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Abstract. Crack growth due to cavity growth and coalescence along grain boundaries is analyzed under transient 
and extensive creep conditions in a compact tension specimen. Account is taken of the finite geometry changes 
accompanying crack tip blunting. The material is characterized as an elastic-power law creeping solid with an 
additional contribution to the creep rate arising from a given density of cavitating grain boundary facets. All voids 
are assumed present from the outset and distributed on a given density of cavitating grain boundary facets. The 
evolution of the stress fields with crack growth under three load histories is described in some detail for a rela- 
tively ductile material. The full-field plane strain finite element calculations show the competing effects of stress 
relaxation due to constrained creep, diffusion and crack tip blunting, and of stress increase due to the instantaneous 
elastic response to crack growth. At very high crack growth rates the Hui-Riedel fields dominate the crack tip region. 
However, the high growth rates are not sustained for any length of time in the compact tension geometry analyzed. The 
region of dominance of the Hui-Riedel field shrinks rapidly so that the near-tip fields are controlled by the HRR-type 
field shortly after the onset of crack growth. Crack growth rates under various conditions of loading and spanning the 
range of times from small scale creep to extensive creep are obtained. We show that there is a strong similarity between 
crack growth history and the behaviour of the C(t) and C, parameters, so that crack growth rates correlate rather well 
with C(t) and Ct. A relatively brittle material is also considered that has a very different near-tip stress field and crack 
growth history. 

1. Introduction 

Progress up to 1987, in various aspects of the mechanics and mechanisms of creep crack growth, 
is reviewed by Riedel [1]. Some developments within the last three years which are pertinent to 
our studies are discussed in the review articles by Riedel [2] and Saxena [3]. Broadly speaking, 
approaches to creep crack growth can be classified into two main categories. One approach to 
creep crack growth is in terms of a relevant characterizing parameter. This approach assumes 
that the heavily damaged region is confined to a local zone that is surrounded by an annular 
region in which the stress and deformation states are well approximated by certain small strain 
singular crack tip fields. When this small scale damage assumption reasonably describes the 
actual conditions, the appropriate small strain singular fields provide the relevant characterizing 
parameter for the near tip state, which may be the elastic stress intensity factor K~, the time 
dependent C(t)-integral or its steady state limit C*. Under such conditions, the effects of remote 
load, including the elapsed time since load application, and crack geometry on the near tip state 
are fully communicated by the characterizing parameter. To borrow the terminology of 
nonlinear fracture mechanics (see e.g. the review article by Hutchinson [4]) we speak of crack 
growth under such conditions as K~, C(t) or C*-controlled growth. The transferability of 
laboratory test data requires that the state near the tip of the flawed structure be similar to that 
which existed near the tip of the specimen during the measurements - and this similarity 
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is ensured when an autonomous one-parameter singular field controls both near tip states. 
Presuming that the mechanism of crack growth does not change, the characterizing parameter 
approach provides a framework for predicting crack growth rates in structures from measure- 

ments on test specimens. 
At the other extreme is the damage mechanics approach which, by the nature of its 

formulation, allows full coupling between damage and deformation irrespective of the scale of 
damage. In the damage mechanics approach the prediction of crack growth requires the 
solution of a full boundary value problem in each situation, whether it is for the specimen or 
for the actual structure, and the damage evolution is characterized by one or more internal 
variables. Thus fracture mechanics concepts, for example, transferability of crack growth data 
and similitude notions, are not exploited. Hayhurst et al. [5, 6] have undertaken such methods 
of inquiry within the framework of classical damage mechanics based on Kachanov's damage 

model [7]. Kachanov's model [7] contains no length scale and damage is characterized by a 
parameter that has no direct physical interpretation, although some qualitative connection can 
be made with the cavitated area of the grain boundaries. This particular deficiency of the 
classical damage equations can be corrected by incorporating a description of the damage 
mechanism into the constitutive model. As an example, Hutchinson [8] models a creeping solid 
with a dilute concentration of constrained cavitating grain boundary facets as a power law 
viscous solid containing a distribution of penny-shaped microcracks. This model has been 
developed into a micromechanically based creep rupture constitutive relation by Tvergaard 
[9, 10]. The grain boundary facets are modelled in a continuous, 'smeared out' manner and 
failure occurs when the cavities on the facets coalesce to form open microcracks. Tvergaard has 
used this material model in numerical investigations of creep rupture in notched and smooth 
tensile bars [1 l, 55] and of crack growth in a center cracked panel [12]. In these studies no 
attempt was made to examine the structure of the near-tip fields nor to correlate crack growth 

rates with candidate crack tip parameters. 
In our investigations we combine a fracture mechanics approach with the micromechanical 

modelling of creep crack growth by cavity growth and coalescence along grain boundaries. To 
this end we use the constitutive model developed by Tvergaard [9, 10]. The computations are 
designed so that issues related to the dominance of competing singular fields can be answered 
unambiguously within a framework that accounts for the competing effects of stress relaxation 
due to constrained creep, diffusion and crack tip blunting, the stress increase due to the 
instantaneous elastic response to crack growth and the loss of stress carrying capacity due to 
progressive damage. We do this through full-field nonlinear plane strain finite element analyses 
of the compact tension specimen geometry. By proper choice of specimen size, load levels and 
material parameters we are able to investigate crack growth in both the small scale and 
extensive creep regimes and for the full range of crack growth rates. The mesh employed in our 
numerical study is sufficiently refined so that questions regarding the zone of dominance and 
the form of the dependence of crack growth rates on the relevant load and material parameters 
can be systematically examined. Such studies can provide some insight into the dependence of 
crack growth rates on micromechanical failure processes and the effects of coupling between 

damage and deformation. 
Within the framework of the fracture mechanics approach, the effects of crack geometry 

and size, and load history on the near tip state are fully characterized by the relevant 
fracture parameter. In other words, crack growth rate data versus C* as obtained in a 
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laboratory specimen (presuming that C* is the appropriate load parameter, i.e. the HRR type 
field dominates over a microstructurally relevant size scale) can be interpreted as a correla- 
tion of crack growth rate versus C(t). Then, the crack growth rate versus C* data can be 
applied to crack growth under small scale as well as extensive creep conditions in a larger 
specimen or in an actual structure as long as C(t) is the appropriate load parameter and that 
the same fracture/damage mechanism is operative. We explore this idea by comparing the 
calculated crack growth rates under extensive creep in this study with the small scale creep 
results obtained in an earlier study by Li et al. [13]. In this investigation, we analyze the full 
range of conditions from small scale to extensive creep, examine growth rates over a much 
greater range than those in [13], and contrast ductile and brittle type material behavior. The 
broad range of circumstances considered allows us to assess the range of validity of C(t) and 
Ct-controlled growth and of the small-scale damage approximation, which is a prerequisite for 
the transferability of specimen crack growth data to the structure through the C(t) or Ct 
parameter. 

