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Abstract-The number, the angles of orientation and the stability in Rumyantsev-Movchan’s sense 
of oblique steady rotations of a symmetric heavy gyroscope with a cavity completely filled with a 
uniform viscous liquid, possessing a fixed point 0 on its symmetric axis, are given for various values 
of the parameters. By taking the square of the upright component of the angular momentum M’ as a 
control parameter, three types of bifurcation diagrams of the steady rotations, two types of jumps 
and two kinds of local catastrophes, one being the symmetric reduced cusp type and the other being 
of the symmetric reduced butterfly type, are obtained. By taking account of the M2-damping owing 
to the moment of unavoidable faint friction, two different modes for the gyroscope, initially in a 
stable quasi-steady upright rotation with a nutation angle 0, equal to zero, to topple over are found. 

1. INTRODUCTION 

The problem of stability of the steady rotations of a gyroscope, with a cavity filled with a 
viscous liquid, has attracted a great deal of attention for a long time [l-6]. In 1958, the first 
U.S. Satellite Explorer 1 tumbled after only a few hours of flight [7]. It was concluded that 
the four turnstile wire antennae were dissipating energy, thus causing a transfer of body spin 
axis from the axis of minimum inertia to a transverse axis of maximum inertia. Since then, 
the stability of gyroscopes with various kinds of energy dissipation and the modes for them 
to tumble or to topple over are of more interest [4,7- 133. Most of these works discuss the 
stability of steady right rotations in which the angular velocity coincides with a principal 
axis of inertia (the steady rotations for which this condition is not satisfied are called 
oblique rotations) [9, 11, 121 and the torque-free tumbling modes [4, 8-105 and some 
discuss oblique rotations of a heavy gyroscope with a dissipative force depending on one 
generalized velocity [ 131. 

In this paper, the distribution and stability of the oblique steady rotations of a symmetric 
heavy gyroscope with a cavity completely filled with a uniform viscous liquid, possessing a 
fixed point on its symmetric axis (called FF VL gyroscope for short) is discussed. Relevant 
bifurcations, jumps and the types of catastrophes are discussed, so that two different modes 
for FFVL gyroscopes, initially in a stable quasi-steady upright rotation with a nutation 
angle 0, equal to zero, to topple over owing to the moment of unavoidable faint friction are 
found theoretically. Obviously the dissipative force depends on the distribution of the 
velocity of liquid, i.e. on an infinite number of generalized velocities. 

Two known stability lemmas are revised in such a way that they will be appropriate for 
all our objectives in this paper. 

2. BASiC EQUATIONS AND LEMMAS 

Consider an FFVL gyroscope with a total mass m, three principal moments of inertia A, 
A and C about a fixed point 0, and with a distance I (I > 0) between its centre of gravity 0 
and the point 0, moving in a uniform gravitational field (g). 

Let us introduce two basic coordinates with their origins coinciding at 0: 

(1) A fixed coordinate system {O,ti, &, t,}. The axis & is upright and the three unit 
coordinate vectors are designated as it, i!, is. 
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(2) A tied coordinate system (0, x1, x2,x3}. This frame is tied to the gyroscope, with the 
symmetric axis selected as the x,-axis and with its centre of gravity 0’ at (0, 0, I). The three 
unit coordinate vectors are designated as i, , i,, i3. The orientation of this frame relative to 
frame (1) is determined by Euler’s angles (0,$, rp), where 6 is a nutation angle, 9 a rotation 
angle and 43 a precessional angle. 

The dissipative non-linear evolutionary equations of this system in frame (1) are 

dv 
P,z=V+++pT)+p,g 

v*v=o 

$(@*J,) = - II’ rxf-pI+~T)*dSfro,xm2g 
9 

with the boundary condition at the interface S of liquid and solid 

VI, = OXf 

(1) 

(2) 

(3) 

(4) 

where pI, p, v, p and T are the density of the liquid, its pressure, its velocity, the kinetic 
viscosity coefficient and the viscous stress tensor, respectively; m2, J,, o and r,. are the mass 
of the solid, its tensor of inertia about the point 0, its angular velocity and the position 
vector of its centre of gravity o’, respectively. 

