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The vibration analysis of an elastic container with partially filled fluid 
was investigated in this paper. The container is made of a thin cylinder and 
two circular plates at the ends. The axis of the cylinder is in the horizontal 
direction. It is difficult to solve this problem because the complex system 
is not axially symmetric. The equations of motion for this system were de- 
rived. An incompressible and ideal fluid model is used in the present work. 
Solutions of the equations were obtained by the generalized variational meth- 
od. The solution was expressed in a series of normalized generalized 
Fourier's functions. This series converged rapidly, and so its approximate 
solution was obtained with high precision. The agreement of the calculated 
values with the experimental result is good. It should be mentioned that 
with our method, the computer time is less than that with the finite-element 
method. 

i. Introduction 

The problem of the vibration of an elastic container with partially filled fluid is 
common in various fields of industry, for example, the liquid propellent rocket, the oil 
tank of aircraft, the large oil tank on the ground, and the oil tank truck. Some containers 
of nuclear reaction are subjected to various types of excitation. The exact solution for 
the coupled fluid-structure system is very difficult. 

In previous studies, most authors assumed that the wall of the container is rigid. It 
is a sloshing problem, in which only the motion of the fluid was investigated. This method 
is suitable for a thick wall of the container. Moeseev and Petrov [i] calculated the natural 
frequencies of a finite bulk of liquid by a numerical method. When the wall of the container 
is very thin, the wall is deformed under the hydrodynamic fcrce so that the elasticity of 
the container should be considered. Some methods for the calculation of the frequencies of 
the elastic container were investigated in [2-4]. In recent years, most of the published 
papers are concerned with the axial symmetry of the container. It is helpful to solve prob- 
lemsby an analytical method or the finite-element method. 

The finite-element method is always used in the solution of coupled structures and a 
fluid system. Akkas et al. [5] used the program SAPIV, in which the fluid element was 
treated as an elastic solid element with a negligible shear modulus and used a special value 
for bulk modulus. But spurious modes were obtained in the calculated results. The author 
of [6] and other authors used a penalty coefficient for the irrotationality of displacement 
in the fluid and showed that these spurious modes were determined by the type of mesh. Con- 
sequently it is not possible to separate the real and the spurious modes by a simple inspec- 
tion of the values of the frequencies. It may be separated by the value of the derivative 
of the square of the frequencies with respect to the penalty coefficient. 

In the present paper vibration analysis for an elastic container with partially filled 
fluid is investigated by an analytical method. The container is made of a thin cylinder 
and two circular plates at the ends. The axis of the cylinder is in the horizontal direction. 
It is difficult to solve this problem because the coupled system is not axially symmetric, 
and the liquid in the container has a free surface. It is almost impossible to find a po- 
tential function for this irregular bulk of liquid which satisfies all the boundary condi- 
tions. 

In this paper we also assume that the fluid is incompressible, ideal, and without sur- 
face wave, that is, it is a linear system. The equations of motion for this coupled system 
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l I 
Fig. i. Scheme of the container. 

were derived by the generalized variational method. The solution was expressed in a series 
of normalized generalized Fourier functions. This series converges rapidly, so that an 
approximate solution with high precision may be obtained. The agreement of the calculated 
values with the experimental results is good. 

2. Governing Equations 

The coupled system consists of three parts: i) two elastic circular plates at the sup- 
ported ends; 2) a thin cylindrical shell; and 3) a finite bulk of liquid, shown in Fig. i. 
We shall find the functional of each part by the variational method [7]. 

I. The functional of the two circular plates in a polar coordinate system is 
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In deriving the strain energy for the cylindrical shell, the theory of Flugge was used. 

3. The functional of the fluid is 
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The total functional of the coupled system is 

a : ~ +a~ + z3 + a4- (4) 

3. Solution of Equations 

When the functional of the coupled system was obtained, we solved the equations by the 
Ritz method. An approximation to the displacement function was assumed as follows: 
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which satisfy the fixed supported boundary condition, where 

-- l U (rl) ----- .-~I (coshq - -  cos'q); V(~I) = -~ (sirra q - -  sinai). 

