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In this paper, the initial development of microdamage in material subjected to 
impulsive loading was investigated experimentally and analytically with controllable 
short-load duration. Based on a general solution to the statistical evolution of a 
one-dimensional system of ideal microcracks, a prerequisite to experimental inves­
tigation of nucleation of microcracks was derived. By counting the number of 
microcracks, the distribution of nucleation of microcracks was studied. The law of 
the nucleation rate of microcracks can be expressed as a separable function of stress 
and cracksize. It is roughly linear dependence on loading stress. The normalized 
number density of microcracks is in agreement with that of a second-phase particle. 

1 Introduction 
Spallation, occurring in solids subjected to impact loading, 

usually results from accumulation of microdamage. Generally 
speaking, the microdamage is created by tensile stress waves, 
which form when compressive waves reflect at free surface, 
corners, or interfaces adjacent to media with low-wave imped­
ance. Closeup observations have revealed that the microda­
mage is produced by means of nucleation, extension, and 
coalescence of microcracks or microvoids (Curran et al., 1987). 
The idea that coalescence of microcracks or microvoids should 
be responsible for complete spallation was suggested long ago. 
However, the evolution of microdamage, especially the tran­
sition from gradual accumulation of microdamage to complete 
failure of materials, has not been clearly interpreted yet, either 
experimentally or theoretically. 

In a previous paper (Shen et al., 1986) it has been shown 
that the collapse of residual strength of damaged samples ap­
pears to be catastrophic at a certain level of microdamage. The 
specimens were cut from rolled aluminum alloy plate and tested 
under planar impact loading with a light gas gun. Then the 
central part of a half of an individual impacted specimen was 
statically tested to examine the residual ultimate strength of 
the damaged sample. Another half was sectioned, polished, 
and observed with a microscope to investigate corresponding 
microdamage. It seems that an abrupt loss of residual ultimate 
strength happens at / ' / / ~ 0.7, where /' is the total length of 
microcracks adjacent to a would be separation line and / is the 
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length of the observed section (Fig. 1). In this diagram the 
damage function is defined by F = 1 - or/oi,, where o> and ab 
are the residual ultimate tensile strength of impacted sample 
and the bulk strength of the virgin material, respectively. 
Clearly, the sharp loss of residual ultimate strength of damaged 
material manifests a critical state of microscopic damage. In 
this regard damage fracture transition represents a class of 
material instability. 

For the sake of understanding the instability, it is necessary 
to determine the variables which can properly characterize the 
accumulation of microdamage. As the basis of the study, this 
paper restricts consideration to the initial development of mi­
crodamage, i.e., the nucleation of microcracks under planar 
impact loading, because spallation occurring under this con­
dition causes planar penny-shaped microcracks parallel to each 
other. Thus, the configuration can simplify the problem as 
one-dimensional, since only one variable is needed to char­
acterize the microcracks. 

2 General Solution 
A general framework concerning the statistical evolution of 

microdamage has been put forward in previous papers (Bai et 
al., 1988). Here, a brief introduction will be given, particularly 
for the case of a one-dimensional system of ideal microcracks. 
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Fig. 1 Relationship between macroscopic damage function F = 1 
-a,I ub and total length of microcracks by observed section length /'/ 
/(from Shen et al., 1986) 
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Microcracks are termed as ideal provided they satisfy the 
following conditions: (1) nucleation and extension of micro­
cracks are independent of each other and (2) nucleation and 
extension of an individual microcrack are governed by its mic­
roscopically local conditions. In addition, it is assumed that 
each microcrack can be characterized by a single variable in 
phase space. For example, a penny-shaped crack can be de­
scribed by its area or radius. Obviously, this assumption can 
significantly simplify the formulation of laws of nucleation 
and extension of microcracks. 