From equations (l)-(4)it follows [3,11 J that an FFVL gyroscope in steady rotation must 
rotate as a whole with a constant nutation angle S,, a constant rotation angle 9, and a 
constant angular velocity o, in the direction of +ii, with the following two equations 
satisfied by 0, and 0,: 

w,” = (C - A)cos8, (5) 

where W is 

w M2 =y+L 

and L, M and I are the potential energy of the gyroscope, the upright component of its 
angular momentum about the point 0 and its moment of inertia about the vertical line 
through the point 0, respectively. Thus, 

4, = $$ = 0. 

In our case of a symmetric gyroscope, W is independent of JI and 9; so in discussing the 
stability of steady rotations, we are concerned abo.ut the stability with respect to the metrics 
10 - @,I and 

p = ljw - co,12 + q + IS - es(2]“2 (8) 

under the condition that the metric of the initial perturbation p. is de&ed as [14] 

p. = maxCI@ - @,I, 1~ - ~1, IdNl (9) 

where v,(r) and 3; are the velocity and kinetic energy of the liquid relative to frame (2), 
respectively. All the quantities in equations (8) and (9) are referred to the special dimen- 
sionless quantities, i.e. the ratios of the quantities with dimension to the corresponding unit 
quantities. 

A steady rotation of an FFVL gyroscope is said to be stable with respect to 
(po, p) [or to po, 10 - &I)] if for every real number e > 0, there exists a real number 6 > 0 
such that 

implying that 
p. < 6 for t = 0 

~<.$orl@-B,/c8] foralltZ0. 
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If, in addition, p -+ 0 (or 8 + 0,) as c -+ co, then the steady rotation is said to be 
asymptotically stable with res$ect to the metric (p,, p) [oi to (no, lfl- &I)]. 

We must use the following limit lemma [l 11: 

Limit lemma. No matter what the initial state may be, when c + 00, a viscous-liquid- 
filled gyroscope with a fixed point must tend to a steady rotation state with respect to p. 

Using Rumyantsev-Movchan’s methods [ 141 and equations (l)-(4) and the limit lemma 
[ll J we can obtain the following two lemmas. 

Lemma 1. If for a steady rotation state p (*I of an FFVL gyroscope, the generalized 
potential W has an isolated minimum with respect to 8 at t?,, then the state ptc) is stable with 
respect to the metric (pe, p) and is asymptotically stable with respect to the metric 
(pO, 10 - 0,l) in the case that 0, = 0, but is not asymptotically stable with respect to the 
metric (no, 10 - S,l) in the case that 0, # 0. 

Lemma 2. If for a steady rotation pee) of an FFVL gyroscope, the value of the generalized 
potential W at 0, is only an isolated stationary value with respect to 0 but not a minimum, 
then the state pte) is unstable with respect to the metric (pO, 16 - 6.1). 

The above two lemmas are different from theorems 6 and 7 of ref. [3] in that the former 
are appropriate to liquid-filled symmetric gyroscopes with two cyclical coordinates, while 
the latter pertain to non-symmetric ones with one cyclical coordinate and in that the term 
instability is with respect to the metric (p,,, 10 - &I) in our lemma 2, but with respect to the 
metric (pa, p) in theorem 7 of ref. [3] even if two cyclical coordinates would be permitted. 
Obviously, our lemma 2 is stronger than theorem 7 of ref. 133. 

3. DISTRIBUTION AND STABILITY OF OBLIQUE STEADY ROTATIONS 

Introduce the following notations: 

R 
M -- o-r., C = CQQmgl, 2 = Ani fmgl 

where it is stipulated that the principal values of both the radical expressions in equation 
(10) should be taken in the case of 7 > 0, and that the real cube roots should be taken in the 
caseofy<O. 

In the present case of symmetric gyroscopes, equation (7) becomes 

W = (cos 8 - 1)mgl + M2/2[A + (C - A)cos* 0-J. 

Substituting equation (11) into equation (6), we obtain the following equations: 

sine, = 0 
and(ifA#C) 

(11) 

(12) 

h-f2 COS e, 
mgl(C - A) 

. (13) 

Equation (12) leads to 0, = 0 and II, corresponding to upright and hanging-right steady 
rotations, respectively. Equation (13) gives oblique steady rotations with 0, in the open 
interval (0, x). 

The stability of the upright and hanging-right steady rotations has been clarified [l 11, i.e. 

