The Geometric Structure and Dynamical Properties of Lauwerier Attractor*

LIU Zeng-Rong (刘曾荣), QIN Wen-Xin (秦文新) and XIE Hui-Min (谢惠民)

(LNM. Institute of Mechanics, Academia Sinica, Beijing 100080, PRC; Department of Mathematics, Suzhou University, Suzhou 215006, PRC)

Received March 12, 1992.

Keywords: strange attractor, the closure of unstable manifolds, sensitive dependence on initial conditions.

1 Introduction

The strange chaotic attractor (ACS) is an important subject in the nonlinear field^[3]. On the basis of the theory of transversal heteroclinic cycles, it is suggested that the strange attractor is the closure of the unstable manifolds of countable infinite hyperbolic periodic points^[1, 2, 4, 5]. From this point of view some nonlinear phenomena are explained reasonably^[6,7].

2 The Structure of Lauwerier Attractor

Lauwerier map is defined as

$$L: \begin{cases} x \cdots \rightarrow bx (1-2y) + y, \\ y \cdots \rightarrow 4y (1-y), \end{cases} \quad 0 < b < 1/2$$
 (1)

where $L: Q \rightarrow Q$, $Q = [0, 1] \times [0, 1]$. In y direction, L is reduced to the logistic map with $\lambda = 4$. According to the properties of periodic points of logistic map, we have

Proposition 1. If $(y_0, y_1, \dots, y_{k-1})$ is a periodic orbit of logistic map, there is unique point set $(x_0, x_1, \dots, x_{k-1})$ such that $((x_0, y_0), (x_1, y_1), \dots, (x_{k-1}, y_{k-1}))$ is a saddle periodic orbit of L.

Proposition 2. L has periodic orbits of all periods in Q.

Noticing $y = \tilde{y}$ ($0 \le x \le 1$) is a segment of stable manifold of periodic point (\tilde{x}, \tilde{y}) of L in Q, we can easily prove

Proposition 3. The unstable and stable manifolds of all periodic points of L in Q form various transversal heteroclinic cycles.

Accordingly, the closure of the unstable manifolds of all periodic points is a whole

^{*} Project supported by the National Natural Science Foundation of China.

structure, which is called Lauwerier attractor. In order to discuss its structure carefully, we perform the transformation

$$\begin{cases} x = \frac{1}{2} - \frac{1-b}{2b} u, \\ y = \frac{1}{2} - \frac{1}{2} v, \end{cases}$$
 (2)

then L becomes

$$\widetilde{L} \begin{cases} u \cdots \rightarrow b (1+u)v, \\ v \cdots \rightarrow 2v^2 - 1 \end{cases}$$
(3)

where $L: \widetilde{Q} \to \widetilde{Q}, \widetilde{Q} = \{ |u| \leqslant \frac{b}{1-b}, |v| \leqslant 1 \}$. The fixed point (0,0) of L is replaced by

the fixed point $p = (\frac{b}{1-b}, 1)$ of L. The unstable manifold W''(p) of P has been derived to be [8]:

$$u(t) = \sum_{k=1}^{\infty} b^k \Phi_k(t),$$

$$t \ge 0$$

$$v(t) = \cos t,$$
(4)

where $\Phi_k(t) = \sin t / 2^k - \sin \frac{t}{2^k}$. Its closure $\overline{W^u(p)}$ can be expressed as

$$\begin{cases}
 u = \sum_{k=1}^{\infty} \left(\frac{b}{2}\right)^{k} \frac{\sin(0.b_{-1}b_{-2}\cdots)2\pi}{\sin(0.b_{k-1}b_{k-2}\cdots b_{v}b_{-1},\cdots)2\pi}, \\
 v = \cos(0.b_{-1}b_{-2}\cdots)2\pi,
\end{cases}$$
(5)

where $(0.\ b_{-1}\ b_{-2}\ \cdots)$ and $(0.\ b_{k-1}\ b_{k-2}\ \cdots\ b_0\ b_{-1}\ \cdots)$ are binary expressions.

In normal cases, Σ_2 denotes the collection of bi-infinite sequences of 0's and 1's. A map $h: \Sigma_2 \to \overline{W^u(p)}$ is constructed as follows:

$$A s = (\cdots a_{n} a_{n-1} \cdots a_{0} \cdot a_{-1} \cdots a_{-n} \cdots) \in \Sigma_{2} , h(s) = (u,v)$$

$$\begin{cases} u = \sum_{k=1}^{\infty} \left(\frac{b}{2}\right)^{k} \frac{\sin(0 \cdot a_{-1} a_{-2} \cdots) 2\pi}{\sin(0 \cdot a_{k-1} a_{k-2} \cdots a_{0} a_{-1} \cdots) 2\pi} \\ v = \cos(0 \cdot a_{-1} a_{-2} \cdots) 2\pi \end{cases}$$
(6)

Then we can show:

Proposition 4. h is a continuous surjective map and satisfies the relation $\widetilde{L} \circ h = h \circ \sigma$, here σ is the shift map on Σ_2 .