2. Problem formulation 

2.1. Field equations 

The finite element analysis is based on a convected coordinate Lagrangian formulation of 
the field equations with the initial unstressed state taken as reference. All field quantities 
are considered to be functions of convected coordinates, x i, which serve as particle labels, and 
time t. This formulation has been employed extensively in previous finite element analyses, 
e.g. Needleman [14]. In particular, the formulation used in this study is identical to that in 
Li, Needleman and Shih [13]. For completeness, the basic equations are given here; 
further details are in Li et al. [13]. The position, relative to a fixed Cartesian frame, of a material 
point in the initial configuration is denoted by X. In the current configuration the material 
point initially at X is at X. The displacement vector u and the deformation gradient F are 
defined by 

u =  X -  X, F =  ~X.  (2.1) 

Base vectors in the reference configuration (unbarred) and in the current configuration 
(barred) are given by 

?X c~2 
gi = c~x-~, gi - c~x i, (2.2) 

gl = gijgj, gi = Oijgi ' (2.3) 

where g'J and 0 'j are, respectively, the inverses of the metric tensors gi~ = gi 'gj  and 0~ = g~'gj. 
Attention is confined to quasi-static deformations and body forces are presumed absent. At 

a given stage of the deformation history, the current values of all field quantities, i.e. stresses, 
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strains and material properties, are supposed known. The rate boundary value problem is 
formulated by expanding the principle of virtual work about the current state to obtain 

A t ; ( i : i j 6 o j i + r i k f i ! k C ~ f i j , i ) d V = A t f s ; F J 6 f i j d S - I f v r i k 6 O k l d V - ; T J 6 ~ j d S  1 (2.4) 

Here, r ij are the contravariant components of Kirchhoff stress (~ = Jtr, where J = det(F) and a 
is the Cauchy stress) on the deformed convected coordinate net; V and S are the volume and 
surface, respectively, of the body in the reference configuration; At is the time step; (') = (?()/St 
at fixed x i and ( ),i denotes covariant differentiation in the reference frame. The components fig 
are the contravariant components of the convected derivative of the Kirchhoff stress on the 
deformed base vectors, i.e. the tensor is iiJ,qlgj. The bracketed term on the right hand side of 
(2.4) is an equilibrium correction term included to reduce drifting of the solution from the true 
equilibrium path due to the discrete time step. 

The nominal traction components, T ~, and Lagrangian strain rate components, 0u, are given 
by 

T i = (r ij + rkJulk)Vj, (2.5) 

= I"Fk • Fk . j ( l k , i ) ,  /llj ~ .iUk,j + (2.6) 

where vj are the covariant components of the surface normal in the reference configuration. 

2.2. Constitutive relations 

The material is characterized as an elastic-power law creeping material, with an additional 
contribution to the rate of creep deformation arising from a given density of cavitating grain 

boundary facets as depicted in Fig. 1. The grain boundary voids grow by a combination of 
diffusion and creep, with the rate of cavity growth constrained by the rate of dislocation creep 
in the surrounding grains, Dyson [15], Rice [16]. A full finite deformation phenomenological 
constitutive description of this process has been developed by Tvergaard [9, 10], extending work 

of Hutchinson [8] and Rice [16]. 
The rate of deformation tensor, d, is the symmetric part of F - F  1 and is written as the sum 

of an elastic part, d e, and a creep part, d c, so that 

d = d e + d c (2.7) 

with 

1-I-v  v 
d e - ~ - ~(~:/)I. (2.8) 

E E" -- 

Here ~ is the Jaumann rate of Cauchy stress, I is the identity tensor, E is Young's 
modulus and v is Poisson's ratio. The notation A : B  denotes the dyadic product; i.e. 
A : B = AiJBji. 



Crack growth by grain boundary cavitation 163 

n 

---o 2 b c : ~ - ~  
~ 812 

(a) 

~_~ \ 
~)... / / 
. 

l - -  - -k  X ! / 
\ z \ 

(b) 

(c)  

Fig. I. (a) Spherical-caps shape of a single cavity. (b) Equally spaced cavities on a grain boundary. (c) An isolated, 
cavitated grain boundary facet in a polycrystalline material. 

The expression for the creep part of the rate of deformation is that derived by Hutchinson 
[-8] for a polycrystalline material undergoing creep-constrained grain boundary cavitation, 
modified by Tvergaard I-9] to account for a non-zero normal stress acting on the cavity facets, 

dC= ° - - T - -  n o n  , (2.9) 

where n is the creep exponent, x ® y denotes the tensor product having components xiy j and 

a' = a - t r , , l  am = ½(a:l) (~2 _ a2tr,:t r, s -- l i .a ' l i .  (2.10) 

Here, s represents the macroscopic normal stress on cavitating facets with normal ti in the 
current configuration. The parameters a. and p are internal variables; a. is the average normal 
stress in the vicinity of the voids and p is a measure of the density of the cavitating facets, which, 
in the calculations is a prescribed constant. Evolution equations are specified for ti and for a,. 
The evolution of ti is obtained from the geometrical relation 

n , F - 1  
n = [n.F_~----~l, (2.11) 

where [ J denotes the norm of a vector and n is the normal to the cavitating grain facet in the 
reference configuration. 

The evolution equation for a. comes from the description of grain boundary void growth, 

rob 2 rc-ff2 k t r ' F r ' F ' t J  = 2R~ ~ \ a o /  (2.12) 
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where t is a unit vector perpendicular to n, 0 = O~jg'g i, R is the current radius of the circular 
grain boundary facet, fl = (4/#r)(1 + 3In) ~..2 and the void volumetric growth rate is written as 

Here, 1/~ is the contribution to the volumetric growth rate due to grain boundary diffusion, and 
I/2 is the contribution due to dislocation creep in the adjacent grains. 

Based on the numerical studies of grain boundary void growth of Needleman and Rice [17] 
and Sham and Needleman [18], the following approximate expressions for the volumetric 
growth rate are used, 

/L3~C\ ~r. - (1 f)a~ 
ln(1/f-) Z (3- -  f )~ ~. f ) /2  ' \ a ]  (2.14) 

=/27re~Ca3h(q~)[~, +/3,]"(cr,,,/d), if (l~m/~l ~ 1) 

(/2 (sign(a,~)27tg"a3h((p)[oe, lam/~[ + fl,]", if (la,,/'#l > 1)' 
(2.15) 

where ~, = 3n, ft, = (n - l)(n + 0.4319)/n 2, dc = io(6/ao)" and f is defined as f = max{aZ/b 2, a2/ 
(a + 1.5L)2}, with a and b being the cavity radius and half spacing along the grain boundary, 
respectively. As in Li et al. [13], the sintering stress as is taken to be zero. 

The function h(cp) in (2.14) and (2.15) characterizes the axisymmetric void shape through 
V = 4rca3h((p)/3. For a spherical-caps void shape 

h((p) = [(1 + cos (p)-i _ 0.5 cos (p]/sin (p, (2.16) 

where (p = 70 ° is a representative value for the angle that the void surface makes with the plane 
of the grain boundary. 

It is assumed that surface diffusion is sufficiently rapid to maintain the quasi-equilibrium, 
spherical-caps cavity shape so that the cavity size is specified by the single parameter a. Creep 
deformation alone would tend to elongate the voids in the tensile direction, while very rapid 
grain boundary diffusion would tend to give crack-like cavities. The material length parameter, 
L, is defined as L = (/~/~c)1/3 with /) = D61I/kT, where D6 is the diffusion coefficient on the 
grain boundary, ft is the atomic volume and kT is the energy per atom measure of temperature. 
The influence of triaxial stressing on grain boundary cavity growth was investigated by Sham 
and Needleman [18] who suggested the high triaxiality approximation for the volumetric 
growth rate in (2.15) while the low triaxiality expression in (2.15) was suggested by Tvergaard 
[lO]. 

Using (2.8) and (2.9) in (2.7) and inverting gives 

d = L : d  e = L : d - Q ,  (2.17) 

where L denotes the tensor of elastic moduli obtained from (2.8), and Q = L:d C. 
For use in the principle of virtual work, (2.4), the stress rate-strain rate relation is ex- 

pressed in terms of the contravariant components of the convected derivative of Kirchhoff 
stress on the current base vectors. Using standard kinematic transformations the needed rela- 
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tion is 

~ij = cijklok l _ jQij  (2.18) 

with Qij = LiJklil~z, O~,l = gi" d c'gj, d = det(F) and 

CiJ  kl = j L i J  kt _.}_ ziJokt _ ½ ( o i k z j  I + oJkT u -}- oil'fJ k -~ tJJ172ik). (2.19) 

The current values of the displacement, u, and deformation gradient, F, are obtained by time 
integration and the current value of ti is calculated from (2.11); ~, and the cavity volume growth 
rate l? are determined from (2.12) to (2.15). Then, ,4 and b are calculated from 

,4 _ t" O" t Ao, (2.20) 
x / t  r- F r .  F" t 

b 1,4 
b -  2 A' (2.21) 

In deriving (2.21), the number of voids per unit reference area is presumed constant, i.e. void 
nucleation is neglected. The spherical-caps void geometry gives the relation between the cavity 
radius growth rate fi and the cavity volume growth rate, l?, as 

dt = (//[4gaZh(tp)]. (2.22) 

In addition to the elastic and creep properties, v, n and ao/E (the parameter go serves to set 
the time scale), values of the initial void radius, ao, the initial void spacing, bo, the initial grain 
facet area, Ao = nR 2, the material dependent length, L, and the density and orientation of 
cavitating grain boundary facets, p and n, respectively, need to be specified. 

