sector: 181 < 71/2, J/a,, < r < 5J/cr,,. This zone 
encompasses the microstructurally significant length scales for both brittle and ductile 
fracture (RITCHIE and THOMPSON, 1985). 

Remarkably, the difference field in the region ahead of the crack displays minimal 
dependence on r. Furthermore, a,.,.(O),,,r z o,,r,(fl),,,,l- z constant and ]~,,((i))~,,,~/ CC 
/cJ,),~(@~,,,~] in the forward sector 101 < rc/2 [see Figs 3, 4 and 5 in O’Dowr~ and SHIH 
(1991)]. Thus an approximate representation of the difference field is 

(G,j, )d,ll = Qo,,6,1, (0) = Qa,,~p;.. IfJl < 7G (2.6) 

where 6,], is the Kronecker delta. That is, the difference field ahead of the crack tip 
can be approximated by a spatially uniform hydrostatic stress state of adjustable 
magnitude. These features of the difference field are corroborated by results obtained 
from a higher-order asymptotic analysis which are discussed in Section 5. 

To the extent that the fields derived within the MBL formulation are applicable 
under general yielding, a two-parameter description takes the form 

“ii, = (“jii)HRR + (O/i,~)dirr z (G,l,)HKK fQa06,1,. (2.7) 

The interpretation of Q is transparent: negycrtice (positiw) Q ~uIue.s irnpl~l thut the 
lzydrostutic .stress ahead of’ the crack is reduced (increased) h.13 Qao ,fiorn the high 
triuxialitJ% vq&wnw stress state. We emphasize that the approximate relation in (2.7) 
is intended to facilitate the interpretation of Q and its evaluation in finite width crack 
geometries. It does not compromise the existence of the J-Q fields based on (2.4) and 
(2.5). 

Finally, it may be noted that an admissible range of stress states for an elastic 
perfectly plastic material has the form 
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agj = (O,jj~)Prendtl+ Q006/1i > 1’1 ’ 71/4. (2.8) 

Dilkrenccfield 

Here (c,~;,)~~~,~~,, designates the Prandtl slip-line solution and the difference field 
describes a uniform hydrostatic stress scaled by Q (Du and HANCOCK, 199 1 ; O’DOWD 
and SHIH, 1992a). 

3. FORMULATION OF ASYMPTOTIC SERIES 

The analysis is carried out within the context of small displacement gradient,theory, 
and the material of the cracked body is taken to be described by a Ramberg-Osgood 
relation and J2 deformation theory. In uniaxial tension the material deforms according 
to 

E/C” = O/O” +a(cJ/a”)“, (3.1) 

where n is the strain hardening exponent, 2 a material constant, and CJ,, and E” the 
reference stress and strain related through E, = a,/E with E being Young’s modulus. 
Under multi-axial stress states, g,,, the strain is 

(3.2) 

Here v is Poisson’s ratio, s,, the stress deviator and cc = J3s,,s,,/2 the effective stress. 

3.1. Plane strain equations 

We invoke the plane strain condition 

to get the relation 

(1/2-v)(%+%) 
sjj = - 

(3/2)a((r,/a,,)“~ ’ + 3/2 ’ 

(3.3) 

(3.4) 

where gr and (T,, are the stress components in cylindrical coordinates. Using (3.4) in 
(3.2), the stress-strain relation specializes to 

Here, Greek indices range from 1 to 2, cr,,,’ = o,+oO, PIIi = CT/~,.- ~cT,,,~,~~. and 

(3.5) 

Since cr(a,/g”)” ‘/[a(f~,/o,)“~ ’ + 1] + 1 as Y -+ 0, the asymptotic value of I- is 
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l- = -(l+v)V+(;-v)‘. 

The effective stress is given by 

G,z = ;(D,.-crH)*+3z,:r+&, 

but as r asymptotically approaches 0, the relation can be simplified to 

Cr,2 = :(a, -DO)2 +32,?,,. 

