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A finite element analysis associated with an asymptotic solution method for the harmonic 
flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The 
element formulation is based on generalization of the discrete Kirchhoff theory (DKT) 
element formulation. The results obtained with the first order approximation of the asymp- 
totic solution presented here are the same as those obtained by means of the modal strain 
energy (MSE) method. By taking more terms of the asymptotic solution, with successive 
calculations and use of the Pad6 approximants method, accuracy can be improved. The 
finite element computation has been verified by comparison with an analytical exact solu- 
tion for rectangular plates with simply supported edges. Results for the same plates with 
clamped edges are also presented. 

1. INTRODUCTION 

Flexural vibrations of damped sandwich plates and structures have been investigated by 
a number of authors [ 1-11 ]. The simplified governing equations and corresponding bound- 
ary conditions of flexural vibration of viscoelastically damped unsymmetrical sandwich 
plates have been given in reference [I 1]. No bending-extension coupling is included in the 
simplified governing equations. When a plate is in simple harmonic vibration, the govern- 
ing differential equations to be solved have complex coefficients. The analytical exact 
solution and an asymptotic solution were obtained for simply supported rectangular plates 
in reference [11]. However, an analytical solution of the differential equations can be 
obtained only in some particular cases. In this paper a finite element analysis associated 
with an asymptotic solution method for the harmonic vibrations of damped sandwich 
plates is presented. It is a displacement finite element method, in which triangular elements 
are used. The element formulation is based on generalization of the discrete Kirchhoff 
theory (DKT) element formulation presented in references [12, 13]. The damped sandwich 
plate is treated initially as fully elastic, and the stiffness and mass matrices of a triangular 
element are calculated in the usual way. Assembly of the matrices of the whole plate and 
application of Hamilton's principle lead to the derivation of the matrix equation of motion 
of the plate. In accordance with the principle of equivalence given in reference [15], the 
damping is then introduced by replacing the real modulus of the core by its complex 
counterpart. Therefore, the plate stiffness matrix becomes complex, and a complex matrix 
equation has to be solved to find the complex frequencies and the corresponding complex 
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modes. To obtain an approximate a.nd practical solution and to avoid calculation with 
complex values, an asymptotic solution of the complex matrix equation is introduced. 
Calculations have been carried out for two examples and the results verify the effectiveness 
of the finite element analysis associated with the asymptotic solution method given here. 

2. FINITE ELEMENT FORMULATION 

2.1. B A S I C  A S S U M P T I O N S  A N D  T H E  E X P R E S S I O N S  F O R  T H E  E N E R G I E S  

The basic assumptions for a sandwich plate introduced in reference [ 1 !] are also made 
in this paper: (1) the face-layers are elastic and isotropic and suffer no transverse shear 
deformation; (2) the core carries transverse shear, but no in-plane stresses; it is linearly 
viscoelastic and has a complex shear modulus; (3) no slip occurs at the interfaces of the 
core and face-layers; all points on a normal to the plate move with the same transverse 
displacement; (4) although the metallic material of the structural layer and the constraining 
layer may be different, the values of their Poisson ratios are approximately equal; (5) when 
the sandwich plate is in flexural vibration, the in-plane inertia effects of the plate are 
ignored and only the transverse inertia effects are considered. 

According to these assumptions, one can obtain expressions for the strain energy and 
the kinetic energy of the plate. They have been given in reference [ 11]. The strain energy 
U can be written as the sum of the extension strain energy Ue and the bending strain 
energy Uh : 

U = Ueq- Ub = Ue..-[- U h l  -[- Uh2-. ]- Ub3 

ff[( ) • =½(7 ,+73)a  2 OUm\2+ 8U,,,,Sv,,, k ( S v , , , t 2 + ( 1 - v ) ( S u m + S v m t l d ~ d l  J 

A ff (2;  
L\8~2j + 2 v s ~ s r / ~  ~02 + 2 ( 1 - v ) k ~ 0 ) J d e d r /  

A 

.rf[(f; +½(D1+D3)Y  + 2 v  0¢~ 8~ ' ,+  +(1- 
a~ 8o 2 

A 

+½(D,+D,,rg I f  I-/ M2+Cv,,+et2] de d,. 
A 

Here d is the dimensionless area of  the surface of  the damped plate and 

El t, E3 t3 E1 t 3 
- -  Y2 = G 2 / 2 ,  ?'3 -- Di - -  D 3 = 71 1 - v 2' 1 -  v 2' 12 (1 -  v2) ' 

= x /a ,  77 = y /a ,  ld m = Um/a ,  Vm = Vm/a, w = W/a,  

U.,(x, y, t) = [1/(71 + 7s)][rl UI(X,  Y, t) + 7s Us(x, y. t)], 

V..(x. y, t) = [ 1 / ( r ,  + r 0 l [ r ,  V,(x, y, t) + 7s V3(x, y, t)]. 