2.3. Solution procedure 

Plane strain finite element calculations are carried out using meshes that model the compact 
specimen, of width W with crack length l, shown in Fig. 2. The symmetry of the specimen and 
of the loading about the crack line permits modelling to be confined to half of the specimen. 
The two finite element meshes used in the computations are shown in Figs. 3 and 4. Each mesh 
consists of quadrilaterals composed of four 'crossed' linear displacement triangular elements. 
The mesh shown in Fig. 3 has 1500 elements and that shown in Fig. 4 has 1100 elements. In all 
cases studied, the relative crack size is I /W = 0.5. 

For the mesh in Fig. 3 the initial crack tip is represented by a semi-circular notch. This mesh 
is well suited for resolving crack tip blunting, but because the element size increases with 
distance from the initial crack tip, the amount of growth that can be represented accurately is 
limited. In Fig. 4 the initial crack tip is represented by an abrupt change in the boundary 
conditions along x 2 = 0. This mesh is not as well suited for resolving blunting as is the mesh 
in Fig. 3. However, the 6 x 64 quadrilateral uniform mesh region in front of the initial crack 
tip permits larger amounts of crack growth to be resolved. 
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Fig. 2. Compact specimen and definitions. 
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Fig. 3. Finite element mesh for use with small amounts of crack growth, (a) complete mesh, (b) mesh of near-tip region. 
Each quadrilateral element is composed of four triangular constant strain elements. 

In ei ther case, the loading  pin is not  explicit ly model led  and the plane strain specimen 

is loaded  by apply ing  a line force, of magi tude  P/B per unit  thickness, in the x 2 direction.  

In a s t anda rd  compac t  specimen, the center  of the hole conta in ing  the load ing  pin is at 

x I = - l ,  x 2 =  0.275W and the hole radius  is 0.125W. In the calculat ions  the line force is 
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~-Original Crack Tip 
Fig. 4. Fini te  e lement  m e s h  for  use wi th  large a m o u n t s  o f  c rack  g rowth ,  (a) m e s h  of  ou te r  region;  (b) m e s h  of  inne r  
region;  (c) m e s h  of  c rack  tip r eg ion  a n d  p a t h  of  c rack  g rowth .  Each  quadr i l a te ra l  e lement  is c o m p o s e d  of  four  t r i angu la r  
c o n s t a n t  s t ra in  elements .  

applied to the node at x l = - l ,  x 2 =  0.275W+ O.125W=O.4W. The remaining boundary 

conditions for the half of the specimen analyzed numerically are symmetry conditions, T 1 = 0, 
uz = 0, on x 2 = 0, x ~ > l and traction free conditions T = 0 on the remainder of the external 

surface. 
The numerical method used in the present calculations is identical to that used by Li et al. 

1-13]. The time integration scheme uses the rate tangent modulus method of Peirce et al. [19] 

to increase the stable time step. Failure is taken to occur when the cavities on the grain 

boundary facets coalesce to form open microcracks and then the stresses are reduced to zero 

using the element vanish technique, Tvergaard [12, 20]. When the failure criterion is met within 
an element its stiffness is set to zero and the remaining nodal forces for this element are stepped 

down to zero over a time interval, T, given by 

ao (2.23) T=E~, 

where ~ is the effective strain rate of the failed element at the time when it failed. In (2.23) 

the strain interval associated with the micro-cracks linking is taken as ao/E. For numerical 
stability reasons, the time increment is adjusted so that at least 15 time steps are used to 
reduce the nodal forces in an element to zero. In most of the calculations, the criterion for 
coalescence of grain boundary facets is taken to be that the cavity radius equals the cavity 
spacing, i.e. a = b. However, in order to explore the implications of this criterion for creep 
crack growth phenomena, some calculations are carried out using a = 0.2b as the failure 
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criterion. The parameter p in (2.9) is a measure of the density of cavitating grain boundary 
facets and is related to the number of cavitating facets per unit volume, A, by, 

t ~t- 1,'2 p = 4 R 3 A ( n + l )  1 + (2.24) 

where n is the creep exponent and R is the radius of the penny shaped cracks, Hutchinson 
[8]. 

The initial normals n to the cavitating grain boundary facets are taken to coincide with 
the direction of the maximum principal tensile stress as determined from an elastic finite 
element solution with p = 0, as in Tvergaard [12] and in Li et al. [13]. The voids are 
assumed to be distributed uniformly on the grain boundary facets, which are taken to be 
circular. It is also assumed that the cavities are crack-like initially so that the initial void 
volume is zero. 

3. Crack tip fields and characterization parameters 

The central idea of fracture mechanics is this the singularity that dominates over a 
microstructurally significant size scale for a given material and load history provides the 
relevant parameter for correlating crack growth rate data from laboratory specimens and for 
predicting crack growth and the life of a structure. In a purely viscous material, the near tip 
stress field is always of the HRR type regardless of whether the crack is stationary or growing 
and therefore C* is the appropriate load parameter. The stress field of a stationary crack in an 
elastic-nonlinear viscous material is also of the HRR type though its amplitude, C(t), varies 
strongly with time in the transient regime. In the extensive creep regime, C(t)~C* its steady 
state value. However, fields of a very different nature evolve near the tip of a growing crack, 
and therefore questions as to the size of the region of dominance of this field, the HRR-type 
field as well as the K-field (when small scale creep applies), are very important issues. 

3.1. Pertinent results jor stationary cracks 

Consider an elastic-nonlinear viscous body to which a sudden load is applied at t=0.  The 
instantaneous response of the body is elastic so that the near-tip fields at t = 0 are given by the 
well-known elastic singularity 

Kl 0 % - x ~ f i ~ ( ) ,  (3.1) 

where r and 0 are the polar coordinates centered at the crack tip, K~ is the elastic stress intensity 
factor and fij are known dimensionless angular functions. If the crack is stationary and the creep 
exponent n is larger than unity, then creep strain rates dominate over the elastic strain rates and 
the crack tip fields are of the HRR type. Based on the creep law (2.9) with a, = 0, Hutchinson 
[21] has shown that the HRR [22, 23] type asymptotic near-tip stresses and strain rates for a 
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stationary crack have the form, 

[- C(t) 71/~" + 1~_ . 
: (3.2a) 

C(t) 7"/~" +a~.  . 
= 4o p)rJ  ij(o, , ,  p), 13.2b) 

where ff~j and g~3 are dimensionless functions of order unity. The dimensionless normalizing 
factor I ,  and the 0-variations of g depend strongly on p while ff is only weakly effected, 
Hutchinson [21]. For constant p, the amplitude parameter C(t) in (3.2) is given by 