The governing equation of the statistical evolution of a one-
dimensional system of ideal microcracks has been derived (Bai 
et al., 1988; Ke et al., 1990; Bai et al., 1991) in a phase space 
and can be written as 

dn d(cn) 
T7 + — 7 — = nN dt dc (1) 

where / is time; c is the length scale variable of microcrack; 
c is the extension rate of an individual crack; n is the number 
density of cracks, i.e., the number of cracks per unit physical 
volume per unit crack length; and nN is nucleation rate of 
number density of cracks, i.e., nucleating number of cracks 
per unit physical volume per unit crack length per unit time. 
The details of the derivation of Eq. (1) can be found in the 
paper of Ke et al. (1990) and Bai et al. (1991). Clearly, the 
dynamic laws for nN and c are dependent on loading stress 
a(t) and material properties in addition to the microcrack 
variable c, but are independent of the number density n, in 
the system of ideal microcracks: 

n = n(c, a(t),Xm) (2) 

b = c(c,o(t),Xm) (3) 

where Xm are material parameters. 
The general solution to Eq. (1) has been obtained by Ke et 

al. (1990) and expressed in the following form: 

n(c, t)--
nN{c)t c < b 

1 T , , 
— nN(c )dc o b 
c) J, 

(4) 

A( •j(c, 0 

provided the loading stress a remains constant. Hence, a and 
Xm are not denoted explicitly in (4). Here, c is defined by 

(5) 
0 c < b 
A(c) c > b 

where b denotes a size threshold of extension of microcrack 
and r; is defined in the following way: 

dc' -r (6) 
Ji)(c o A(c ) 

When c =» b, the asymptotic behavior of extension rate A (c) 
determines whether a stationary solution exists in the range of 
b < c < c0, where c0 is defined by 

= p (" dc' 

The stationary solution to Eq. (1) manifests the saturation of 
the number density of microcracks (Ke et al., 1990). But in 
this paper we have to focus our discussion on the nucleation 
of microcracks. The readers, interested in the theoretical detail 
of the evolutionary solution to Eq. (1), can refer to the Ke et 
al. (1990) paper. 

3 Experimental Procedure and Distribution Function 
It was pointed out in the previous section that two dynamic 

laws, nucleation and extension of microcracks, can substan­
tially affect the evolution of microcracks. There is a simple 
extension law derived by Berry (1960) for a crack in a linear 
elastic medium. Of course one cannot expect that the micro­
cracks in the micrometer range are truly brittle. But before 
realistic models of microcracks are developed, Berry's formula 
can be adopted as an operational expression of an extension 
law. 

On the other hand, nucleation laws of microcracks proposed 
hitherto are mostly indirect (Curran et al., 1987; McClintock, 
1973; Batdorf, 1975). Due to the significance of the function 
nN in the evolution of microcracks, for example in expression 
(4), the determination of the nucleation function was thought 
to be a primary task in the experimental study. But extracting 
the information on the nucleation of microcracks from ex­
perimental observations is difficult because one cannot observe 
straightforwardly the nucleation of microcracks. In order to 
unveil the nucleation law of microcracks let us examine the 
solution (4)-(6) of the evolution of microcracks. The concrete 
aim is to guide the design of experiments. 

For a very short stress pulse a(dt), the expression (6) can be 
rewritten as 

il=c-A(c)-5t. (7) 

In fact, ?J = TJ(C, t) represents the size of microcracks at ? = 0, 
for the crack of length c at time t (Ke et al., 1990), if it could 
contract according to the same extension law (5). Substitution 
of (7) into (4) gives following approximate solution for a short 
stress pulse, 

n(c, bt) -
( nN(c)-bt c < b 
[nN(c-d-A{c)'bt)'bt c>b 

where 6 is a parameter 0 < d < 1. 
If we intend to express the nucleation rate nN{c) as 

nN(c). 
n{c, bt) 

'~ bt ' 

(8) 

(9) 

the following inequality should be satisfied: 

c>>6'A(c)-bt. (10) 

The typical extension rate of microcrack A(c) could be esti­
mated by observing the length scale of microcracks in the 