~¢(x, y, t) = ( 1 / c ) [ U I ( X ,  y ,  t) - U3(x, y, t)], 

~ . ( x ,  y, t) = ( 1/c)[ V,(x.  y. t) - V3(x, y, t)], 

c=t2+(1 /2 ) ( t~+t3 ) ,  Y = y , r s C 2 / ( y , + y 3 ) ( D , + D 3 ) ,  

g = 72(7, + y3)a2/71 yst~, 

2 

(1) 

E3 t33 

12(1 - v2) ' 

(2) 
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where El and E3 are the elastic moduli of the constraining layer (face 1) and the structural 
layer (face 3), v is their common Poisson ratio, G2 is the shear modulus of the viscoelastic 
core (face 2), which is taken as a real quantity temporarily; and tl, t2 and t3 are the 
thicknesses of the three layers respectively. Here a is a characteristic dimension of the plate, 
e.g., the length of an edge of a rectangular plate; W(x, y, t) is the transverse displacement of 
the plate in flexural vibration; and Ut, V~ and U3, 1"3 are the in-plane displacements of 
the points in the middle planes of face 1 and face 3 respectively. Um and I'm may be 
regarded as the weighted mean in-plane displacements of the unsymmetrical sandwich 
plate; and gt¢ and ~n are the rotary angles of a line connecting the two corresponding 
points at the middle planes of the faces 1 and 3 after bending, g and Y are called the 
"shear parameter" and the "geometric parameter" respectively. (A list of nomenclature is 
given in Appendix C.) 

The kinetic energy of the plate, T, is 

;f( 5 T=½pa 4 ~ d4 dr/, (3) 

A 

where p is the mass per unit area of the plate. 
When a plate is in simple harmonic flexural vibration, any in-plane rigid-body motions 

of the plate are suppressed in most cases, so um= v,~ = 0 and then Ue = 0. The forms 

w( 4, 7/, t) = w( 4, r/) ei°'t, ~¢( 4, r/, t) = ~¢( 4, r/) ei°~t, ~n( 4, r/, t) = Vzn( 4, r/) e i°~t, (4) 

are introduced. The circular frequency co can also be expressed in dimensionless form as 

I2 = ¢ox/pa*/(D, + O3), (5) 

Substituting equation (4) into equations (1) and (3), one can obtain the maximum value 
of the bending strain energy Ub during vibration in the form as in equation (1), and the 
maximum value of the kinetic energy T during vibration as 

T=½pa'co2ffw2d4dr/=½(D,+D3)t22f w:d4dr/. (6) 

2.2. D I S P L A C E M E N T  M O D E L S  A N D  S T I F F N E S S  A N D  M A S S  M A T R I C E S  

The finite dements used in this paper are triangular plate bending elements with five 
degrees of freedom at the corner nodes (displacement w, rotations 0¢ = ~w/~r/and 07 = 
-dw/d4  and rotations qs¢ and ~s,). The element formulation is based on generalization of 
the discrete Kirchhoff theory (DKT) element formulation presented in references [ 12, 13]. 
There a triangular DKT element with three degrees of freedom at the corner nodes (w, 0¢ 
and 07) was discussed in detail. When an isotropic homogeneous plate with bending 
stiffness D is in bending, the strain energy can be written as 

ff ( w)l [(oew/  
+ 2 v - -  + 2 ( l - v )  d4 dr/, (7) 

Lt 4 ) 64: r/2 \ooV 
A 

Using the DKT elements, one can obtain the global stiffness matrix [ko] for the element 
explicitly in the global co-ordinate system, which was presented in reference [13]. It is of 
order (9 x 9), and can be divided into nine submatrices of order (3 x 3) each. 