C(t) = fs E ~ ,  - f.a-~i,~] dg (3.3) 

which can be shown to be path independent for all contours g around the crack tip in the region 
dominated by creep strain rates, Bassani and McClintock [24]. In (3.3) f is the normal to th~ 
path dg in the current configuration and for a power law creeping solid ~ is given by 

n 
= - -  a'J~ij. (3.4) 

n + l  

The amplitude factor C(t) depends on the magnitude and history of the applied load, crack 
length and geometry, material properties and time. If the instantaneously applied load is 
thereafter held constant, the crack tip stresses relax as the creep strains build up around the tip. 
At short times a small creep zone surrounds the crack tip the creep zone being defined as the 
region where the equivalent creep strain gc exceeds the equivalent elastic strain ge (based on 
deviatoric elastic strains). We denote the characteristic length of the creep zone by re. Well 
within the creep zone the C(t)-integral (3.3) is path-independent (since ~i~ > ~i~), and it is this 
value of C(t) which is the amplitude of the HRR-type fields (3.2). For power law creep response, 
Riedel and Rice [25] and Ohji, Ogura and Kubo [26] have shown that the short time fields are 
self-similar and that there is an inner zone where the spatial dependence of the stress as well as 
the creep strain are given by the HRR form. In this regime, they deduced that the relaxation of 
C(t) is given by 

( 1  - vZ)K? 
C(t)-  (n + 1)Et for t > 0. (3.5) 

The result in (3.5) was shown through full-field calculations to be a good approximation to the 
actual behavior of C(t) by Bassani and McClintock [24], Ohji et al. [26], Ehlers and Riedel [27] 
and Li et al. [28]. The short time field is referred to as the small scale creep field in analogy 
with small scale yielding in rate-independent elastic-plastic materials. At long times when the 
creep zone has spread across the entire region, the material behaves like a purely viscous solid. 
Under these conditions, referred to as extensive creep or steady state conditions, (3.3) is 
path-independent over the entire body, and C*, which is the limit of the C(t)-integral as t ~ ~ ,  
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is the creep analog of the Rice's J-integral [29], Ohji, Ogura and Kubo [30], Landes and Begley 
[31] and Nikbin, Webster and Turner [32]. The long time extensive creep case is analogous to 
the fully plastic state, which has been widely discussed in the literature, so that fully plastic 
J-solutions for the configurations tabulated in the literature are also the C*-solutions for the 
identical configurations. A typical extensive creep solution has the form 

C* = ~,oaol h(n, geometry) \ P o ]  ' (3.6) 

where Po is an appropriate reference load, and h is a dimensionless function of n and 
dimensionless groups of geometric parameters, e.g. Kumar, German and Shih [33]. Under 
extensive creep, the load line displacement rate 1~ is proportional to l(P/Po)". Combining the 
latter observation with (3.6) and with a little manipulation we get 

P~ 
C* = 7 - -  (3.7) 

B W  

where B is the specimen thickness, the length W is shown in Fig. 2, and the q factor can be 
determined from the hi and h3 fully plastic functions given by Kumar et al. [33]. (The derivation 
of (3.6) and (3.7) is detailed in Riedel [1] pp. 268 271). The r/factor is relatively insensitive to 
the creep exponent, and for a given specimen type it varies only slightly with changes in relative 
crack size. The q factor method is now widely used for the determination of C* from 
experimental measurements. 

The notion of short and long times was made precise by Riedel and Rice [25] and Ohji et 
al. [26]. To separate the short time from the long time regime, they introduced a transition time, 
tr, given by 

K((1 - v 2) 
t~ - (3.8) 

(n + 1)EC* " 

Thus the transition time depends on the applied load, crack configuration and the elastic and 
creep properties. For t ~ tr the amplitude of the near-tip fields, C(t), relaxes as l i t  being given 
by (3.5), while for t ~> tr the amplitude C(t) approaches the steady state value C* of which (3.6) 
is one representation. 

Ehlers and Riedel [27] have shown by full field analysis that the interpolation formula 

[3.91 

approximates the actual C(t) values fairly accurately for all times. The above result has been 
confirmed in many subsequent analyses which showed that C(t) is about twice C* at t = tr, and 
that steady state conditions are reached for t > 10tr, when C(t) ~ 1.1 × C*, the latter estimate 
being somewhat geometry dependent, e.g. [1, 28]. 

A major disadvantage of C(t) as a characterizing parameter is that it is not readily related 
to load point quantities in the transient regime and, therefore, it cannot be directly deter- 
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mined by experimental measurements in the transient regime. It must therefore be determined 
by full-field analysis in which the C(t)-integral must be evaluated along contours placed well 
within the creep zone. If the transition time, tT, for the specimen is known, C(t) can be calculated 
from (3.9) - however, tT depends strongly on creep properties and is not accurately known in 
general. 

These limitations prompted Saxena [3, 34] to propose an alternative parameter defined by 

1 OU* 
C t -  B -~ ¢c' (3.10) 

where f'c is the load line velocity due to creep, and U~* = ~Pdf'c. For a purely nonlinear viscous 
material with creep exponent n, U* = (n/(n + 1))PI? where PI? is the stress power. In the 
extensive creep limit, Ct = C*, but C(t) and Ct have different time dependencies in the transient 
regime. In the small scale creep regime, Bassani, Hawk, and Saxena [35] have related C, to the 
rate of expansion of the creep zone. Using this result and (3.10), they arrived at the following 
interpolation formula for all times: 

] C t =  ~ + 1  C*. (3.11) 

For large values of n, the agreement of the form in (3.11) and (3.9) is easily seen since e is about 
unity for typical crack geometries. However C, has a significant advantage - it can be computed 
for all times using direct measurements. It is given by 

Ct = B W  + C* 1 - , (3.12) 

where F = KIB.v/-W/P , F' = dF/d(l/W). The complete expressions for compact specimens are 
given in [35]. More recently a slight modification to Ct has been proposed by Bassani and Liu 
[36]. Starting with the observation that in the transient regime t < tr, Ct should be proportional 
to the rate of expansion of the creep zone, ~c, they obtained the result 

C ~ - b ~ +  1 - . (3.13) 

The slight difference between (3.12) and (3.13) can be important in some cases. The form in 
(3.12) does not apply to a constant K specimen, since F' vanishes for that specimen, while (3.13) 
does not involve F' and is therefore deemed to be more generally applicable. Saxena, Bassani 
and their coworkers [3, 34-36] have made the case that Ct is related to measurable quantities 
in an experiment in the same way that the J-integral is. Nevertheless there is a crucial difference. 
The J-integral is the amplitude of the crack-tip fields of an elastic-plastic material, while C, has 
this role for a creeping material only under extensive creep conditions. In small scale creep Ct 
is not a direct measure of the instantaneous amplitude of the crack-tip fields but does scale 
linearly with ~c. The possible characterizing parameter role of Ct in the transient crack growth 
regime is discussed in later sections. 
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3.2. Near-tip.fields jor 9rowinq cracks 

The asymptotic fields around a crack extending in an elastic-nonlinear viscous solid have been 
derived by Hui and Riedel [37] and verified by full-field analysis by Hui [38]. For a crack 
growing at a constant or slowly varying velocity in a material with n > 3, they find that the 
asymptotic stress and strain fields are of the form, 

• F [(t) ] l / (n 1) 
~nO'O nt, i3.14al 

ao [ lit) 3' 
= A,, J n), t3.14b) 

where A, is a numerical factor depending on n, and 6ij and gu are dimensionless functions of 
order unity. The asymptotic field has an unusual character. The amplitude is uniquely given by 
the current crack growth rate, [(t), so that any growth criterion that involves only combinations 
of asymptotic stress and strain quantities will lead to a crack growth rate that cannot be related 
to the applied load. This apparent paradox can be explained by noting that a characteristic 
length xc must enter into any fracture criterion. Now if xc (the fracture process zone size) is larger 
than the zone of dominance of the HR singularity, the applied load and crack geometry controls 
[ through the fields that surround the region dominated by the HR singularity. Alternatively, 
the growth rate can depend on the remote load through a history dependent crack growth 
mechanism like grain boundary cavitation which was discussed in Section 2. 