Proposition 5. Hyperbolic periodic points, transversal homoclinic points and transversal heteroclinic points are dense in $\overline{W^u(p)}$.

From the above, we can draw conclusions of the structure of Lauwerier attractor:

- (1) It is the closure of unstable manifolds of countable infinite hyperbolic periodic points.
- (2) The stable and unstable manifolds of all periodic points form various transversal heteroclinic cycles.
 - (3) Periodic points, homoclinic points and heteroclinic points are dense in it.

3 Attraction of Lauwerier Attractor

Attractive behavior of Lauwerier attractor is given as follows:

Proposition 6. $\forall \varepsilon > 0$, $\exists N$, when n > N, $\forall (u_0, v_0) \in \widetilde{Q}$, the distance $\widetilde{L}^n(u_0, v_0)$ and $W^u(\widetilde{p})$ is closer than ε .

Proof. v_0 can be parametrised as $v_0 = \cos z$, then (u_n, v_n) is derived as

$$\begin{cases}
 u_n = \sum_{k=1}^{\infty} \left(\frac{b}{2} \right)^k \frac{\sin 2^n z}{\sin \left(2^{n-k} z \right)} + \left(\frac{b}{2} \right) \frac{\sin 2^n z}{\sin z} u_0, \\
 v_n = \cos \left(2^n z \right).
\end{cases}$$
(7)

Obviously, $\forall \varepsilon > 0$, $\exists N_1$, when $n > N_1$ such that

$$\left|\left(\frac{b}{2}\right)^n\frac{\sin 2^n z}{\sin z}\;u_0\right|<\frac{\varepsilon}{2}\;\;,$$

at the same time, $A \in > 0$, $E N_2$, when $n > N_2$ such that

$$\left|\sum_{k=h}^{\infty} \left(\frac{b}{2}\right)^k \frac{\sin 2^n z}{\sin 2^{h-k} z}\right| < \frac{\varepsilon}{2}.$$

Let $N = \max\{N_1, N_2\}$, when n > N, for $(u(t), v(t)) \in W^u(p)$ (where $t = 2^n z$), the distance between (u_n, v_n) and (u(t), v(t)) is smallar than ε .

4 Chaotic Behavior on Lauwerier Attractor

Based on the fact that h is a continuous surjective map and σ has a dense orbit on Σ_2 , we can prove that \widetilde{L} is topological transitivity on $\overline{W^u(\widetilde{p})}$.

Proposition 7. \widetilde{L} has a dense orbit on $\overline{W^{u}(p)}$.

Next, we show that \widetilde{L} has sensitive dependence on initial conditions on $\overline{W''(p)}$.

Proposition 8. There exists $\varepsilon > 0$, for any $x \in \overline{W^u(p)}$ and any neighborhood U of x, $\exists \overline{x} \in U$ and n > 0 such that $d(\widetilde{L^n(x)} - \widetilde{L^n(x)}) \geqslant \varepsilon$.

Proof. Let
$$\varepsilon = \min\{ |\cos x - \cos(x + \pi/2)| | x \in [0, \pi/2] \} > 0, \forall x \in \overline{W''(p)},$$

 $\exists s = (\cdots b_n \cdots b_0 \cdot b_{-1} \cdots) \in \Sigma_s$ such that h(s) = x.

 $\forall S > 0$, there exists sufficiently large n such that $h(\overline{s})$ is contained in δ -neighborhood of x, where $\overline{s} = (\cdots b_n \cdots b_0 \cdot b_{-n+1} \overline{b}_{-n}' b_{-n-1} \cdots)$, $\overline{b}_{-n} = 1$ if $b_{-n} = 0$ or $\overline{b}_{-n} = 0$ if $b_{-n} = 1$. Based on (6) and (7), we get

$$|\widetilde{L}^{n-2}(\overline{x}) - \widetilde{L}^{n-2}(x)| \ge \varepsilon$$
.

Propositions 7 and 8 tell us that the dynamical behavior on Lauwerier attractor is chaotic.

According to the geometric structure, attraction and dynamical behavior of Lauwerier attractor, we assert that it is a strange chaotic attractor.

References

- Liu Zengrong, Zhu Zhaoxuan, Zhou Shigang & Liu Erning, Kexue Tongbao (in Chinese), 1987, 32(8):573.
- Liu Zengrong & Cao Yongluo, Chinese Physics Letters, 1991, 8(10): 503.
- Smale, S., Physica D, 1991, 51(1-3): 267.
- 4 Yan Yin & Qian Min, Kexue Tongbao (in Chinese), 1985, 30(13): 961.
- Liu Zengrong & Cao Yongluo, Appl. Math. (in Chinese), in press.
- 6 Liu Zengrong & Zhao Nan, Acta Mechanica Sinica, 1992, 8(1): 21.
- 7 Liu Zengrong, Xu Zhangfan, Wang Qigao & Huo Dianhui, Appl. Math. and Mech. (in Chinese), 1991, 12(7): 587.
- 8 Lauwerier, H. A., Physica D, 1986, 21:146.
- 9 Collet, P. & Eckmann, J.P., Iterated Maps on Interval as Dynamical Systems, Birkhauser Boston, 1980.