N o m e n c l a t u r e 

A(c) = extension rate of individual 
crack when c > b 

b = threshold of extension of mi­
crocrack 

c = length scale variable of mi­
crocrack 

c = extension rate of microcrack 
n = number density of micro­

crack, i.e., number of micro­
cracks per unit physical 
volume per unit crack length 

nN = 

N = 

t = 

nucleation rate of number 
density of microcracks, i.e., 
nucleating number of cracks 
per unit physical volume per 
unit crack length per unit 
time 
total number of microcracks 
per unit volume 
time 

X,„ = material parameters 
p = normalized number density 

of microcracks 
a = stress 

Subscripts 
p = variable on sectioned surface 
N = variables describing nuclea­

tion of microcracks 
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Fig. 4 Typical distribution of microcracks

10

mm thick aluminium target. The details of material and testing
procedure are given in the papers of Luo (1988) and Shen et
al. (1991). The tested specimens were sectioned and polished
carefully. The observations were conducted with an S-570
Scanning Electron Microscope and an Image Analysis System.
Particularly, the statistics of microcracks, such as the visual
length, orientation, number, etc., can be readily obtained by
means of the instruments. Figure 4 shows a typical distribution
of microcracks formed in the aluminum alloy target under the
stress pulse loading with a duration of about 100 ns. The
distribution of microcracks on a polished plane shows the
following several distinct features with respect to visual length:
(1) there is a peak in the count at some crack length;
(2) the count tends to zero when crack becomes too long or
too short; and
(3) the distribution curve is not symmetrical.

For comparison, the normalized distribution of the number
density of microcracks p (defined as pp(c) = np(c)/j ;r
np(c)dc) where subscript p denotes the parameters on sec­
tioned surface and also that of second-phase particles, on a
polished section of the sample, are shown in Figs. 5 and 6.

The two distributions are qualitatively similar to each other.
In addition, the locations of the two peaks in the two curves
are in the same range, i.e., 2-5 ~m. Furthermore, the value of
crack length seems to be reasonable for the requirement for
nucleation study, see expression (11). All of these offer cor­
roborative evidence that the observed distribution is a proper
representation of the nucleation of microcracks.

The data of the normalized distribution of number density
of microcracks p can be fitted to Weibull's function as

pp(c) - cm-loexp(-clll ) (12a)

or a function similar to Rayleigh's function

pp(c) - clllo exp(-c2) (12b)

(Fig. 5), where subscriptp denotes the quantities on a sectioned
surface.

40

30

4 Law of Nucleation Rate
Before continuing, two points should be made. Since the

difference between the number density of microcracks n (c),
i.e., the number of cracks in unit physical volume and unit
phase space volume, and the corresponding variable on sec­
tioned surface np (c) depends on a integration with respect to
crack length scale only, the prerequisite to the nucleation study,
i.e., formulas (9) and (11) stilI works for np(c). Secondly, we
prefer to retain the obtained data on nucleation in its original
form, namely the distribution function on a sectioned surface,
because all simple transformations of surface counting into

Buffer

St~el stopper

Target holder

Target ring

Epoxy resin

Barrel Sabot Flyer

Fig. 2 Set up of light gas gun

specimen and loading duration. It is observed that the crack
extension D.C of about 10 ~m was produced during loading
time of about I ~s. The typical extension rate, therefore, would
be 10 ~m/~s under the stress pulse loading.

Hence, if the tests for nucleation study are carried out with
loading time of about 0.1 ~s, the expression (10) leads to

c> >/IoA(c)oat - ex I~m. (11)

This is, if the nucleated size of microcracks is several microm­
eters, one can apply the observed number density of micro­
cracks n (c, ot) and expression (9) to obtain the nucleation rate
of microcracks nN(c). Of course, the prerequisite is that the
loading time must be submicrosecond.