(3.6) 

(3.7) 

3.2. Airy stress ,function 

Equilibrium is ensured for all stresses derived from a stress function 4 : 

T ro = 

We attempt an asymptotic expansion of the solution in the form 

4 = (TV i K,r’~+‘$,(O), 
/= I 

(3.8) 

(3.9) 

where s, < s2.. -c s,; s, - sj are referred to as the stress exponents. 
Substituting (3.9) into (3.8) yields 

where 

r, 0, - = -(X,+1)&, (3.11) 

and As, = s, -.s, (i = 2,3,4,5), [, = K,, ,/K, (j = 1,2,3,4) and () = d/d& ). 
Now apply (3.10) to (3.7) to obtain 
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(3.12) 

d % = ~(~~,-~“,)(~.r,-~,,,)+3~~,z;,,, i,j= 1,2,3,4,5. (3.13) 

In subsequent discussions the quantity c?~,,, is written as g:,. 

As r + 0, the quantity within parentheses is much smaller than the first term in 
(3.12). Therefore, 

We combine (3.10) and (3.14) with the elastic power-law stress strain relation (3.5) 
to arrive at the following relations : 

$i, = (1 + v)o”gr, +@a”,,,, i= 1,2,3,4,5, 

and the plastic strain is 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

with 



and 

F,]j, = &,I;,- i6 ,,,,, 6,1,. i = 1,2, 3,4, 5. (3.20) 

3.3. Gocerniny equation 

The equation governing the stress function is obtained by applying (3.15) to the 
strain compatibility equation 

(3.21) 

The resulting nonlinear eigenvalue equation is 

xtK" p, 
I 

znl;+ct~(,r"',+A"c ?~I;+~K';<;J~,,+ ?A>, ?nr, 

+uK';<2r"',+A.', Ln~+~~5,ir2r)l\,iA.\~+A~, 'ny, 

+rK';~jr'i.i,+A~a 2n~h+~~1;~~~)1),tA.li~?n~7+~,~(, ?n; 

+K,i;,r'l+A'~ 'n: = 0, (3.22) 

where 

Ill = ?, -n.s,(ns, +2)F;p, -2(ns, + I)$,, 

n? = ?‘-(ns, +As~)(rz.s, +A.s,+2)F;?-2(ns, +A.s~+ I)$~,, 

nri = 8’zz-(n.sI +2Asd(ns, +2Asz+2)$‘,,-22(~1.~, +~A.s~+I)&~~, 

Hi; = $S-(ns, +A~s~)(n.s, +A.s,+2)C’-2(ns, +A.s,+ I)@;,,, 
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np, =~,~-((rzs,+A~~+A~~)(ns,+A~~+A~~+2)~~~-2(ns,+As~+A~~+l)~~~,, 
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KIp, = &-(ns, +As,)(ns, +As,+2)$‘-2(ns, +As~+ I)&, 

II’+ = ~~~-((ns,+As,)(ns,+As,+2)~s-2(ns,+AsS+1)~~;),, 

rI; = $, -s,$, +s,(s, + l)$, -2(s, + I)$],, 

n; =~~-(S,+AS~)~~+(.~,+A.~~)(S,+AS~+~)~~-~(S,+AS~+~)~~~. (3.23) 

Traction free conditions on crack face require : 

61(~) = J?(n) = 0, i= 1,2,3,4,5. (3.24) 

At 0 = 0, these symmetry conditions are imposed : 

J,(O) = Ji(0) = 0, i = 1,2,3,4,5. (3.25) 

Equations (3.22)-(3.25) comprise the governing equations for the asymptotic 

expansion. 

4. SOLUTION OF GOVERNING EQUATION 

4. I. First-order field 

The first-order field is obtained by solving the nonlinear eigenvalue problem associ- 
ated with the leading term in (3.22) 

rr? = 0, 

J,(O) = J,(O) = 0, 

d,(n) = J,(n) = 0, 

max {de,} = I, (4.1) 

where Fj is defined by the first equation in (3.23). The solution to this problem is 
given by HUTCHINSON (1968) and RICE and ROSENGREN (1968). The exponent s, of 
the HRR field can be determined by an application of the J-integral (RICE, 1968). 
The value of s, is 

1 
3, zz ----, 

n+l 

The HRR field has been tabulated by SYMINGT~N et al. (1988). 