WLll 2713-K 
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we know that if 
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@CC - 4 
> mgl cos 0, 

=mglcost$, for&=x, or&=0 and 4Ax3C 
04) 

it is stable with respect to (po,p), and if 

i2;(C - A) 
< mgl cos 8, 

= mglcos g,, for4A2 3C and 0, =0 

it is unstable with respect to (p,, , ) 8 - 8, I). The rest of the questions to answer are: (1) Under 
what conditions of the parameters M*, m, 1, A and C has equation (13) any solutions for 
steady oblique rotations? How many if any? (2) What is the expression for e,? (3) Are the 
steady oblique rotations stable? The answer to question (1) cannot be obtained by a direct 
analysis of the expression for 6,, because the roots of the quartic equation (13) of argument 
cos 0, can only be expressed by double-radical expressions. But in the Appendix, we prove 
the following four theorems to answer the above three questions completely. It should be 
noted that any symmetric gyroscope must satisfy the inequality 2A > C + 2m12, so that it is 
not necessary to list this inequality in the conditions of the following theorems. 

Theorem 1. If an FFVL gyroscope satisfies 

(?>A+1 (16) 

or 
C=A+l and A<3 (17) 

then, in the space (0, w, v,(r)), it has a unique pair of steady oblique rotation states 
(f7,, f o,, 0), which are unstable with respect to the metric (p,,, 10 - &I), and whose 13, and 
of are given by equation (5) and 

I 
4 

c0se,= --- J J a 

2&z -q 2- 
a’ > 0. (18) 

Theorem 2. If an FFVL gyroscope satisfies 

C<A+ 1, A<3 (19) 
and 

256 
21P-C~+C4ASo (20) 

then, in the space (0, w, v,(r)), it has two pairs of steady oblique rotation states 

(OS*., + a,,, 0), which satisfy equation (5) and 
I 

9 case,, = -- 
2fi 

+ 
\I J 

-q ;- a* > 0 (21) 

where 0,+ belongs to the pair of states stable with respect to the metric (pe, p), but not 
asymptotically stable with respect to the metric (pO, 10 - e,, I) and 8,_ belongs to the other 
pair of states unstable with respect to the metric (pO, 16 - 0,_ 1). Condition (20) with the 
equality sign makes both pairs merge into a pair of steady oblique states (e,, f w,, 0) 
unstable with respect to the metric (p,,, 10 - &I). 

Theorem 3. If an FFVL gyroscope satisfies 

or 

-c5+c5ko, C4A+l, and 323 (23) 

then it has no oblique steady rotation. 
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FFVL gyroscope satisfies 

C<.X-1 (24) 

(0, w, v,(r)), it has a unique pair of steady oblique rotation states 
(6,, & o,, 0), which are stable with respect to the metric (pa, p), but not asymptotically 
stable with respect to the metric (p,,, 10 - &I), and in which the 0, and oi are given by 
equation (5) and 

, 
4 

c0se,-----+ J J a 

2J.z -q z-- 
a2 < 0. 

All the qualitative conclusions given by theorems l-4 are shown in Fig. 1. It can be 
proved that the curve PA’” - i? + c*z = 0 is below the straight line c = 2 -I- 1, being 
tangential to the latter at the point (3,4) and convex at this point; and it is tangential to the 
c-axis at the origin, and intersects with the straight line c = A at a unique point, i.e. at the 
origin, and tends to this line asymptotically as 2 tends to + co . In addition, only the sector 
included between the x-axis and the straight line c = 
of the inequality c < 2A 

2X is of practical significance because 
- 2lQi/g, which must be satisfied by any symmetric gyroscope. 

4. BIFURCATIONS AND CATASTROPHE 

It is of significance to discuss the bifurcation set shown in Fig. 1 from the point of view of 
Thorn’s catastrophe theory (15). In doing so, the line c” = 2A is blotted out temporarily. 
Near the point (3,4), let 

X=3+& &4+y. (26) 

By expanding @‘, neglecting the terms of order higher than six, and taking the linear 
approximation with respect to < and y in the coefficients we obtain 

@= - (x6 + ux4 + vx2) -t- C(tc, v) (27) 
with 

v = 22/5(< - y), x E 2-519, 

This is what we call the symmetric reduced butterfly catastrophe with all the terms of odd 
order in the expansion vanishing. A similar analysis shows that on the line e = x - 1 
(2 > 1), the type of catastrophe is a s~rnet~c reduced cusp type. 