An experimental method, i.e., the short stress pulse tech­
nique, was developed in our laboratory (Shen et aI., 1985). A
thin metal foil attached to a hollow projectile with low imped­
ance support can create a one-dimensional stress pulse with a
submicrosecond duration in target when impact between the
target and the foil is conducted by making use of a light gas
gun (Fig. 2). In the present study, stress pulses of about 100
ns duration were applied to examine the nucleation of micro­
cracks. Figure 3 gives a picture of microcracks under the load­
ing condition.

All the data listed in this paper were taken from a series of
impact tests, in which a O.I-mm thick nickel flyer strikes a 5-

Fig. 3 Microcracks formed in specimen under short stress pulse load·
ing
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volume distribution are based on some further assumptions 
on cracks (Seaman et al., 1978). We believe that the original 
form of nucleation distribution function may be more helpful 
for further examination. 

Now, we are quite convinced that the data obtained by short 
stress pulse technique are a fair representation of the nucleation 
of microcracks. However, in practice we need a concise expres­
sion of the law of nucleation rate. Then the question is how 
to determine the expression from obtained data. It has been 
observed that the cracking is mostly confined to the second-
phase copper particles in the aluminum alloy. More impor­
tantly, for second-phase particles of all sizes, only part of them 
became debonded. To look for the stress dependence and size 
distribution of nucleation of microcracks, we should once more 
turn to examine the normalized distribution of the number 
density of microcracks. Figures 5(a) (pp(c)) presents the ex­
perimental normalized number density of microcracks where 
np is the number density on a sectioned surface and TV is the 
sum of the microcracks. The loading duration ranges mainly 
from 0.14 /xs to 0.17 fts and the stress amplitude from 2.5 to 
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Fig. 5(a) Experimental data 

0.145 / i s , 
0.157 u s , 
0 .161 / i s , 
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0 .168 /is, 
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Fig. 5(6) Fitting by c™ exp(- Be 2) , similar to Rayleigh's distribution 

7.5 GPa. Figures 5(b) and 5(c) present two fittings. We also 
provide a normalized cumulative measure, i.e., the cumulative 
number of cracks per unit area divided by the total number 
of cracks per unit area. This curve shows better fitting, but 
disguises some scatter and deviations (Figs. 5(b), 5(c), and 
5(d)). According to the definition of pp and the approximate 
solution (8) and (9), we can derive 

pp(c, t, a) = 
np(c, t, a) _nNp(c, a)St 

~T^ 7 7 = NNp(a)5t 
MP(C, t, a)dc 

Jo 
_nNp(c, a) 
~~ NNp(a) 

= pp(c, a), (13) 

T= 0.145 / i s , 
T= 0.157 / i s , 
T= 0.161 fis, 
T= 0.162 lis, 
T= 0.168 /is, 
T= 0.172 / i s , 
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7 ,460 MPa 
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c rack l eng th (ytim) 

Fig. 5(c) Fitting by Weibull's distribution, cm _ 1 exp(- Bcm ) 
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Fig. 5(d) Cumulative size distribution of cracks 
Fig. 5 Normalized distribution of number density of microcracks, PP , 
showing pp (c, a) is insensitive to loading stress, pp (c, a) ~ pp (c) 
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size of the second phase particles (/im) 

Fig. 6 Distribution of the second-phase particles; ns: number of the 
second-phase particles per unit area per unit particle length on the 
sectioned surface; Ns: total number of the second phase particles per 
unit area on the sectioned surface 

3 4 5 

a (103 MPa) 

Fig. 7 Relation between the nucleation of microcracks and the loading 
stress 

where 

NN(a) = ( nN(c, &) dc. (14) 

Again, by examining Fig. 5 carefully, one can observe that pp 

can be expressed as a function of a single variable (crack length 
c) irrespective of stress a in the experimental range, namely 

pp(c, a) ~ pp(c). (15) 

Therefore, substitution of formula (15) into (13) gives the 
nucleation rate of microcracks nNp 

nNp(c, a) = NNp(o)'p(c). (16) 

Furthermore, the data fitting of NNp(a) gives a roughly linear 
stress dependence. See Fig. 7 (NNp(a)) 

(17) NNp(u) - ( - - 1 

According to formulas (12), (13), (16), and (17), one can deduce 

(18) nNp(c, a) = K0* I - - 1 ) -ppic). 