(4.2) 

4.2. Second-order ,jeld 

Lr and WANG (1986) were the first to investigate the second-order stress field 
associated with the second term in (3.22), i.e. 

rip, = 0, (4.3) 
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and the associated homogeneous boundary conditions (3.24) and (3.25) for i = 2. This 
is a linear eigenvalue problem and they presented the solution using the normalization 

f&(O) = -1. (4.4) 

The second-order stress field also has been studied by SHARMA and ARAVAS ( 199 I ). 
They found that the effects of elasticity enter the solution to second order when 
1 < 12 < 1.6. In this case, the second-order field is governed by the following non- 
homogeneous linear ordinary differential equation, 

TIS = -rI:. (4.5) 

To obtain the above equation, we have prescribed xK;<, = K, with no loss of 
generality. The stress exponent of second-order field is given by Curve 4 in Fig. l(b) 
when 1 < n < 1.6 and by Curve I when IZ > 1.6. Readers are referred to SHARMA and 
ARAVAS (199 1) for details of the second-order field. 

4.3. Third-order ,field 

An inspection of (3.22) indicates that one (or more) of three terms can constitute 
the third-order stress field. These are the third, and fourth and the eighth term in 
(3.22), i.e. 

&115f~nt, t 2A\,-?n;, 

Ct~‘;(,rq+A.\, ‘nr,, 

K,r‘l ‘FIL;. 

4 - (n- l)/(n+ 1) 

1 - - As2 

2 

2 --- --__ 1 

0 1 
2 4 6 8 10 

n 

( > a 

2 4 6 6 10 

n 

w 
FIG. I. Eigenvalues for second-, third- and fourth-order stress fields. 
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To determine which of these terms make up the third-order stress field, we investigate 

these exponents, 

ns, +2As2-2, 

ns, +As? -2, 

SI -2, 

to find the smallest of the three. This is equivalent to searching for the smallest among 
the following three numbers : 

2As,, 

AS,, 

n-l 

n+l’ 

The value of 2As2 is known from the solution for the second-order field. This is shown 
as Curve 2 in Fig. 1 (a). 

In order to find the value of As,, we seek the solution to the fourth term of (3.22), 
i.e. 

np, = 0, (4.6) 

where II? is defined in (3.23). Making use of (3.18), we transform (4.6) into a 
homogeneous linear ordinary differential equation of the form, 

. . ” 
ff$ = D,~j+D*~3+03~3+D04~3+05~, = 0. (4.7) 

Here D,, D2, D,, D, and D5 are functions of sj, As, and $,, $,, $,, 7,. The D’s are 
given in the Appendix. 

The eigenvalue As, (or .s3) can be determined in the following manner. Since (4.7) 
is a linear equation for 6l(Q), we first seek the two elementary solutions which satisfy 
these conditions : 

(1) cm) = 1, = 43(O) = 0, (4.8) 

(2) &(O) = 0, ” &(O) = 1, (4.9) 

respectively. Designate the elementary solutions corresponding to the initial con- 
ditions-(4.8) and (3.25) (i = 3), and (4.9) and (3.25) (i = 3)-by &“I”(@ and 
&“(Q, respectively. The integration of (4.7) is performed by the Runge-Kutta method 
with automatic step-size control ; the integration error is kept to within lo- ‘. 

The general solution to (4.7) has the form 

&(8) = c,&‘(e) + c~&2’(0). (4.10) 

Satisfaction of boundary conditions at 0 = rc, (3.24) (i = 3), requires 

c, &“(71) + c,Cj&yz) = 0, 

c, &‘+T) + c2f$yy4 = 0. (4.1 1) 



676 L. XIA c’t (I/. 

A non-trivial solution for C, and Cl exists if and only if the determinant of the matrix 
of the coefficients vanishes, i.e. 