For the triangular plate bending element here, one assumes that 0g and 07 vary quadrat- 
ically over the element as in the case of the DKT element. Utilizing the expressions of 
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equation (26) in reference [12], one can express them as the functions of the area co- 
ordinates ~a and r/,,, 

O¢=~w/~/,l~=-[Ov(~a, /~a)]T{ Ul },, Or/=--(~WfC~=[Ox.(6.al~a)]l{bll}, (8) 

where {u~} is composed of part of the nodal degrees of freedom of the element 
(w~, 0~j, 0r/l, w2, 0¢2, 0r/e, w3, 0~3, 0r/3), and [Hx] and [H,.] are two vectors consisting of 
nine components and given in Appendix A. However, ~¢ and q/, are assumed to vary 
linearly over the element, i.e., 

3 3 
~ = ~ L~( 6-. qa)~¢i, g% = y~ Li( 6.0. O.)gtr/~. (9) 

i 1 t I 

where 

L,(  ~a, r la) :  l - ~ . -  rlu . L2(~a. r /a)=~. ,  L3( ~a, rla) = rl, ,. (10) 

The stiffness matrix of the element here for the analysis of  damped sandwich plates is 
based on the expression of the bending strain energy Ub in equation (1). Defining the 
vector of the nodal degrees of freedom of  the element {u} as 

{U} : ( W l ,  0¢1, 0r/l, V¢I ,  IPtr/I, W2, 0~2, 0r/2, IPr£2, IPtr/2, W3, 0¢3, 003, Ipt¢3, Vr/3), (11) 

one can express Ub of  an element as 

1 1 
U b -  ( Ub~ + Ub2 + U~3) 

D1 + D3 D1 + D3 

+ + (12) 

where the area A in the integrations Ubl , Ub2 and Ub3 in equation (1) is replaced with the 
dimensionless area Ae of the surface of an element. The element stiffness matrix [k] is 

[k] = [kl] + [k2] + [k3], (13) 

All the matrices [kt], [k2], [k3] and [k] are of  order (15 × 15). Since the expression for Ub~ 
in equation (1) is similar to that for U in equation (7), then [kl] can be obtained directly 
from the global stiffness matrix [kD] of  the D K T  element presented in reference [ 13]. At 
first, the nine submatrices of  order (3 x 3) of [kD] are each divided by the bending stiffness 
D. Then they are located separately at regions as shown in Figure 1. Finally, some zero 
elements are added at the rest to form [kd. The non-zero part of  [k2] can be obtained 
with a stiffness matrix of order (6 × 6) given from the displacement model of equation 
(9). Dividing the matrix into nine submatrices of order (2 × 2) and locating them separately 
at the corresponding regions, as shown in Figure 1, one can obtain [k2] by adding some 
zero elements. The expression for [k3] can be obtained from the displacement models of 
equations (8) and (9) in the usual way. Thereafter, the element stiffness matrix [k] can be 
constructed in accordance with equation (13). 
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Figure 1. The locations of  non-zero elements of [kt] and [k2] at an element stiffness matrix [k] of order 
(15 × 15). X, elements of  [kl]; Y, elements of [k2]. 

A diagonal lumped mass matrix of the element is employed. One can express the kinetic 
energy of the element T as follows: 

1 - -  T =  ½12 2{u}T[m]{u}. (14) 
Di +D3 

The vector of the diagonal elements of the diagonal mass matrix is given as 

(A,13)(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0). (15) 

Assembling all the element stiffness and mass matrices of the whole plate and applying 
Hamilton's principle, one obtains the resulting equation for the damped sandwich plate 
in simple harmonic vibration as 

([K,l+[K2]+tK3]){q}-E22[Ml{q}=[Kl{q}-DIZ[Ml{q}={O}, (16) 

where [K] and [M] are the stiffness and mass matrices of the whole plate and {q} and {0} 
are the displacement vector and zero vector. 

However, as the plate is assumed to vibrate harmonically and the core is a layer of 
viscoelastic damping material, the shear modulus G2 of the core in equation (2) has to be 
replaced by the complex modulus G2(1 + i/3 ); here 13 is the loss factor of the viscoelastic 
material. Then the "shear parameter" g must also be replaced by g(1 + i/3 ). The dimension- 
less frequency O2 must also be replaced correspondingly by the complex frequency 

2(1 + iT/*), the physical significance of which has been discussed in reference [ 14]. Here 
the quantity 17" is called the modal loss factor of the plate. The above changes are justified 
by the principle of equivalence presented in reference [13]. Therefore, equation (16) 
becomes instead 

([K,] + [Kz] + (1 + i/~)[K3]) {q} - ~ 2(1 + ir/*)[M] {q} 

= ([K] +if l [K3]){q}  -O2(1  +ir/*)[Ml{q} --- {0}. (17) 
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This is a complex eigenvalue equation. To investigate flexural vibration of a damped 
sandwich plate, one must first know the boundary conditions of the plate, which have 
been discussed in reference [11]. In accordance with different boundary conditions along 
an edge one has to prescribe some degrees of freedom at the nodes of elements on the 
edge. For instance, on a simply supported edge (I) ~=0,  the displacement w and the 
rotations 0~ and qt, at each node have to be prescribed as zero. On a clamped edge, all 
the nodal degrees of freedom w, 0~, 0 , ,  ~ and ~u, 7 at each node have to be prescribed as 
zero. Then one can solve equation (17) to find the natural frequencies/'2, the modal loss 
factors q*, and the corresponding complex modes {q l- 