3.3. Near-tip fields under non-steady-state conditions 

For the purpose of developing the discussions to follow we designate the characteristic radius 
of the HR, HRR-type and K fields, and the relevant characteristic dimension of the crack 
geometry by ruR, rHRR and rK, and L respectively. To fix ideas, we consider for the moment the 
crack to be growing under small scale creep conditions. At short times and assuming that the 
crack has not grown, the crack tip is dominated by the HRR-type field which in turn is 
surrounded by the K-field, i.e. L > rK > rnRR > 0. We now suppose the crack begins to grow 
within a creep zone which is small compared to L. Very shortly into the growth, all three 
singularities coexist, i.e. the HR field is embedded in the HRR-type field which in turn is 
surrounded by the K-field, as found previously by Hawk and Bassani [56]. If the crack growth 
rate /" is smaller than the rate of expansion of the creep zone t: c, then all three singularities 
continue to coexist. If/ '  is faster than ?,,, the annular zone dominated by the HRR-type field 
shrinks and eventually vanishes so that the HR singularity is surrounded by the K-field i.e. 
L > rK > rnR > 0. On the other hand if the crack only begins to grow in the extensive creep 
regime, the HR field is embedded in the HRR-type field, i.e. L > rURR > rnR > 0. 

Now suppose that the mechanism of fracture is grain boundary cavitation so that a relevant 
microstructural length is the radius of the grain boundary facet Ro. This means that the zone 
of dominance of the HR-field must be larger than Ro before we can argue that the HR-field 
controls the crack growth rate. In other words the question as to which singularity controls the 
fracture process can be addressed only in conjunction with a characteristic material dimension 
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say xc. For example, if xc is larger than rHR but smaller than rHRR, the HRR singularity controls 
the fracture process and therefore C(t) is the appropriate parameter for correlating crack growth 
rates. However, suppose that the material is sufficiently brittle and the crack growth rate is 
sufficiently fast so that creep zone does not extend over a microstructurally significant distance 
ahead of the crack tip. Then the damage develops in the K-controlled region and the elastic 
stress intensity factor K~ is the appropriate correlation parameter. Finite deformation effects 
extend over distances comparable to several crack tip openings and present an added 
complexity. 

The above issues have been addressed to varying degrees of satisfaction by Riedel, Bassani, 
Hui and their coworkers and others [39-46]. In a typical analysis, the crack grows at a rate 
so as to maintain a critical strain e~ at a distance xc ahead of the current tip, or alternatively 
the growth is controlled by grain boundary cavitation. Riedel [1, 2, 40] has reviewed 
one-dimensional models for transient crack growth controlled by grain boundary cavitation. 
In the early studies, the cavities are driven by HRR fields which are undisturbed by cavity 
growth. Such modelling led to the general result that the crack growth rate is proportional to 
(C.)./~,+ 1). In later studies, e.g. those based on Kachanov's damage model, the effect of damage 
on the stress distribution is accounted for [40]. These latter one-dimensional models show that 
the crack growth rates are not affected in any significant way. The most recent and complete 
study on the subject is that by Bassani, Hawk and Wu [42]. They carried out full-field finite 
element plane strain mode I calculations (under small strain assumptions) in which the crack 
grows according to a critical strain criterion. Their analyses showed the variation of the size of 
the HR, HRR or K regions with time, with far field load and with crack growth rate. The 
calculated fields are consistent with estimates, by a matching procedure based on the effective 
stress, for the size of the HR, HRR, and K dominated regions, as discussed previously by Hawk 
and Bassani [56]. 

4. Numerical results 

4.1. Near-tip fields 

The material properties are specified by ao/E = 1/500, v = 0.3 and n = 5, and the material 
parameter to serves to set a characteristic time scale, 1/to. The voids are assumed to be 
distributed uniformly on the grain boundary facets, which are taken to be circular. The density 
of cavitating grain boundary facets, p in (2.24), is taken to have the constant value 0.2. The initial 
values of the cavity radius, the cavity spacing and the radius of the grain boundary facets are 
related by ao/bo = 0.1 and bo/Ro = 0.1. Unless specifically stated otherwise, the diffusion 
constants are specified so that the material length L in (2.14), when calculated from the average 
normal stress on the cross section x 2 = 0 at t = 0, is 40ao and the onset of failure due to the 
coalescence of cavities along the grain boundary facet occurs when a = b. 

For a compact tension specimen of thickness B and l/W = 0.5, the elastic stress intensity 
factor, K~, is related to the applied load P by, Tada et al. [48], 

KI = 13.58 Pw/~ BW" (4.1) 
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The initial notch opening A o is indicated in Fig. 3 and, here as in [13], we take A o = 20Ro. 
Relative to the specimen, the initial notch tip is relatively sharp since Ao/W = 10 -4. The mesh 

shown in Fig. 3 is suited for accurate resolution of the finite deformation fields during the 
process of growth initiation and the evolution of the fields for small amounts of crack growth. 
On the other hand the mesh shown in Fig. 4 is particularly suited for studying extended 
amounts of crack growth. Thus the complete crack growth behavior is obtained by combining 

the results obtained from calculations using the meshes in Figs. 3 and 4. In Fig. 4 the ratio Ro/W 
is 0.2 x 10 -4 so that ifRo = 1.0 ~tm (1 ~tm = 10-6 m), then W = 50mm. In this case the refined 
mesh zone extends a distance of 6.4 mm ahead of the initial crack tip. Also the correspond- 
ing values of the initial void radius, ao, and of the initial void spacing, bo, are 0.01 ~tm and 
0.1 gm, respectively. 

For the material and geometric parameters given above, we consider three different 
load levels. The load is applied instantaneously at t = 0 and is thereafter held constant. 
The three magnitudes of the load per unit thickness, P/B, are chosen so as to correspond 
to (K~/ao)2/Ro =0.625 x 104, 2.5 x l 0  g and 10 x 10 4, respectively. K~ is computed according 

to (4.1) and Ro is the initial radius of the grain boundary facet. Alternately the load magni- 
tudes correspond to (Kl/ao)Z/Ao = 312.5, 1250 and 5000 respectively. The load intensities 
can also be stated in terms of an effective stress at the distance Ro ahead of the crack tip at 
the instant of load application, at which time the near-tip fields are the elastic fields. Thus, 
the three cases considered correspond to ~/E = 0.025, 0.05 and 0.1 at distance x l =  Ro 
ahead of the initial crack tip at t = 0. Li et al. [!3]  considered two load cases, which were 
called the slowly growing crack and the fast growing crack cases. To make contact with 
their boundary layer, plane strain, small scale creep results, our low and high load cases 
produce short time creep deformation and damage evolution histories in the compact speci- 
men which are similar to those obtained by Li et al. [13]. Indeed, the load magnitudes 
(K1/ao)2/Ao = 312.5 and 1250 are precisely those employed by Li et al. [13], so that direct 
comparisons between their small scale creep results and the full specimen results obtained in 

this study can be made. 
In all three load cases, crack growth is said to have initiated at the time of the failure of 

the first element in the mesh shown in Fig. 3. The time to initiation is denoted by tl. 
The transition time tw, which has a central role in our analysis, is based on the initial 
crack length and the applied load. We found that the time to initiation is greatly reduced as 
the applied load is increased. The times to crack initiation for the low, high and ultra high 
load cases are tl = 0.188 x 10-2(1/~o), tl = 0.201 × 10-4(1/~o), and tl = 0.294 x 10 5(1/~o), 
respectively. Li et al. [13] reported values of 0.173 x l0 2(1/8o) and 0.173 x 10-4(1/~o) for 
the low and high load cases respectively. The good agreement between the initiation times 
for the similarly loaded near crack tip regions is evidence that the short time creep deforma- 
tion and damage evolution histories in the compact specimen are very similar to those 

obtained in [13]. 
The near-tip fields prior to crack growth are nearly identical to those discussed by Li et al. 