@?“(71)&)(7() -@;)(7r)f&)(rr) = 0. (4.12) 

The solution to (4.12) provides the value of As,. 
In general two different values of A.s, are obtained for a given value of n. It is found 

that equation (4.6) is similar to (4.3), so that the smaller value of As, is the same as 
the value of As?. The second (larger) value of As3 is denoted by As;. 

The values of As,, 2A.rL. As: and (M- I)/(rz+ 1) are plotted in Fig. l(a) for 
1 < II < 10. It can be seen that the stress exponent of the third-order field is given by 
Curve 4 when 1.6 < II < 2.8. i.e. As, = (n- 1)/(/z+ I). It is given by Curve 2 when 
II > 2.8, i.e. As, = 2As,. 

It is apparent from the above discussions that the equation governing the third- 
order field depends on the value of II. 

Case 1: 1.6 < IZ < 2.8 
The governing equation is 

. ‘I: 
n’; = D,~i+Dz~?+D_(~?+D,j~+~~~~ = -n;, (4.13) 

and aK’; t2 = K, has been used in the above. As discussed previously, II: is related 
to the first-order field so that As, = (II- I)/(r?+ I). That is, the stress exponent .sj of 
the third-order field is equal to (n-2)/(12 + I ) which is shown as Curve 4 in Fig. I (b). 

Case 2 : 2.8 < 12 < I51_ 
The governing equation is 

. . ‘1: 
nl; = D,~1+D~~b3+D?~~3+04~3+D~~i = -nl;, (4.14) 

The relationship c2 = <f has been used in (4.14) and TIl; is related to the first- and 

second-order fields. In this case, As, = 2As2, so that the stress exponent sj is equal to 
2.sz -s , 

Let d;‘/“(fl) be a particular solution that satisfies (4.13). or (4.14), and also meets 
the homogeneous initial conditions. 

&(O) = J,(O) = &(O) = $;(O) = 0. (4.15) 

Combining d;:“‘(B) with the solution in (4. IO) provides the general solution for (4. I3), 
or (4.14), 

& = c,g”‘3”+C$$‘+&? (4.16) 

Now the boundary conditions in (3.24) are invoked to determine the coefficients C, 
and C2. The outcome is : 

C,fp(n)+C2&y7-c) = -&y7c,. 3 

c,qv(n)+C2&(n) = -&y7I,. 3 (4.17) 

t WC did not perform calculations for II > 15 since it is known that the robustness of such asymptotic 
expansions deteriorates as II becomes large. Morcovcr, detailed numerical descriptions of complete liclds 
for the purpose of “field matching” arc available only for II C IO. 
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A unique solution for C, and C2 exists since the determinant in (4.17) does not vanish 

in general. 
In summary, the third-order stress field is not independent over the range of 

hardening values of interest. The third-order field is controlled by the amplitudes 
of the lower-order fields: K, = l/(ctKym ‘) for 1.6 < n d 2.8, K3 = K:/K, for 
2.8 < n < 15. 

4.4. Higher-order,fields 

The analysis of the fourth- and fifth-order fields proceeds in the same manner. This 
will not be discussed in the interest of space. Figue 1 (b) shows how the stress exponents 
of the fields of different order depend on n. For 2.8 < n < 3.7, the stress exponent of 
the fourth-order field is given by Curve 4. For n > 3.7 it is given by Curve 3. The 
eigenfields for n = 3, 5, 7 and 10 are discussed in the next section. 

5. RESULTS 

The analysis of higher-order fields has been carried out for 1 < n < 15. Eigenfields 
for n = 3, 5, 7 and 10 and comparisons with full-field numerical solutions obtained 
by modified boundary layer analyses are discussed here. 