3. THE ASYMPTOTIC SOLUTION OF THE COMPLEX EIGENVALUE EQUATION 

To obtain an approximate and practical solution and to avoid calculation with complex 
values, an asymptotic solution to the eigenvalue equation (17) with/1 =ifl  as a complex 
parameter can be introduced. The same procedure has been used in reference [16] to find 
the loss factors of a sandwich cantilever. Later, the asymptotic solution to the governing 
differential equations of damped sandwich plates has been discussed in reference [ 11 ]. Here 
one first expands the solution of equation (17) in a power series: 

{q} = {q}0 +/~ {q}, + ]-/2{ q}2 + 1-/3 {q } 3 + ,U4{q}4 -[- ~/5{q}5 + ' ' "  

, /1 0 3  + / ~ q ~ ' + "  " " • ( 1 8 )  

Substituting equations (18) into equation (17) gives the successive equations that the 
asymptotic solution must satisfy: 

[K]{q}o-12g[M]{q}o = {01, (19) 

[K] {q}~ -/'20Z[M] { q}, = -[K3] {q}0 + /2  grl*[M] {q}0, (20) 

[K]{q}2-12~[M]{q}: = -[K3]{q}~ +122rl*[M]{q}~ + £2~[M]{ql0, (21) 

[K]{q}3-122[M]{q}3 = -[K3]{q}2 + ~2g( rl'([M]{q}2 + q~'[M]{q}0) 

+ 12 ~(q'{[M] {q}0 + [M] {q} 1), (22) 

[K]{q}4 - £2g[M]{q}4 = -[K3] {q}3 + t2 02(rl*[M] {q}3 + flY'[M] {q} ,) 

+12~(q*[M]{q}~+[M]{q}2)+g22[M]{q}o, (23) 

[K]{q}5-12~[M]{q}5= -[K~]{q}4+K22(rl'~[M]{q}4+ r/~[Ml{q}z + q*[M]{q}0) 
2 , + 122(rl, [M]{q}2 + q~[M]{q}o+[M]{q}3 

+ l-2Z4( rl*[M]{q}o + [M]{ q}l), 

. . . . . . .  (24) 

According to various homogeneous boundary conditions of the plate, one finds that boun- 
dary conditions which the successive terms {q}i ( i= 0, 1, 2 . . . .  ) must satisfy are the same 
in form. Therefore, from equation (19) and the boundary conditions with respect to {q}0 
one can solve first a real eigenvalue problem and obtain all the eigenvalues I202 and 
corresponding modes {q}0. The modes can be normalized as follows. 

The normalization of the complex modes can be stated as 

{q}V[M]{q} = 1. (25) 
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Substituting the first of equations (18) into equation (25), one can obtain 

{q}'~[M]{q}o = 1, 2{q}~[M]{q}~ =0, (26, 27) 

2{q}~[M]{q}2+ {q}T[M]{q}t=O, 2{q}~[M]{q}3+2{q}~[M]{q}2=O, (28, 29) 

2{q}~[M]{q}4+ 2{q}~[M]{q}3 + {q}~[M]{q}2 = 0, (30) 

2{q}~'[M] {q}5 + 2{q}~[M]{q}4 + 2{q}2a[M] {q}3 = 0, (31) 

. . . .  0, (31 ' )  

successively. In accordance with equation (26) one can normalize the real mode {q}0. 
Multiplying equation (19) by {q}g, one obtains 

0 2= {q}~[K]{q}o. (32) 

The expression on the right side of equation (32) is proportional to the strain energy of 
the plate. 

Next one can solve equation (20). First the value of r/~ must be determined. Multiplying 
equation (20) by {q}~ and considering equation (26) and 

{q}Xo([K]{q}~-122[M]{q}~) = {q}T([K]{q}o-g22[M]{q}o)=0, (33) 

one obtains 

q* = (1/~22) {q} 0X[K3l {q}0. (34) 

17" is the fraction of strain energy attributable to the viscoelastic core when the damped 
plate deforms in the mode {q}o. If less accuracy is acceptable, all the first terms of each 
expression in equations (18) can be regarded as an approximate solution, which are the 
same as the results obtained by means of the modal strain energy (MSE) method suggested 
in references [9] and [10]. Therefore, MSE can be considered to be the first order approxi- 
mation of the asymptotic solution presented in this paper. 