For given A, C, m and 1, and ML increases, the phase point in Fig. 1 departs more and 
more from the origin along a straight line through the origin, c = fl,& Using this and taking 
account of the stability conditions (14) and (15), for upright and hanging-right steady 
rotations, we can obtain three kinds of bifurcations shown in Figs 2-4 for three different 
ranges of the values of j?. 

Fig. 1. Stability diagratn 
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Range 1: @ > j (i.e. C > *A) 

ZHU RUZENG 

This situation is depicted in Fig. 2. Branch q2 represents the set of hanging-right steady 
rotations, which are all stable. Branch q1 represents the set of upright steady rotations, H, 
CM2 = Mj = mgl C2/(C - A)] is its critical point. On the left of H,, rotations are unstable, 
and on the right, they are stable. A saddle-node bifurcation occurs at another critical point 

H, M2=Mz 
( 

=grngl CfA 
d----J 

with the emergence of an unstable branch of steady 

oblique rotations q3 and a stable branch q4. At H2 and H,, a,” and 0, take the following 
values, respectively: 

4, = 0, 0,2~ = m&C - A) (28) 

I9 = cos-r J A 2 *a 
3(C - A) ’ %3 = mgl 

J 

3 
A(C - A) * 

(29) 

The 0, of branch q3 tends to i, as M2 tends to co. Branch q4 intersects orthogonally with 

branch qr at the point HI. Obviously, branch q4 is of practical significance: in some cases in 
which branch q1 has lost its stability, branch q4 can prevent the gyroscope from toppling 
over. 

Now suppose that the initial state of the gyroscope is represented by the point H,, and 
that the control parameter M2 decreases gradually; then the phase point will move 
continuously along a path marked with arrows through the point HZ, until M2 reaches the 
critical value M$ i.e. the phase point arrives at H,. At this moment a jump will occur: the 
phase point jumps from HJ of branch q, to H, of branch q, . After this, the phase point will 
move continuously along branch q2 towards the left until M2 reaches zero. If the phase 
point is located initially on the left of H, in branch q2 and M2 increases gradually, it will 
move along branch q2 towards the right continuously without any jump. 

Range2:!$2/?> 1 (i.e.$ASrC>A) 
This situation is depicted in Fig. 3. Branch qt represents the set of steady hanging-~ght 

rotations, which are all stable without any critical point. Branch qi represents the set of 
upright steady rotations, which have a critical value Mi = mgl C2/(C - A) at the point H6. 
In branch qr, the steady rotations with M2 larger than Mg are stable and those with M’ 
smaller than Mi are unstable. At the critical point, branch q1 bifurcates with the emergence 

of a branch q3 of unstable oblique steady rotations. 0, of states in branch q3 tends to i when 

M2 tends to co. 
If Mg of an initial phase point in branch qi is larger than M& then when M2 decreases, a 

jump will occur at H,; but wherever an initial phase point may be located in branch q2, 
neither increase nor decrease of M2 can induce any jump. 

H4 

I 
‘ 

92 

93 

Fig. 2. j3 > j(C > $A). 
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0 
M62 

M2 

Fig. 3. # 2 /I > l(j.4 2 C > A). 

Range 3: 0 < /3 < 1 (i.e. C < A) 
This situation is depicted in Fig. 4. Branch q1 represents the set of upright steady 

rotations, which are all unstable with no critical points. Branch q, represents the set of 
hanging-right steady rotations, which have a critical point H, with a critical value 
M2 B = mglC2/(A - C). The steady rotations in branch q2, with M2 larger than Mf are 
unstable and those with M* smaller than Mi are stable. At H,, branch q2 bifurcates with 
the emergence of a branch q3 of stable oblique steady rotations. 8, of states in branch q,, 

tends to i as M2 tends to a). 