5.1. Solutions ,for n = 3 

The first- to the fifth-order stress fields have been obtained for n = 3 ; &variations 
of the eigenfields are shown in Fig. 2. The stress solution can be written in the form : 

+ Ksro.iX22’h’“~,~,,S(e). (5.1) 

Note that elasticity effects enter the fourth-order field which is evaluated for v = 0.5. 
The fifth-order stress field is normalized by requiring &5(O) = - 1. In writing (5.1), 
the relationships K3 = K:/K, and K4 = l/(aK; ‘) have been used. That is, among 
the five amplitude coefficients, K, (i = 1,2,3,4,5), only three can be independently 
prescribed. They are K,, K2 and KS. 
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ZB ’ 

” \ n=3 

2\\ \ 
\ 1 irsl \ 

u? 3 \ 
d ,---t- 

I \' 
I \' 

0 .\ 

0 50 100 150 180 

the 1st field the 2nd field the 3rd field 

;:m Yim 
(J) 50 go0 150180 (e) 50 ;oo 150180 

the 4th field the 5th field 

FIG. 2. Angular distributions of the first- to fifth-order stress lields for n = 3. ci,, is identiiicd by label I, 
d,,, by label 2. and Q,,,, by label 3. 

5.2. Solutions fbr n = 5, I and 10 

Figure 3 shows the angular distributions of the first- to fourth-order stress fields 
for n = 5, 7 and 10. It can be seen that the patterns of the first-, second- and fourth- 
order stress fields for n = 5 are similar to the corresponding stress patterns for tr = 7 
and 10. By contrast, the pattern of the third-order stress field depends sensitively on 
n. Collectively. the stress fields can be written in the form : 

“(“+ ‘I 
K;r‘%,,JH) + K4rAG,jn4(H). 
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the 1st field the 2nd field the 3rd field the 4th field 

FIG. 3. Angular distributions of the first- to fourth-order stress fields for n = 5, 7 and 10. d,, is identified 
by label I, d,, by label 2, and ?,(), by label 3. 

The fourth-order field is normalized by requiring &4(o) = - 1 and the relationship 
K3 = KiIK, has been used in (5.2). Therefore, the amplitudes which can be inde- 
pendently prescribed are K,, K2 and K4. Stress exponents for the first- to fourth-order 
stress field for y1 = 3, 5, 7 and 10 are given in Table 1. 

5.3. Comparisons with .full-jield stress solutions-d@erence jields 

Figure 4 shows the difference stress fields for n = 10 corresponding to six different 
triaxiality levels. These fields were obtained by using the MBL formulation and finite 
element calculations based on a geometrically rigorous formulation which takes full 
account of crack tip blunting (O’DOWD and SHIH, 1991). The difference field is 
introduced in Section 2.2 and defined by (2.5). 

To facilitate the comparison with the difference field established by finite element 
analysis, we write the sum of our second-, third- and fourth-order stress fields for 
IZ= lOas: 
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TABLE 1 

SI s 2 .Y , ,( 1 

I7 = 3 -0.25000000 -0.0 1284028 0.22431944 0.25000000 
I7 = 5 - 0.16666667 0.05455957 0.2757858 1 0.34072164 
n = I ~ 0.12500000 0.06937479 0.26374958 0.30845004 
rz = 10 - 0.09090909 0.06976616 0.23044141 0.26959457 

where 

k2 = K, 
5, 

El , k,=K,<: , k, = K, 

and 

(5.3) 

I ,n+ I) 
K, = 

It is easily shown that 

k, = (xc-:,,In) ’ (‘I+ “k;. 

(5.3 

(5.6) 

To carry out the comparisons with the finite element solutions, we take x = 1.0, 
cc, = l/300, and I,, = 4.54. These are the material constants employed by O’DOWI> 
and SHIH (1991). 

In the above expression for (o,j,jao)d,,r only two coefficients- k, and k, xan be 
independently prescribed. The amplitudes, k, and kq, can be determined by matching 
the right-hand side of (5.3) with the difference field presented in Fig. 4 at any suitable 
location. In this study, the “point matching” is enforced at r/(J/uo) = 2 and 0 = 0. 
Direct attention to one of six angular stress distributions shown in Fig. 4(c) for 
r/(J/ao) = 2. The numerical value of (crO(,/~,I)dln. at 0 = 0 is equated with the linear 
combination of k2 and k, for (~~~,,/a~,)~~~ from (5.3). Similarly, we equate the cor- 
responding numerical value of (a,-,/~~~)~,~~ in Fig. 4(d) with the linear combination of 