From (12) it follows that 

nsPio,c)=K.l--l).<r exp(-B-cT) (19a) 

nNP(<J, c)=K> 1 )'cfn-exp(-B-ci) (19b) 

where K0 and K are coefficients. For our experimental range 
a = (2500 ~ 7500 MPa), t = (0.14 ~ 0.17 /ts). These results 
become 

nNp = K'[ 1 
\0o 

e x p l - l - (20a) 

where 

K = 971 number/(mm •^im-/is) 
ff0 = 2689 MPa 
c t = 4.27 \xm 

m = 2.33 

or 

where 

"» = «'£-') £ exp 

K = 1042 number/(mm •/unv/xs) 
ff0 = 2689 MPa 
c„ = 3.3 \un 

(20b) 

m 1.72. 

The stress dependence (16) is consistent with macroscopic and 
empirical cumulative for incipient spallation (Luo, 1988) 

a 

450 
— - 1 Af=1.21 (21) 

where the stress is in MPa and time is in /*s. On the other hand, 
according to (17) and (18), the integration of solution (8), with 
respect to crack length c, can give a linear dependence of the 
total number of microcracks on tensile stress as well as on the 
loading time (Bai et al., 1991) 

- - 1 I At 
o0 

Np, (22) 

where Np = J " npdc is the total number of microcracks over 
a unit area. Clearly, for incipient spallation, the macroscopic 
experimental criterion (21) and microscopic theoretical deri­
vation (22) are in good agreement. 

5 Disscussion 

Complete spallation seems to be a sort of material instability, 
i.e., the evolution and then abrupt transition into large-scale 
coalesence of numerous microcracks. To understand this kind 
of micro-macroscopic material instability, the following pre­
liminary and essential facts have been explored: 

1 Based on a general solution to the statistical evolution 
of a one-dimensional system of ideal microcracks, the initial 
development of microdamage, under planar impacting load, 
can be analyzed. Moreover, a prerequisite to experimental 
investigation of nucleation of microcracks was derived. 

2 A short stress pulse technique developed by means of a 
light gas gun was applied to meet the prerequisite and to obtain 
the data relevant to the nucleation of microcracks. 

3 The normalized number density of microcracks was found 
to have a asymmetric distribution, which is in agreement with 
that of second-phase particles. 

4 Furthermore, the normalized number density of micro­
cracks shows approximate stress-independence in the experi-
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mental range. Therefore, the law of nucleation rate of 
microcracks can be expressed as a separable function of stress 
and crack size. 

5 The nucleation rate of microcracks was shown, to be, 
by experimental results, of roughly linear dependence on load­
ing stress. 

6 Above all, the nucleation rate of microcracks can be 
expressed in the form 

nNp 1 •/! 

An illustrative data fitting of the nucleation rate of microcracks 
on the sectioned surface in an aluminum alloy was given. 
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E R R A T U M 
Erratum on "A Crack Terminating at a Slippage Interface 

Between Two Materials," by V. M. Gharpuray, J. Dundurs, 
and L. M. Keer, ASME JOURNAL OF APPLIED MECHANICS, Vol. 
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Equation (15) should read as follows: 

A(X;a,7) = 2X(2 + X)(l - tv)2sin27[X(2 + X)sin27 - cos27] 

+ 2X(2 + X)(l + a)2sin2ycos2y 

+ 2X(2 + X)(l - a)sin27(cos[2(l + X)y] + cos[2Xvr - 2(1 + \)y]} 

+ X(l + a)sin27 (sin[2(l + \)y] - sin[2Xir - 2(1 + X)7]) 

- 4sin[(2 + X)y]sin[X7r - (2 + X)y] { COSXT + acos[X(7r - 2?)]} 

(15) 
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