Since the term “steady” used above in spite of the M2-damping induced by the unavoid- 
able faint frictional moment, refers really to “quasi-steady” rotations on account of the 
existence of that moment, from the above analysis it follows that an FFVL gyroscope with 
C > A, initially in a stable quasi-steady upright rotation, will topple over after all owing to 
this frictional moment in one of the following two possible fashions. If C > $A and 
Mjj > M:, according to Fig. 2, 8, will continue to be zero, but M2 and 0,’ will decrease 
gradually until they reach Mi and wf2 at the same time, respectively. After this, 0, and wf 
will increase gradually until M2, 0, and of reach M2j, 0,, and of3 at the same time, 
respectively. At this moment, the gyroscope will start to topple over. That will be an 
unsteady motion. After a time it will enter into a stable quasi-steady hanging-right rotation, 
in which 8, will continue to be n, but of and M2 will decrease gradually. Finally, 0,’ and M2 
will become zero at the same time. If+ A 2 C > A and Mi > M& according to Fig. 3,0, will 
continue to be zero until the gyroscope goes on to topple over at the point H,. The 
subsequent motion of the gyroscope is similar to that for the case when C > 4 A. 

From Figs 2-4, the following criterion for the stability of oblique steady rotations 
obtained. 

Criterion 1. It is stable, if C < A or C > $ A and 

, 

are 

1 >cose,> 
A 

3(C - A) ’ 
(30) 

It is unstable, if $A 1 C > A or C > $A and 

O<COS8,~ J A 

3(C - A) ’ 
(31) 

In terms of the angular velocity cc,, the conditions (30) and (31) can be replaced by 

(32) 



1 1 q1 
0 

-___-_____ ____________---cM2 

Me2 
Fig. 4. 1 > b > 0 (A > C). 

and 

wi 2 mgl (33) 

respectively. 
Note that the stability and bifurcation in our case of infinite-degrees-of-freedom is similar 

to those in ref. [13], where no liquid-filled cavities are present and the problem of dynamics 
is one of finitedegrees-of-freedom. 
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APPENDIX: PROOFS OF THEOREMS 1-4 

Equation (13) can be rewritten in the form 

4’ cos e, = (COSZ 6, + y)Z (if R < C) 

- 42 cos e, = (co? 9, + y)’ (if 2 > C). 

Solving equations (A.l) and (A.2) is equivalent to finding the points of intersection of the curves 

y = (cos2 e, + y)2 
and the straight line 

y=g~cos& (if ‘z < C) 

(A.1) 

(A.2) 

(A.3) 

(A.4) 
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or those of equation (A.3) and 
y= -$costJ, (if d > C) 

in the y-m 8, plane under the constraint 
Icose,l < 1. 
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(A-5) 

(A.6) 

The curves of equation (A.3) for t&ee @krcn_t ranges of A and C are shown in Figs 5-7. 
In Fig. 5 (c’ > 3 6) and Fig. 6 (A < C < j A), the slope of the tangent OE is 

d 

c I 

3/z 

&=16 m 

with the abscissa of the twenty point E equal to - . The abscissa of the point D on the curve (A.9 is 

qua1 to unity and the slope of the straight tine 013 is 

So we have k;oD 2 k,,E, where the equality sign corresponds to the case when c =i 4 A. 

Fig. 7. c < x. 
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(A.7) 

the abscissa of the point E is smaller than unity, and when 

b<C<$X 
it is greater t_han _unity. 

(A.& 

In Fig 7 (C < A) the abscissa of the point D’ on the curve (A.3) is - 1, and the slope of the straight tine OD’ is 

bn.=- Act =. (4 
Proof of theorem 1. Under the condition (16), Fig. 5 or 6 are applied and the slope of the straight line (A.4) is 

k = g2 > koo. So, of the two points of intersection of the straight line (A.4) and the curve (A.3). the one with the 
smaller abscissa satisfies the condition (A.6) and corresponds to the unique pair of steady obtique rotation states 
(@,, f 0,. 0). 

Condition (17) implies condition (A.7), so Fig. 5 is applied and k = &. Of the two points of intersection of 
curves (A.4) and (A.3), the one with the smaller abscissa satisfies condition (A.6) and corresponds to a pair of steady 
oblique rotation states (6,, f w,, O), and the other just corresponds to a pair of rotations belonging to the set of 
upright states because their cos f?, values are equal to unity. 

In order to prove equation (18). let 

X=&&7( 
and then equation (A.l) becomes 

x4 + qx + y = 0, 

(A.91 

(A.10) 

Of the four roots of equation (A.10). two are not real numbers, and remaining ones 

(A.1 1) 

may be real numbers. It is shown above that equation (A.10) must have real roots and that the larger one must be 
ignored, and thus the negative sign must he taken. Substituting equation (A.1 I) into equation (A.9) we arrive at 
equation (18). 