k2 and k4 for (~rr/~O)d,K. This provides two equations for k2 and k,. The procedure is 
repeated for the other five distributions presented in Figs 4(c) and 4(d). Table 2 
lists the values of (g(,(,/~~,)~,,r and (o,-,/~,,)~,~~, corresponding to the six MBL loadings 
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0.0 45.0 90.0 ‘35.0 180 0.0 45.0 90.0 135.0 180.0 
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FIG. 4. Difference field from finite element analysis for n = 10 [Fig. 5 of 0’Dow~ and SHIH (1991)]. 
Distributions corresponding to six MBL loadings are shown. (a) and (b) Radial distribution of normal 
stresses at 0 = 0. (c) and (d) Angular distribution at rj(J/uo) = 2. (e) and (f) Angular distribution at 

rl(JiCJ,J = 4. 

presented in Figs 4(c) and 4(d), and the values of k2 and k, obtained by matching; 
k, is calculated from (5.6). 

Figures 5(a)-5(f) show the fields constructed from (5.3) for the values of k2, k3 
and k, listed in Table 2. It can be seen that both the radial and the angular distributions 

of (cJN~/~~)M and (~Ja&,K, for all six choices of kz and k4, agree well with the finite 

TABLE 2. n = 10 

1 - 1.50 -1.70 0.06844 0.00320 0.91558 
2 - 1.06 - 1.20 0.05513 0.00208 0.61191 

3 -0.74 -0.80 0.04027 0.001 I1 0.36945 

4 -0.40 -0.48 0.03212 0.00071 0.21034 
5 - 0.08 -0.13 0.01571 0.000 I 7 0.0404 I 
6 0.20 0.10 0.01035 0.00007 - 0.05275 
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0 50 100 150 iao 
8 

----___ 

FIG. 5. The sum of the second- to the fourth-order stress fields for 11 = IO. Distributions corresponding to 
six MBL loadings are shown. (a) and (b) Radial distribution of normal stresses at fl = 0. (c) and (d) Angular 

distribution at rii(J/~~,,) = 2. (e) and (f) Angular distribution at r;(J:ci,,) = 4. 

element solutions shown in Figs 4(a)+f). We should add that, though k, and k, 
were determined by “point matching”, the full agreement between the fields in Figs 
4 and 5 demonstrates that “field matching” has been achieved. 

The shear stresses have not been used in the determination of k2 and k,. Therefore, 
they provide an independent check of the quality of agreement (or lack of agreement) 
between the asymptotic series and complete descriptions of the near-tip fields. The 
angular distributions of the shear stress, based on the series in (5.2), are shown in 
Figs 6(a) and 6(b). The solid line is the first-order shear stress, i.e. the HRR field 
itself, while the non-solid lines are the first-order plus the higher-order shear fields for 
the six cases listed in Table 2. Now compare the six angular distributions in Figs 
6(a) and 6(b), for r/(J/oo) = 2 and 4, with the fields obtained from finite element 
calculations displayed in Figs 6(c) and 6(d)-the agreement is remarkably good. 
Figures 6(a) and 6(b) also reveal that the higher-order shear terms, (~,,,)~,,,r, contribute 
negligibly to the shear stress in the forward sector, -7-c/2 < 0 < 7112. By contrast, 
the magnitude of (~~,~~)~,,,r and (o,,),,, can be comparable to o,~. That is. 

l(~o~~)~,~I = I(~.r-~)~,-l >> I(al-o)~l. Th‘ 1s implies that the higher-order terms collectively 
describe what is essentially a hydrostatic stress field. 
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FIG. 6. Angular distributions of shear stress at r/(J/v,,) = 2 and 4 for n = IO. Distributions corresponding 
to six MBL loadings are shown. (a) and (b) Sum of the first- to the fourth-order stress fields are shown by 
the non-solid lines. The solid line is the HRR field. (c) and (d) Fields from finite element analysis; the open 

symbols are associated with the HRR field [Fig. 3 of O’DOWD and SHIH (1991)]. 