Xmzn z is ml-th root of the following equation: 
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lm3 is m3-th root of the following equation: 
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Here Jnl (~), lnl (~) are Bessei functions of the first kind and the Bessel function with 
imaginary argument, respectively, u z' , u' ~' , u 2' , w', and are the odd terms of the func- 
tions ul, u=, u, w, and ~, and v' is the even term of the function V. Calculation shows 
that the effect of these terms on the result is very small, so that only the first term is 
taken. It is convenient for calculation to use m1' , m2', ms', m', nz', n2', n3', n', k. 
Substituting Eqs~ (5), (6), (7), (8), (9), and (i0) in Eq. (4), we obtain the following 
equation by the variational method: 
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where &', v', w', uz', u2', andS' are column matrices withKelements. A u, AUV, AUW, A v, AVW, 

A ul, A u= and B u, B v, B w, B uz, B u2, B #, B u~, B v#, B w~, B uz~, B u2~, B ~uz, B #u=, B ~w are sub- 
matrices with K 2 x K = elements. 

By using the symmetry of the boundary condition, Eq. (Ii) can be simplified as follows: 
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This is a characteristic equation for the coupled system, in which a mass matrix of 
fluid is added. It alsoshows that the elements of this matrix not only depend on the bulk 
of fluid, but also on the shape of the interface of solid with fluid, and on the free sur- 

face of fluid. 

Equation (12) is rewritten in the following form: 
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Here B' is the mass matrix of the container without fluid, and B" is the matrix of the addi- 
tional coupled mass, which reflects the changing part of the frequency and mode ifl the cou- 
pled system. We can calculate the natural frequencies of this system by the previous equa- 
tion.. 
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Fig. 2. Mode of the plate. 

4. Calculation of the Response of the Forced Vibration 

The forced vibration of the container filled with fluid is investigated. 

was excited by a harmonic displacement 5 = u' sin pt in the axial direction. 
eralized variational functionals of this system are 
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Substituting Eqs. (5), (6), (7), (8), (9), and (i0) in Eq. 
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TABLE i. Value of Natural 

Frequencies in Hz 

.... Frequency 

Result l ,  f2 

Calculated 48.33 68.66 
Experimental 49~ 70 

This equation is simplified in the following form through repeated calculation of the matrix: 

(20) Ax - -  ~x  = Q, 
where 

= B~,~Br Q~ B~'~B~-~Q~,] ~. 

A numerical algorithm was implemented for the solution of Eqs. (13) and (20) in this 
work. By using this algorithm program the frequency and response of the container partially 
filled with fluid can be calculated. 

5. Numerical Results and Discussion 

The container is made of aluminum with length L = 400 mm, radius R0 = 150 mm, and thick- 
ness of the wall h I = h 2 = h a = 1.8 mm. The container is filled with one-half bulk of fluid. 
In this case the calculation was implemented by using the present procedure. The calculated 
results of the first and second frequencies are given in Table i, in which experimental 
results are also given [8]. It should be noted that this result is in satisfactory agree- 
ment with the experiments. It can be concluded that the analytical method suggested by this 
paper is correct but the computer time required is less than that with the finite-element 
method. 

These frequencies, which are not those of sloshing of the fluid, are those of the plate 
of the container. The mode of the plate along its diameter shown in Fig. 2 corresponds to 
a frequency of 48.33 Hz. It can be predicted that its peak will appear in the lower half 
of the plate because of the presence of the fluid. 

NOMENCLATURE 

C i - the circumference of the plate, cm; D i = Eihi3/12(1 - v~) - bending stiffness 
of the plate, kg-cm; E i - the modulus of elasticity, kg/cm2; h i ! the plate thickness, cm; 
h 3 - the shell thickness, cm; R0 - the radius of the middle surface of the shell, cm; Q' - 
the force term of the forced vibration of the solution without fluid; Q" - the coupled force 
term of the forced vibration of the solution with fluid; U i - displacement of the plate in 
x coordinate, cm; U, V, W and U, V, Q - the axial, circumferential, and radial components 
of the displacement of a point on the middle surface of the shell and their values at the 
boundary, cm; vi - the Poisson's ratio; ~i - the density of material of the plate, kg/cm3; 
p~ - the density of material of the shell, kg/cmm; Pi' - the density of liquid, kg/cm3; a - 
the free surface of fluid, cm2; e i - the area of the plate, cm2; ~i' - the interface of the 
plate with liquid, cm2; o 3 ' - the interface of the shell with liquid, cm~; r = St/St - the 
velocity potential of the fluid, i/sec; ~ - the displacement potential of liquid; ~ - the vol- 
ume of the fluid, cmS; 6o = h32/12R02 
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