To improve accuracy, one must calculate successive terms of the asymptotic solution. 
Substituting the values of ~2o 2, q* and {q}0 into equation (20), one obtains a system of 
linear simultaneous equations which has infinite solutions for {q}~. At first any particular 
solution {q}~p can be obtained; then the general solution for {q}~ may be written in the 
form 

{q}, = {q},p + C, {q}0, (35) 

where C1 is an undetermined constant. The value of C~ can be given by means of the 
normalization condition equation (27) as 

C, = - {q}~[M]{q},p. (36) 

Then the values of {q}~ can be determined completely. 
Thereafter one solves equation (21). Multiplying equation (21) by {q}o x, one can obtain 

g222 = {q}T[K3]{q},. (37) 

Substituting the values of 0 2, q*, O~, {q}o and {q}~ into equation (21), one can obtain 
the unique solution for {q}2 as 

{q}2 = {q}2p+ C2{q}o, (38) 
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where the value of C2 is given in accordance with the normalization condition equation 
(28) as 

_ I t t~ I ( 3 9 )  C2=-{q}~'[M]{q}2p ~q~ [M]w~,, 

Through calculations similar to those previously, the solutions of the successive equations 
(22) (24) can be obtained as follows: 

, 2 73 = - 17"({q }~[M] { q }2 + £2 2/£2 ~) + ( 1/£2 02) { q} 0S[K3] { q },, (40) 

{q}3 = {q}3p+ C3{q}0, C3 = -{q}~[M]{q}3p- {q}[[M]{q}2, (41, 42) 

£2 2{q}o[Ml{ q r2, £2orh {q}o[M]{q}3- (43) ={q}o[K3]{q}3- 2 , x 

{q}4 {q}4p + ' ' = C4~q;o, (44) 

Ca = -{q}'~[M]{q}4p- {q}T[M]{ql3-½{q}~[M]{q}2, (45) 

r/~' = - 17*({q}~[M]{ q}4 + (£2 2/-0 02) {q}g[M]{q}2 + £2 2/,02) 

- rl~({q}~[M]{q}2+£2~/£2~) 
+ (1/£22 1" 2 T o)({q}o[K3]{q}4-£22{q}o[M]{q}3), (46) 

{q}5 = {q}sp + Cs{q}o, (47) 

c ,  = - {q}g[Ml{q}  s, - {q}T[MI {q}4 - { q}~-[M] {q}3, (48) 

. . . . . . .  (48') 

If the calculation is not to be continued, one is left with the expressions for the asymptotic 
solution given explicitly in equations (18), without the residual terms indicated by ( . . . )  
on their right sides. The last two of equations (18) may be rewritten as 

[ 2(m £22=£22 £2~ ~] "{1 £24] ( 4 9 )  D o)],it +n2£2 1, 

• , \  +/72 (50) 
or )J,, r#~ < ) 

Equations (49) and (50) can be obtained by using the Pad6 approximants method (see 
Appendix B). By calculating with equations (49) and (50), one can often obtain better 
results. 

4. EXAMPLES 

4.1. EXAMPLE 1 

Consider a rectangular viscoelastically damped sandwich plate with simple support (I) 
along all edges. Its length is a and its width is (1/1.2)a. Introduce a dimensionless co- 
ordinate system, 0, 4, 17 and let the edges of the plate be ~=0,  1 and 1/=0, 1/1.2. Two 
hundred triangular elements with 121 nodes are used to form a regular mesh, as shown in 
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Figure 2. A rectangular damped sandwich plate and the 200 triangular elements used to form the mesh• 

Figure 2. The analytical exact solution for the natural frequencies, modes and modal loss 
factors of such plates has been given in reference I11]. Numerical computation by the 
finite element method associated with the asymptotic solution method was carried out for 
the plate with fl = 1.0 and Y= 3.5. The first four natural flexural vibrations of the plate 
were calculated. Let m and n be the semi-wavenumbers of the natural mode w along the 
directions of ~ and t/. The semi-wavenumbers (m, n) of the first four natural modes w are 
(1, 1), (2, 1), (1, 2) and (2, 2) respectively. Define a,,~=m27r2+(1.2)2n2~r 2. In Figures 3 
and 4 are shown the numerical results for the first four modes of the plate. In Figure 3 
the curves representing the variation of/22//22ex with the variable g/a,,m are given, where 
the values o f / 2 2  have been calculated according to /202 or equation (49). /2e 2 is the 
analytical exact solution given in reference [11]. The values of /2  2 calculated according to 
equation (49) approximate to the analytical exact values/22x much better than the values 