6. CLEAVAGE TOUGHNESS Locus 

It is shown in the preceding section that the hoop stress ahead of the crack tip is 
adequately represented in terms of J and Q : 

(6.1) 

The distribution of the normal stress ahead of cracks in finite width geometries also 
can be expected to obey the form in (6.1) as long as the characteristic crack dimensions 
is much larger than J/o,,. Readers are referred to articles by O’DOWD and SHIH (1991, 

1992a, 1992b) for details. A consequence of a two-parameter theory is this : toughness, 
J,, depends on crack tip stress triaxiality or in this case Q. This is explored below. 

We impose the condition that the initiation of cleavage fracture requires achieving 
a critical normal stress, cz2 = gcr at a critical microstructural distance, Y = r,, ahead 
of the crack tip (RITCHIE et al., 1973). With J,* and Q* denoting the toughness and 
crack tip triaxiality associated with a long crack (a/rc, u/r, --f co), or when the remote 
loading on the crack is described by K alone (T = 0), one finds from (6.1) that 

(6.2) 
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since Q* z 0. The cleavage toughness, J,, is predicted to depend sensitively on Q 
when 17 is greater than about 3. Note that the ratio, Jc/J:, does not depend on rC. 
Further discussions on constraint and size effects on toughness can be found in 
O’Down and SHIH (1992a). 

KIRK t’t al. (1991) have obtained cleavage toughness for A51 5 steels at room 
temperature. They tested edge-cracked bend bars with thicknesses B = 10, 25.4 and 
50.8 mm and various crack length to width ratios. J at fracture was evaluated from 
the loadddisplacement record and Q at fracture was determined from finite element 
analyses of the specimens. The experimentally determined toughness locus, J, as a 
function of Q, is shown in Fig. 7. It can be seen that J, rises rapidly as Q decreases 
corresponding to a loss of stress triaxiality. Though the trends are similar, the tough- 
ness data for the thicker specimens lie above those for the thinnest specimens sug- 
gesting a possible thickness effect. The thickness effect could be caused, in large part, 
by the data reduction for J and Q which was performed with plane strain analysis. 
We have not ascertained the error introduced by using plane strain solutions for J 
and Q to interpret the test data obtained from the thinner specimens. Studies aimed 
at describing the stress-triaxiality near a three-dimensional crack front in thin and 
thick plates are in progress. For the present, we apply the relation in (6.2) to the data 
in Fig. 7. The predicted variation of J, with Q from (6.2) is shown by the dashed line ; 
it captures the trend of the experimental toughness data. The predicted curve is based 
on crC = 3.5a,,, Jr= 40 kPa*m and IZ = 5, representative of the strain hardening of 

A5 15 steel. 

7. CONCLUSIONS 

An analysis of higher-order asymptotic fields, within a small displacement gradient 
framework, has been carried out for plane strain, Mode I crack in an elastic power- 
law hardening material. A five-term eigen-expansion of the asymptotic stress fields is 
derived for n = 3 ; a four-term expansion is derived for n = 5, 7 and IO. Our results 

300.0 
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250.0 ; Cleavage Data - 
_ Kirk et al. 

0 ,,,’ 
*.,’ 

3. 200.0 

,,I’ 

- 0 ,,*’ 0 cl 0 
150.0 

,’ ,,,’ l 

2 : b& 0 ,/’ 

2 
c * d ,,I’ 

100.0 d 0 7 4’. 
o_,,-;~ * 

o/-- f 
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: 
__/~. J-Q Theory 
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i 

0.0 t....I...,I,,..I....I...,I.,..I.,,,’ 
0.25 0.00 -025 -0.50 -0.75 -1.00 -1.25 -1.50 

Q 
FIG. 7. Clc~vagc toughness data for ASTM A515 Grade 70 steels tested at 20 C using edge-cracked bend 
bar for three thicknesses; + for B = 10 mm, 0 for B = 25.4 mm, a for B = 50.8 mm (KIRK cf rd., 1991). 