[13] so that only the main features of the field are noted. In all cases, the full-field finite element 
solutions within the region 2A < r < r,,/5 agreed well with the small strain HRR field (3.2); A is 
the current opening of the tip and its precise definition is given below. In the crack-tip region 
r < 2A finite deformation effects are significant and the details of these fields for the cavitating 
material considered here and for a creeping material in the absence of damage, have been 
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discussed by Li et al. [13, 28]. Our calculations for stationary cracks did confirm the validity of 

the body of results in Section 3.1. C(t) did relax as (l/t) while C, starts at a lower value and 

decays more gradually so that C(t) > C, for short times. For  t > tT, C, ~ C(t). 
The results for the load case corresponding to (6/E)t=o = 0.025 or (Kl/ao)Z/Ao = 312.5, 

is discussed first. We note that 6/E = 0.025 is the effective stress of the elastic fields at 
distance x 1 = Ro ahead of the initial crack tip at t = 0. The transition time for the specimen 
is 0.145 × 10(1/~o), so that t~/tr = 1.30 × 10 -3. This load case was called the slowly growing 
crack case by Li et al. [13] because the calculated crack growth rate in their analysis is less 
than the growth rate of the creep zone. The good agreement between the near-tip fields of 
the growing crack (calculated along the first row of elements, 0 ~ 0) and the HRR fields can 
be seen in Figs. 5 and 6. The fields plotted in Fig. 5 were obtained using the mesh shown 
in Fig. 3 and pertain to small amounts of crack growth and for times smaller than the 
transition time. Finite deformation effects at the early stages of growth can be seen in Fig. 
5a. The stress distributions in Fig. 5 are very similar to those obtained in [13] for the 
slowly growing crack. Figure 6 shows the fields for times beyond the transition time and 
for larger amounts of growth - they were obtained using the mesh in Fig. 4. For these 
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Fig. 5. Low load case, (6/E)t=o = 0.025. Comparison of the computed stress fields with the HRR type singular field at 
t/t1,=O.O0157, 0.0119, 0.239 and for crack growths ( l - lo ) / (W- /0)= 0.555 x 10 -4, 0.668 x 10 -3, 0.135 × 10 -z 
respectively. The mesh in Fig. 3 is used for the calculation. Distance is normalized by the current opening at the initial 
notch tip. 
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times, the specimen is in the extensive creep regime and the stress distribution is essentially 
unchanging. 

In Fig. 5, as for all calculations based on the mesh in Fig. 3, A is the current opening at 
the initial notch tip, i.e. A is always measured at the node at which Ao is defined (see Fig. 3). 
For calculations based on the mesh in Fig. 4, the current opening A is defined by J/ao, 
where J is calculated from its finite strain line integral expression, Rice [29], Eshelby [49], 
using current values of field quantities. This definition of A is for the sole purpose of provid- 
ing a normalization length so as to allow us to piece together results obtained from the 
meshes in Figs. 3 and 4. The essential features of the results are not affected by the different 
definitions of A that were adopted for the meshes in Figs. 3 and 4. In Figs. 5 and 6, and in 
subsequent plots, distances are always measured from the current crack tip and defined in the 
current configuration. For example, the calculated Cartesian components of the Cauchy stress 
at the current distance of a material point from the current crack tip, are plotted in Figs. 5 
through 8. 

For calculations with either mesh, the value of J used in our normalization is evaluated in 
the remote region where the J-integral is practically path-independent. In the transient regime, 
the C-integral is only defined in the region well within the creep zone where creep strain rates 
dominate. The values of the C-integral reported in this study are evaluated along a contour 
consisting of an annular strip of elements which has a mean radial distance of three elements 
ahead of the current crack tip. Within the zone dominated by creep strain rates, our calculations 
do show that the C-integral is path-independent. We also calculated C, using (3.12), and for 
t > t~ the value of C, is within 20 percent of C(t) obtained by integrating along contours well 
within the creep zone. Both the J and C integrals are calculated by the domain integral method 

of [50]. 
The high load case, (if/E), o = 0.05 or (Ki/ao)2/Ao = 1250, is considered next. This load state 

was termed the 'fast growing crack' by Li et al. [13] since the calculated crack growth rates in 
their analysis is faster than the rate of expansion of the creep zone. As in [13], we fix the ratio 
of diffusion length, L, to initial cavity radius, ao, at 40. Since L is stress dependent through L = 
(DS/gc) 1/3, a fixed value of L/ao implies a different value of the grain boundary diffusion 
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= 0.05. (a) Comparison of computed fields with the Hui-Riedel singular fields at 
t / t r  = 0.702 x 10 -3 and (l - l o ) / ( W -  lo) = 0.952 x 10 3. The mesh in Fig. 3 is used for the calculation. Distance is 
normalized by the current opening at the initial notch tip. (b) Comparison of computed fields with the HRR type 
singular fields at t / t r  = 8.38 and (l - l o ) / ( W - l o )  = 0.807 x 10 -2. The mesh in Fig. 4 is used for the calculation. 
Distance is normalized by A defined as J / a o  where J is the current value. 

parameter / ) .  The time to crack initiation is 0.201 x 10-4(1/~o) which is about one percent of 
the crack growth initiation time of the preceding low load case. For this load, tr = 0.905 × 
10-1(1/~o) so that tl/tr = 2.22 x 10 -4. 

Figure 7a shows the finite element stress fields and the Hui-Riedel [37] fields at t/tr = 
0.702 × 10 -3 and for a small amount of growth. The Hui-Riedel field values are calculated by 
substituting the numerically determined crack growth rate into (3.14). Good agreement over the 

spatial range 2.0 < r/A < 10.0 can be seen. For times greater than the transition time tr, the 
creep zone ahead of the growing crack tip is well established and, as shown in Fig. 7b the near 
tip stress distribution shifts to the HRR type. The calculated stress fields agreed very well with 
the HRR field over distances 10 < r/A < 50, with A = J/ao. Within r/A < 10, the calculated 
stress fields deviate from both the HR and HRR fields. It is apparent that the competing effects 
of crack growth and creep strain rate within an inner region are not amenable to a description 
by either of these singular fields. 

The stress fields for the ultra-high load case, (5/E),=o = 0.1 o r  ( K l / t T o ) Z / A o  = 5000, are shown 
in Fig. 8. The crack growth initiation time is 0.294 × 10-5(1/~o) which is about 1/10 the 
initiation time for the preceding case. The transition time is 0.566 × 10-2(1/~o), so that 
tJtT = 5.19 × 10 - 4 .  At crack initiation the creep zone is confined to a distance r ~ 20Ro so that 
the crack tip field for small amounts of growth agreed rather well with the elastic Kl field as 
can be seen in Fig. 8a. For times approaching extensive creep regime, the near-tip fields are 
more nearly of the HRR type as shown in Fig. 8b. 

4.2. Crack 9rowth characterization 

One aim of this study is to relate calculated crack growth rates, based on a constitutive relation 
incorporating a model of cavity growth and coalescence on grain boundaries, to load or crack 
tip parameters provided by the phenomenological descriptions of creep crack growth. Figures 
9, 10 and 11 show plots of the time variation of several phenomenological characterizing 
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parameters for the loading cases, (c~/E)r=o = 0.025, 0.05 and 0.1 respectively. In each of these 
figures, (a) shows the time variation of the C-integral and of Saxena's C, parameter [34] and (b) 
shows the average equivalent creep strain at a fixed distance of 50Ro directly ahead of the 
current crack tip. For Ro = 1.0 tam the equivalent creep strain, ~:,., is calculated at the distance 
of 50 tam ahead of the current crack tip. The C-integral is calculated using (3.3) and C, is 
calculated using (3.12) and the current crack length. In the figures both C(t) and C, arc 
normalized by C* which is the steady state value of the C-integral based on the initial crack 
length and the appropriate value of the applied load. 