1.5 - 

.~ 1.0 

0.5 

0 I i I 
tO -2 10 -1 I0 ° IO 1 5 x I01 

g/tlmn 

Figure 3. Ratio of  the numerical asymptotic solutions of  natural frequencies to the analytical exact ones v s .  
• 2 2 2 2 the variable g / a , . .  - -  • - - , / ' 2 o / / 2 e x ;  , / 2  /£2 .... 
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, 9"/13; ×, +, (m ,n )=  

£2 02, which are equivalent to the result obtained by the MSE method. In Figure 4 is shown 
1/*//3 as a function of the variable g/a  .... where the values of r/* can be calculated 
according to r/*fl or equation (50). The solid curve represents the exact variation rl*/fl 
with the variable g/a  .... which was given in reference [11]. The numerical results of  7/*/ 
/3 calculated according to equation (50) approximate the solid curve very well. In Table 1 
the values of  £2 o 2 , £2 2, £2 ~ and £22 calculated according to equation (49) for corresponding 
values of g/alj  to be 0.5, 1 and 5 are given. The exact values £2e~ are also given for 
comparison. In Table 2 the values of 7/*, 1/~', r/~' and 1/* calculated according to equation 
(50) and the analytical exact values 7/* for the same values of g/a~  are given. 

To observe the influence of number of elements on the accuracy of  the results, the values 
calculated by employing 72 elements with 49 nodes are also given in Tables 1 and 2. It 

TABLE 1 

Dimensionless frequencies of  simply supported plates with different values of  g/al~ 
(Y=3"5 , /3=  l'01 

Number of 
g/Ottl elements ~ 0 12 ~ 12 ~ 122 O~ 

0.5 72 1218 -144 -16 1347 1392 
200 1244 -148 -16 1378 1392 

1 72 1545 -242 -61 1738 1798 
200 1580 -251 -62 1782 1798 

5 72 2220 -230 -156 2358 2410 
200 2257 -235 -162 2396 2410 

can be seen that convergence is rapid in most cases. From Tables 1 and 2 it is evident that 
the errors in the values of  .(2 02 and r/* are somewhat appreciable for these values of g/a~  
in comparison with the analytical exact values of £2ff~ and * r/ex, while the values of  £2 2 and 
1/* are much better. 
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TABLE 2 

Modal loss factors of simply supported plates with different values of g/all 
(Y=3"5, fl=l'O) 
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Number of 
g / a  II elements r/l' 17 $ 1/$ r/* r/e* 

0'5 72 0"3572 0.0818 0"0189 0"2907 0"2917 
200 0.3597 0.0824 0.0189 0.2927 0"2917 

1 72 0'3189 0"1284 0"0525 0"2278 0.2258 
200 0"3197 0.1299 0"0529 0"2273 0"2258 

5 72 0"1356 0"0989 0"0781 0"0803 0"0690 
200 0.1262 0.0996 0.0793 0.0708 0"0690 

4.2. EXAMPLE 2 

Consider the same rectangular plate as in Example 1 but with all clamped edges. The 
element mesh is also the same in Figure 2. There is no exact solution of this problem. The 
first four natural vibrations with semi-wavenumbers of  modes w (1, 1), (2, 1), (1, 2) and 
(2, 2) were also calculated. In Figures 5-8 curves showing the variation o f / 2  02//2 2 with 
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Figure 5. Ratio of ~ 2 to 1"2 2 vs. the variable g. (m, n) = (1, 1). 
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Figure 6. Rat io  of/'202 to/ .22 vs. the var iable g. (m, n ) =  (2, 1). 
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Figure 7. Ratio of E2o z to .(22 v s .  the variable g. (m, n) = ( l, 2). 
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Figure 8. Ratio of.Oo z to .(2 z v s .  the variable g. (m, n)=(2, 2). 
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the variable g for the first four natural vibrations are given, respectively, with the values 
of 1-22 having been calculated according to equation (49). In Figures 9 12 is shown r/*//~ 
as a function of the variable g, where the values of 7/* were calculated according to 1/i ~ 13 
or equation (50). The results are similar to those in Example 1. 