Toughness curve predicted by (6.2) is indicated by the dashed line. 
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show that the material’s strain hardening capacity determines the extent to which the 
elasticity affects the field. For 1.6 < n < 2.8, elasticity effects enter the third-order 

stress field. For 2.8 < n d 3.7, elasticity effects enter the solution to fourth-order. The 
amplitude of the third-order stress field, Ki, scales with the amplitude of the second- 
order stress field, Kz, when y1 > 2.8. By contrast, the amplitude of the fourth-order 
stress field, Kqr is an independent coefficient for n > 3.7; however, K4 scales with K, 
for n < 3.7. For n = 3, the amplitudes that can be independently precribed in the five- 
term series are K,, Kz and KS. For n = 5, 7 and 10, the independent amplitudes in the 
four-term series are K,, Kz and Kq. 

A two-term expansion for a Mode II crack has been performed by XIA and WANG 

(1992). Similar two-term expansions for a plane stress, Mode I crack have also been 
carried out, Lr (1988), SHARMA and ARAVAS (199 1) and Lr and WANG (1992). Readers 
are referred to these papers for details. A higher-order analysis for Mode I and II 
cracks has been attempted by CHAO et nl. (1991). They utilize the higher-order terms 
to establish the size and shape of the zone dominated by the HRR field but include 
little discussion on the character or collective behavior of the higher-order fields. 

Through finite element analysis which takes full account of crack tip blunting, 
O’DOWD and SHIH (1991, 1992a) have obtained detailed descriptions of the stress 
fields surrounding the finite strain zone for n = 10, representative of moderate to low 
hardening materials ; difference fields for a wide range of MBL loadings are presented 
in their paper. Remarkably, the full range of difference fields in O’DOWD and SHIH 
can be reproduced by the present higher-order series by appropriately varying the 
values of K, and Kq. The agreement between them persists over distances 
1 < v/(J/a,,) < 5, or distances ranging from 2 to 10 crack openings ahead of the crack 
tip. 

The findings pertaining to moderate to low hardening materials are summarized 
below. 

1. The zone of dominance of the four-term asymptotic series extends over micro- 
structurally significant length scales. 

2. The four-term series accurately match the complete fields generated by MBL 
analyses over the full range of loadings. 

3. Appropriate choices of Kz and K4 can generate near-tip fields representative of a 
wide range of crack tip constraints. Moreover, the higher-order terms collectively 
describe a spatially uniform hydrostatic stress of adjustable magnitude. 

4. The present results support a suggestion that J and a near-tip stress triaxiality 
parameter can describe the full range of near-tip states surrounding the fracture 
process zone. 
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APPENDIX 

Using (3.19). the plastic strains can be written as. 

p = /4(ri,, -e,,;)+Bf,,,;, 

:;‘;,; = B(c?,J -ri,,1):‘2+Ci,,1. (A.1) 
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where 

687 

A = n{[(n-I)S’+F]T2), 
B = n{2(n-I)~~H,w}, 

c = R{2[(n- I)??,, + T]Pj, 

s” = :(d,, -cio,), 

T= P+f;,,, 

3m+ I, 2 
Q= 4 p+7).2, 

The coefficients D ,-D, in (4.7) are given below : 

D, = A, 

Dz = 2A’-(ns,+As3+si+2)B, 

Di = A”-(~~~,+As,+2s,+3)B’-[(ns,+As&s,+As,+2) 

+(s,+2)s,]A+2(11s,+As,+I)(s,+1)~, 

D, = -(s,+ l)B”-2(s,+2)s,A’+[(r7s, +As,)(ns, +As,+~)(s,+ 1) 

+(ns,+A.~,+l)(.s,+2)s,]~+2(ns,+As,+1)(.v,+1)~’, 

D, = -(.~,+2).~,A”+(ns,+As,)(ns,+As,+2)(s,+2).~~ 

+(ns,+As,+I)(.r,+2)s,~‘. 

(A.21 

C4.3) 