Figure 9a shows the behavior of C(t) and C, for the low load case. At short times, t < tT, 
C(t) > C,. At intermediate times C(t) ~ C,, and for t ~> 3t~., C, and the C-integral are nearly 
equal as they must be since the two parameters are equivalent at extensive creep which is 
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distance of 50Ro ahead of the current crack tip versus time. 

attained when t is greater than about lOtT. Figure 9b shows the equivalent creep strain, ec, 
leveling off at 0.016 for t > tT. This suggests that beyond a short transient period (during which 
C(t) is rapidly decreasing) a critical strain at a critical distance is a suitable growth criterion. 
Looking ahead to Fig. 12, we note that the time variation of the crack growth rates is quite 
similar to the time variation of C(t) and Ct so that the growth rates appear to correlate 
with these macroscopic parameters. The behavior of Ct and the C-integral for the high load 
case is shown in Fig. 10a. In Fig. 10b, the apparent critical failure strain becomes nearly 
constant for times greater than about 7tT. However, the value of ec in Fig. 10b is about 
twice that in Fig. 9b. 

Figure 11 pertains to the ultra-high load case. Due to the high stresses all the growth that 
can be accommodated by the mesh occurs over a time period that is only several times longer 
than the transition time. Growth effects are strong so that the disagreement between Ct and the 
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Fig. 12. Low load case, (6/E),=o = 0.025. (a) Crack growth versus time since load application. (b) Crack growth rate,/, 
versus elapsed time. (c) Crack growth rate, [, versus C(t). 

C-integral is significant. The value of the apparent critical failure strain in Fig. l i b  is only 
slightly larger than the value in Fig. 10b. 

This difference in apparent critical failure strain between Figs. 9b, 10b and l lb may be 
due to the decreased role of diffusion at higher stress levels. In the constitutive model used 
in the calculations, grain boundary void growth occurs by the combined process of grain 
boundary diffusion and dislocation creep in the adjacent grains, see (2.13) to (2.15). Now, 
the creep strain rate increases with stress like a", where here n = 5. The crack speed, /', also 
increases with increasing stress level and, for a power law creeping material under extensive 
creep conditions, [~:(C*) "/("+ 1~: a". Since the time for creep strain accumulation is inversely 
proportional to the crack speed, the apparent critical failure strain varies as cr"/J. Hence, for 
C* controlled crack tip fields and for creep strain controlled grain boundary void growth, 
a constant apparent failure strain is expected. However, at lower stress levels, diffusion plays 
a more important role and, since the grain boundary diffusion rate depends linearly on stress, 
this destroys the scaling. If at low stress levels the crack velocity does not increase as rapidly 
as stress to the fifth power, the ratio a"/[ increases with stress, and the apparent failure strain 
would also increase with stress. This scenario is consistent with the behavior seen in Figs. 9b, 
10b and 11 b. 
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4.3. Crack growth rates 

The crack growth rates obtained from calculations using the meshes in Figs. 3 and 4 are pieced 
together in Figs. 12, 13 and 14. In all three cases, the crack begins growth at a high rate and 
then the growth rate slows rapidly because of crack tip stress relaxation due to creep. For the 
mesh in Fig. 3, where the crack tip is represented by a semi-circular notch, the crack grows 
straight ahead. However, for the mesh in Fig. 4, where the crack tip is a jump in boundary 
condition, the crack grows off the initial crack line by one row of elements and then grows 
parallel to the initial crack line. This tendency for creep damage accumulation to occur directly 
ahead for rounded notches and at an angle for sharp cracks is consistent with previous 
theoretical and experimental results, [11, 12], and [47]. 

For the low load case shown in Fig. 12, /" reaches a minimum at t ~ 10tT. At this point 
the crack is long enough for further lengthening of the crack to cause the intensity of the 
near-tip stresses to increase. Hereafter, the crack growth rate increases with time. The crack 
growth rate histories for the high load and the ultra-high load cases are similar. The up- 
turn in the crack growth rate occurs at a shorter time because the crack length is increasing 
at a faster rate so that the effect of a longer crack is reached sooner. It may be noted that 
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Fig. 13. High load case, (6/E),=o = 0.05. (a) Crack growth versus time since load application. (b) Crack growth rate, [, 
versus elapsed time. (c) Crack growth rate, [, versus C(t). 
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the growth rates in Fig. 13 are about two orders of magnitude larger than those in Fig. 12 

while the growth rates in Fig. 14 are about four orders of magnitude larger. 

The logarithm of the crack growth rate is plotted as a function of log(C(t)/C~) in Figs. 12c, 
13c and 14c. These three separate plots are combined in Fig. 15, where each segment is 

normalized by the value of C~ for the case in Fig. 12c. We have also included Saxena's C, 

parameter  [34] in the figure. Over the entire range in this figure, the creep crack growth rates 
are well approximated by a power law expression, i.e. /oc C(t) m or /oc C ,  with m = 0.88. In 

other words, all three sets of crack growth rates for the compact specimen are fairly well 

correlated by the C-integral or by C,. 

4.4. Crack growth ./or a relatively brittle material 

Previous calculations have been based on the failure criterion of cavity coalescence at a/b = 1. 
For relatively brittle materials it is plausible that the link-up process will occur at a lower value 
of a/b. In order to explore the behavior of a more brittle material response, a calculation was 
carried out for a material with the same properties as in the previous cases except that the value 
of the grain boundary diffusion parameter is L/ao = 400 and a/b = 0.2 is used as the failure 
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criterion instead of a/b = 1. The high load case, (6/E)t=o = 0.05 or (Kl/ao)2/Ao = 1250, is 
analyzed. For this load case, a calculation was also carried out using L/ao -- 400, and a failure 
criterion a = b. The results of this calculation do not differ in any significant way from the high 
load case results obtained previously for L/ao = 40. 

For the material characterized by brittle response, the calculated crack growth rates are 
nearly five hundred times faster than the growth rates for more ductile material characterized 

by L/ao = 40 and a/b = 1 and subject to the same applied load. Over a very short period, 
t/tT < 0.01, the crack has extended more than 25 percent of the ligament specimen. The stress 
fields determined by the finite element calculations at different times are given in Fig. 16. At the 
onset of growth, the creep zone extends less than 20Ro ahead of the crack tip, so that the tip is 
surrounded by essentially elastic material. During early growth, A1 < 700Ro, the calculated 
stresses are much higher than those of the HRR or HR singularities but agree well with the 
K-field. For larger amounts of crack growth the near-tip stress fields gradually shift away from 
the elastic K fields. 

Figure 17 shows the crack growth and the growth rates for the brittle material behavior. The 
crack begins growth at a high rate and the growth rate increases for a short time. The growth rate 
reaches a maximum at t/tT < 3 X l0 -4, and then it decreases. This behavior is completely different 
from the growth rate history for the more ductile material as shown in Figs. 12b, 13b and 14b. 

5. Discussion 

We begin by considering the behavior of the more ductile material. In the low load case, a 
sizable creep zone has been established by the time crack growth initiates. The maximum radial 
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extent of the creep zone is about 600Ro (or 30Ao, where A0 is the initial notch opening in Fig. 3), 
though the distance directly ahead of the crack tip is considerably smaller, about 90R0 (or 

4.5Ao). The crack growth rate is highest at the instant growth begins. Then, it decreases due to 

the near-tip fields being dominated by stress relaxation. In time, when the crack has grown by a 
sufficient amount for the longer crack to cause C(t) to increase, the crack speed, [, also increases. 

Indeed, the history of the crack growth rates in Fig. 12b correlates fairly well with the trend of 
C(t), Fig. 9a. Figures 5 and 6 show that the HRR-type field has a finite region of dominance so 
that we can make a case for C(t) as the parameter for correlating growth rates for this load 

history. 

For the high load case at the initiation of growth, the size of the creep zone ahead of the crack 
tip is about 40Ro (or 2Ao). For a short time after initiation the crack growth rate, /', is greater 
than the rate of expansion of the creep zone, fc, so that growth effects dominate. Figure 7a shows 
that, after an amount of growth corresponding to 0.1 percent of the ligament or 25Ro, the HR 
field is well established and is embedded within an HRR-type field that dominates at distances 
beyond 10A. The crack growth rate decreases with time and near the transition time, [ < %. At 
this point and beyond, creep strain rates dominate so that the near-tip fields are of the 
HRR-type (see Fig. 7b). During this period, the crack speed slows down even more. For t > 4t,r, 
the crack has grown enough for C(t) to increase due to the effect of the longer crack. In this case, 
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application. (b) Crack growth rate, [, versus elapsed time. 

the history of the growth rates is similar to that for the low load case, although the growth rate 
is two orders of magnitude higher (compare Figs. 12 and 13). 