5. CONCLUSIONS 

In this paper a finite element analysis associated with an asymptotic solution method 
for the harmonic flexural vibrations of viscoelastically damped sandwich plates has been 
given. The element formulation is based on generalization of the DKT element formula- 
tion. To avoid calculation with complex values, an asymptotic solution of the complex 
governing matrix equation has been introduced, with the loss factor of the viscoelastic 
material of the core used as a parameter. As sample examples, calculations have been 
carried out for rectangular plates with either simply supported or clamped edges. The first 
four natural frequencies and modal loss factors of the plates are given. If in the asymptotic 
solution only the first terms of all quantities are adopted, then the result is identical in 
principle with that as given in accordance with the modal strain energy (MSE) method. 
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However,  the results o f  the examples indicate that  the errors in the values o f  the natural  
frequencies and modal  loss factors are somewhat  appreciable in a certain range o f  the 
value o f  the "shear  parameter"  g. By taking more  terms o f  the asymptot ic  solution, 
with successive calculations and use o f  the Pad6 approximants  method,  accuracy can be 
improved. For  rectangular  plates with simply supported edges (Example 1), the numerical 
results approximate  to the corresponding analytical exact values very well. This fact verifies 
the reliability o f  the finite element analysis associated with the asymptot ic  solution method  
presented here. With  the character  o f  the free flexural vibrations o f  a plate thus calculated, 
then it is possible to analyze further the response o f  the plate to various types o f  dynamic  
loads to provide a reliable basis for design. 
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APPENDIX A: EXPRESSIONS FOR [Hx(~a, r/a)] AND [Hy(~a, q~)] 

The vectors [Hx(~a, r/a)] and [Hy(~a, r/a)] were given in reference [12] and are listed 
here. They are nine-component vectors of  shape functions. The expressions for the first 
three components of  them are 

nxl = l '5(a6N6-a~Ns), Hx2=bsNs+b6N6, Hx3=N1-csNs-c6N6,  (A1) 

Hyl = l '5(d6N6-dsNs),  Hy2 = -N1 +esNs+e6N6, Hy3 = -Hx2, (A2) 

where Ni ( i= 1 , . . . ,  6) are 

Nl=2(1-~a-r /a) (½-~a-r /a) ,  N2=~a(2~a-1), Na=r/a(2r/a-1), 

N4 = 4~ar/a, N5 = 4r/a(1 - ~a -  r/a), N6 = 4~a(1 -- ~a-- r/a). (A3) 

The components Hx4, Hx5, Hx6, Hya, Hy5 and Hy6 are obtained from the expressions (A1) 
and (A2) by replacing N1 by N2 and indices 6 and 5 by 4 and 6, respectively. The com- 
ponents Hx7, H~8, Hxg, Hy7, Hy8 and Hy9 are obtained by replacing NI by Na and indices 
6 and 5 by 5 and 4, respectively. Also, 

ak=_~ij/l 2, bk=3~ijr/O/(412), Ck=( 2 2 2 ~O--2r/U)/(4l~), dk=--r/O/i 2, (A4) 

2 2 2 ek ---- ( r / i ) - -  2~0)/(41,~), ~o = ~i-  ~j, 17o= r/,_ rb ' lu = ( ~2 .~_ r/2) 1/2, (A5) 

where the index k = 4 ,  5 and 6 for indices/ j=23,  31 and 12 respectively. Here J~ and r/~ 
(i = 1, 2, 3) are the values of  the nodal Cartesian co-ordinates of  the triangular element. 

APPENDIX B: PADI~ APPROXIMANTS METHOD 

For several years, the Pad6 approximants method has become important in engineering. 
The underlying principle of  Pad6's method is as follows. Given a power series 

f ( x ) =  ~ CkX k, (B1) 
k=O 
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Pad6 proposed finding the closest approximat ion to the sum by defining a rational fraction 
P, , (x ) /Q, (x) ,  with 

m /7 

Pm(X) = ~ akx k, Q , ( x ) =  1+ ~ bkx k, (B2) 
k~'O k = l  

in which the numera tor  and the denomina tor  are polynomials  o f  degrees m and n respec- 
tively. These polynomials  Pro(x) and Q,(x) are determined from the equation 

f ( x )  - P, , (x) /  Q,(x)  = O(x ....... '). (B3) 

This equat ion leads to m + n + 1 linear simultaneous equations f rom which the unknown 
m + n + 1 values ak and bk (b0 = 1) can be determined. 

For  example, the square o f  the natural  frequencies o f  a damped  sandwich plate I2 2 is 
given as a power  series in equat ion (18) in this paper. The expression can be rewritten as 

~2--t"12-- t'42t'~2-~-/~4~"~4--'~'~O p ~'2 . . . .  . (B4) 

One can find a rational fraction Pl(f l2)/Q~(f l2) ,  with 

Pl(fl2)=ao+a, fl 2, Q~(fl:)= l +b, fl 2, (B5) 

as the closest approximat ion  to the value o f  g22. In 
can obtain the linear simultaneous equations 

accordance with equat ion (B3) one 

2 2 2 O0 = ao, - ~  2 + ~r~ obl = a l ,  12 ] - 1 2  ~bl =0 .  (B6) 