Resides, condition (16) gives (see Fig. 8) 

dW dW 

dcos@ eese=, 
<o, - 

dcosf? 
>O 

COS0--1 

and condition (17) gives 

dW dZ W 

dcosf? cDIB_, = 
4 - 

dcos@* cas-, 
20 

dW 

-1 dcos0 
> 0. 

Cn0--* 

Therefore, it follows from lemma 2 that the states (@,, a: w,, 0) are unstable with respect to (p9.18 - @,J). 

Proof of theorem 2. Under the conditions (19) and (ZO), Fig. 5 is applied, and the slope of the straight line (A.4), 
k = q*, satisfies koo > k 2 be. Thus the straight line (A.4) and the curve (A.3) intersect at two points representing 
two pairs of steady oblique rotations (@,, , f w,*, Q)_ In the cnse when the equality sign is taken in condition (20), 
the two points merge into a tangent point, that means the two pairs of (@,, , f w,*, 0) will merge into a two-fold 
pair. Substituting equation (A.1 1) into equation (A.9), we obtain equation (21). 

It is easy to prove under condition (19) that (see Fig. 9) 

dW 

-I dcos@ -+,, 

! e 

-1 0 cose, 1 

Fig. 8. W-cos @, curve for condition (IS). 

cod, 
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Fig. 9. W-cos 8 curve for condition (19). 

Fig. 10. W-ws 8 cucvc- for conditions [22) and [23). 

c0se 

Fig. 11. W-cots 8 curve for condition f24). 

Thus, it follows from lemmas 1 and 2 that the states (t?,, , f co,+, 0) are stable with respect to (qa.p), but not 
asymptotically stable with respect to (pe, 18 - 6,, I), and the states (0,-, f w,_, 0) are unstable wtth respect to 
(pa, 10 - tJ,- 1). Condition (20) with the quality sign gives 0,_ = 9,+ corresponding to an inflection point in the 
curve W-cos& which implies instability with respect to (pO, 119 - 0.l). 

Proof & theorent 3, The whole region in the i”-A’ plane shown by equations (22) and (23) can be divided anew 
into the foltowing three parts: 

(1) C’S rT+ 1, .Z<ESJA (A.12) 

(2) c r *K +zs-tT*+k?Al>o W.13) 

(3) A z c 2 2 - 1. (A.14) 

Under condition {A.12), Fig. 6 is applied and WC have k is b. So the straight line (A.4) and the curve (A.3) either 
do not intersect or intersect at some points where cos 19~ > 1, resulting in no steady oblique rotations. 

Under condition {AlJ), Fig. 5 is applied and WC have k c be So the straight line (A.4) and the curve (A.3) do 
not intersect resulting in no steady oblique rotations. 
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_ Under condition (A.14). if A = C. equation (5) cannot be satisfied resulting in no steady oblique rotations. If 
A # C. Fig 7 is applied and the slope of the straight line (A.5) k’, satisfies the inequality 0 > k’ 2 kor,. Thus, both 
the points of intersection of the straight line (A.5) and the curve (A.3) satisfy cos 0,~ - 1 resulting in no steady 
oblique rotations. The curve W-cosB is shown in Fig. 10. 

Proof of theorem 4. Under condition (24) Fig. 7 is applied and we have 

k’<kon<O. 

The straight line (A.5) and the curve (A.3) inter&t at two points, one of which Should be ignored because the value 
of cos 8, is smaller than - 1. Thus, we have one pair of steady oblique rotations (0,. f o,, 0). 

Let 

X=Jx (A.15) 

and then we can obtain equations (A.lO) and (A.1 1) from equation (A.2). Only the negative sign in equation (A.1 1) 
should be taken. Substituting equation (A.1 1) into equation (A.15) we obtain equation (25). 

It follows from (see Fig. 1 I) 

dW dW 

dcose EO,o=l 
s-0, - 

dcose 
<O 

CDS@=-, 

and lemma 1 that the states (6’,, + o,,O) are stable with respect to (p,,,p) but not asymptotically stable with 
respect to (~c, 10 - 0,)). 