For  the ultra-high load case, the creep zone extends less than 20Ro ahead of the crack tip at 
the onset of crack growth. For a short time,/" > fc, so that the crack tip is surrounded by an 
essentially elastic region dominated by the elastic K field (see Fig. 8a). As time progresses, the 
crack growth rate slows down sufficiently so that [ < ft. Hereafter, the crack tip is surrounded 
by a sizable creep zone and fields of the HRR-type dominate (see Fig. 8b). The crack growth rate 
history is similar to those for the lower load levels - however the crack growth rate is about four 
orders of magnitude higher than those for the low load case (compare Figs. 12 and 14). 

The brittle material presents a growth history which stands in marked contrast to the history 
described above. At initiation, the creep zone extends a distance less than 20Ro beyond the crack 
tip. The growth rate starts out high and increases even further, reaching a maximum at 
t/tT = 3 X 10 -4, as shown in Fig. 17b. At this time, the crack tip is practically ahead of the creep 
zone so that the cavity growth rate cannot develop fast enough to maintain the high rate of 
growth. (It may be recalled that the cavity growth rate is enhanced by creep straining). At this 
stage and beyond, the crack growth rate decreases. Nevertheless, the lower growth rates are still 
several orders of magnitude higher than those for the more ductile material. 

To illustrate this, Fig. 18b shows the creep zone in the brittle material at t/tT ~ 10-3, at which 
time the crack has grown an amount equal to 6.5 percent of the ligament. The initial position of 
the crack tip is indicated. It can be seen that the tip is surrounded by a small creep zone at the 
onset of growth. During a very short time, 0 < t/tr < 4 x 10 -4, the growth rate increases 
rapidly so that the tip runs ahead of the creep zone. Thus, the crack advances through elastic 
material, as indicated by the absence of the creep zone along a portion of the crack path. After 
this initial spurt of growth, the growth rate decreases and a small creep zone forms ahead of the 
crack tip as indicated by the reappearance of a second creep zone. In contrast, for the ductile 
material, the crack is always growing into highly strained material. Figure 18a shows the 
contours of constant creep strain in the ductile material at a comparable stage of crack growth 
(the difference in scale should be noted). 

The stress relaxation due to constrained creep and the stress increase associated with the 
instantaneous elastic response to crack growth are competing effects on the near-tip fields. For 
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the ductile material and for the crack geometry considered in this study, our calculations show 

that strong effects from crack growth are confined to the early growth history. Even at the very 
high loads which lead to high growth rates, growth effects are greatly diminished for times 

approaching the transition time. The stress fields plotted in Figs. 5 through 8 for the low, high 

and ultra-high load cases show that over the greatest range of times and including the transient 

creep regime, creep strain rates dominate and the near-tip fields are of the HRR-type. Thus, it is 

not surprising that for growth rates that range over five orders of magnitude, /" scales linearly 
with C(t) "/l"+ 1t or C'//~"+ 11 as shown in Fig. 15. In a previous study, which was confined to small 

scale creep [13], we obtained growth histories and correlations of growth rates with C(t)  which 

are quite similar to those found here. The extent to which our results depend on the values of 

material parameters employed and on the crack geometry analyzed remains to be determined. 

However, there is reason to believe that our results have some general validity. Riedel, Bassani, 

Kubo, Hui and others have pointed out that under strain controlled growth, the growth rate in 

a nonlinearly viscous material should be proportional to (C*)  "/~1 +"~. The latter result can be 

extended to an elastic nonlinear viscous material in which case [ ~ C(t)  "/<~ +"~ (see the discussion 
in [1, 2]). For n = 5, the exponent n/(l  + n) equals 0.83 and this value agrees well with our 

calculated slope of 0.88 in Fig. 15. 
Using a one-dimensional damage model, Wu et al. [41] and Bassani et al. [42] have 

investigated a full range of crack growth histories under small scale creep. In the growth regimes 

where the HR field dominates the near-tip response, their analysis predicts rather complex 
crack growth histories and they make the point that neither K nor C(t)  uniquely correlates 
[ under small scale creep conditions. Indeed, it was because of such theoretical and similar 
experimental results, as well as the fact that C(t) cannot be determined from measurements, 
that Saxena proposed C, as an alternative crack tip characterizing parameter [3, 34]. As 
discussed by Bassani et al. [35, 36], C, is proportional to the rate of expansion of the creep 
zone, ?c. If the rate of damage accumulation is proportional to J:,., then a case can be made for 
i to correlate with C,. It is worth pointing out that Riedel [40] has observed that the HR 
singularity has no range of validity in a Kachanov type damage mechanics model and there- 

fore the complex growth histories reported in [41,42] are not found in analyses based on such 
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damage mechanics models. The subject of crack growth under small scale creep requires further 
study. 

In our studies, we did not address the subject of primary creep although there are many 
engineering materials where the strains due to primary creep are comparable to secondary 
creep. Primary creep effects on overall deformation rates and crack growth rates have been 
addressed by Riedel and Detampel [51] and Leung, McDowell and Saxena 1-52]. The former 
investigators demonstrated that the Ct parameter correlates crack growth rates during the 
transient period when primary creep dominates the response of the specimen. At later times 
secondary creep dominates and Ct and C* are equivalent parameters. 

In summary, there is sufficient evidence that within the small scale damage approximation, a 
practical range of conditions exists under which crack growth rates can be predicted by C(t) as 
well as by Ct. Therefore, it seems appropriate to provide an engineering estimate of C~. We 
designate the steady state value of C-integral based on the current crack length by C* and for 
some geometries the value can be found in a handbook by Kumar et al. [33]. For a growing 
crack, Bassani et al.'s [35] interpolation relation (3.11) is modified to become 

Ct = [~(~)~,-3)/~,-x)+ 1]C*, (5.1) 

where t~- is the transition time based on the current crack length and therefore accounts for a 
changing crack length. For the slowly growing crack which is the case of engineering interest, 
the behavior of C*/C~ is shown in Fig. 19. It can be seen that for times larger than about 60tr, 
C*, which is based on the initial crack length, underestimates the actual value, C*, by a 
considerable amount. Using the current crack length to calculate Ct in (3.12) does give a fair 
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estimate of C*. As is also shown in Fig. 19, an even better estimate of the actual value at long 

times is C, determined by (5.1). At short times C, also captures stress relaxation effects, behaving 

nearly like C(t), even though for times less than the transition time C, (and (7,) have a 

dependence on time different from that of C(t). 

The theoretical basis and the support ing experimental data are there for us to conclude that 

C(t) is the relevant load parameter  when creep strain rates dominate  the near tip response. This 

conclusion is no longer tenable at high crack growth rates where creep and elastic strain rates 

are comparable.  In the sense that • in the definition of C(t) in (3.3) is based on the expression for 

a pure power law creeping solid, C(t) is not defined at high growth rates since elastic strain rates 

are then important  at the crack tip. In contrast,  C, is still related to the rate of  expansion of the 

creep zone i~ in the highly transient regime, and to the extent that i,, is driven primarily by the 

extending crack, Saxena has suggested that C, remains a viable parameter  for correlating/" [53]. 

The idea merits investigation, 

In the present study, damage has been largely confined to the region near the tip. When 

damage is rather diffuse, a case cannot  be made for a fracture mechanics approach  based on 

C(t), C~ and (7!*. The competi t ion between the diffuse damage mode of failure and the growth of 

a single dominant  crack has been discussed by Hsia, Argon and Parks [54]. 
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