These equations lead to 

c~2{12] 12~" -£242 (B7) b, 

Then one obtains equat ion (49) in this paper. Equat ion (50) is obtained similarly. 
The mathematical  theory and applications o f  the Pad6 approximants  method  can be 

found,  e.g., in reference [17]. 

a 

A 
Ae 
C 

Cl . . . . .  C5 
Di 
D 3  

&, E3 
ak, bk, ck, dk, ek 
g 
G2 
[Hd, [nd  
Hx~ . . . . .  H~,.9 
/-/kl . . . . .  /-/y9 
i 
[/`] 
[/`,],  [/,2], [k , ]  
[kD] 
[K] 
[ rd ,  [Kd, [K,] 

APPENDIX C: NOMENCLATURE 

characteristic dimension of the plate 
dimensionless area of the surface of the plate 
dimensionless area of an element 
distance between the middle planes of face-layer 1 and face-layer 3 
constants 
bending rigidity of the constraining layer (face-layer 1) 
bending rigidity of the structural layer (face-layer 3) 
Young's moduli of the face-layers I and 3 
coefficients in the expressions for Hxl . . . . .  Hx9 
shear parameter 
shear modulus of the viscoelastic core (layer 2) 
nine component vectors of shape functions 
components of vector [Hx] 
co_c~l onents of vector [Hv] 

element stiffness matrix 
three parts of an element stiffness matrix 
element stiffness matrix of a DKT element 
stiffness matrix of the whole plate 
three parts of stiffness matrix of the whole plate assembled with three parts 



Ll, L2, L3 
l,j 
[m] 
[g] 
m .  n 

N~ . . . . .  N6 
{0} 
{q} 
{q}0, {q}l . . . . .  {q}s 
{q}l r  . . . . .  {q}sp 
t 
t l ,  t2, t3 
T 
{~} 
{~,} 
U 
U~ 
Ubl, Ub2, Ub3 
U, 
U~, V~ 
U3, V3 
Um, Vm 
Um, 1)m 
W 
w 

Wl~ w2~ w3 
x, y 
Y 
Otmn 

Yl 
Y2 
Y3 

~ , ~  
rl* 

77*, ~ ,  ~ 
17" 
O¢ 
07 
0~. Ogz. 0~3 
O,j. 072. On3 
Iz 
v 

P 
~ ,  ~,1 

~¢~, ~¢z,  9'~3 

~ ,  ~/n~, ~/n~ 
oJ 
1"2 
og, ~ , ~  
oL 
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of element stiffness matrices 
area co-ordinate functions of  a triangular element 

2 2 ~ ,  coefficient in the expressions of ak, b~ . . . . .  ek 
diagonal element mass matrix 
mass matrix of the whole plate 
semi-wavenumbers 
shape functions for DKT element 
zero vector 
displacement vector 
successive vectors in power series for {q} 
particular solutions for {q}l . . . . .  {q}5 
time 
thicknesses of  the layers 1, 2 and 3 
kinetic energy of the plate 
15-component vector of the nodal degrees of freedom of an element 
9-component vector of part of the nodal degrees of freedom of the element 
strain energy of a sandwich (or homogeneous) plate 
bending strain energy 
three parts of the bending strain energy 
extension strain energy 
in-plane displacements of  the points in the middle plane of face-layer 1 
in-plane displacements of the points in the middle plane of face-layer 3 
weighted mean in-plane displacements of an unsymmetrical sandwich plate 
dimensionless weighted mean in-plane displacements 
transverse displacement 
dimensionless transverse displacement 
nodal values of dimensionless transverse displacements 
rectangular Cartesian co-ordinates 
geofnetric parameter 
m2a "2 + ( l '2)2n27r  2 

loss factor of  the viscoelastic material 
Eltf f( l  - v 2) 
G2t2 
E3t3/(l  - v 2) 
dimensionless rectangular Cartesian co-ordinates 
area co-ordinates of a triangular element 
modal loss factor of the plate 
coefficients of successive terms in power series for t/* 
analytical exact values of modal loss factor 
~w/&l, rotations vary over an element 
- ~ w / ~ ,  rotations vary over an element 
nodal values of  U~ 
nodal values of  0 7 
ifl, complex parameter in power series 
common Poisson ratio of  the face-layers l and 3 
mass per unit area of the plate 
rotary angles of a line connecting the two corresponding points at the 
middle planes of the face-layers 1 and 3 after bending 
nodal values of ~¢ 
nodal values of  ~ 
circular frequency 
dimensionless circular frequency 
coefficients of successive terms in power series for 12 2 
analytical exact values of £2 2 


