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ABSTRACT

This study deals with the formulation, mathematical property and physical meaning of
the simplified Navier-Stokes (SNS) equations. The tensorial SNS equations proposed is the
simplest in form and is applicable to flow fields with arbitrary body boundaries. The zones
of influence and dependence of the SN§ equations, which are of primary importance to nue
merical solutions, are expounded for the first time from the viewpoint of subcharacteristics.
Besides, a detailed analysis of the diffusion process in flow fields shows that the diffusion
effect has an influence zone globally windward and an upwind propagation greatly depressed
by convection, The maximum upwind influential distance of the viscous effect and the rela-
tive importance of the viscous effect in the flow direction to that in the direction normal to
the flow are represented by the Reynolds number, which illustrates the conversion of the
complete Navier-Stokes (NS) equations to the SNS equations for flows with large Reynolds
number.
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The simplified Navier-Stokes (SNS) equations or the so-called parabolized
Navier-Stokes (PNS) equations, owing to their advantage of saving computer time
and storage, have found wide applications in numerical simulations of flows with
large Reynolds number.™? This paper is an attempt to give the general form of the
SNS equations, and to make an investigation on its mathematical and physical back-
ground so as to further develop this kind of applications.

I. FormuraTion oF THE SNS EquaTtions

For flow fields with straight body boundary shapes, one of the coordinate axes
of the Cartesian coordinate system could be set to be parallel to the boundary so as
to represent the main stream direction. If the flow is of large Reynolds number, a
hierarchial relation among the viscous terms in the NS equations could be obtained
by an estimation of their orders of magnitude®™. We get the Cartesian SNS
equations by deleting all the minor diffusion terms in the NS equations. This pro-
cedure can be extended to the cases of curved body boundaries, if the local radius
of curvature of the boundary is much larger than the thickness of the local viscous
layer.
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If the velocity space shares the same bases with the geometrical space that are
boundary-fitted and are orthogonal at least in the regions near the boundary, the
magnitude of the velocity variation in viscous zones is corresponding to the magnitude
of the size of the region where the velocity variation takes place. In this case the
orders of magnitude of the viscous terms contained in the NS equations can readily
be estimated. So, the NS equations must be of the tensorial type. In estimating the
orders of magnitude it is proper to set the equations in the following form,™

continuity equation
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Here p,P,T, u, 4, C, stand for the density, pressure, temperature, viscosity, heat con-
ductivity and specific heat of the fluid, respectively, W is the velocity, and g, T
the metric tensor and the Christoffel symbol of the coordinate system. Suppose that
the variation of coordinate function is milder than that of the velocity field, i.e. the
variation of coordinate functions can be taken as a global effect. It follows that the
order of magnitude is not altered due to the occurrence of the metric tensor and the
Christoffel symbol, and the tensorial SNS equations are found by estimating the
orders of magnitude and deleting all the minor terms in the Cartesian system.

For 2-dimensional flows with coordinate axis x' boundary-fitted, we have SNS
equations:
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For 3-dimensional flows with coordinate surface x'x* (x* = const.) boundary-
fitted, we have SNS equations
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If the boundary has abrupt turns, e. g. the boundary of flow fields in turbomachinery
rotors, it is desirable to have two coordinate surfaces x'x?(x® == const.) and x'#’(x*=
const.) boundary-fitted. Then the corresponding SNS equations are
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In the above 3-dimensional equations
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Such SNS equations are the simplest in form in view of the fact that the terms
of viscous force, viscous dissipation and heat conduction retained in the SNS equations
correspond to those in the boundary-layer equations. For 3-dimensional flows, there
are several hundred viscous terms in the complete NS equations (both tensorial form
or general coordinate form) and conventional SNS equauons " but only a few left
in the tensorial SNS equations.

Adaptability of the SNS equations follows the representative form. The SNS
equations consist of the terms in the Euler equations and those in the boundary-layer
equations, and degrade into the Euler equations for the inviscid main flow region
and into the boundary-layer equations for the viscous boundary-layer region. That is
why the SNS equations are suitable for both the inviscid flow region and the viscous
boundary-layer region, and can reflect with adequate accuracy the interaction between
the two regions.

II. Zones or INFLUENCE AND DEePENDENCE OF THE SNS EquaTions

The concept of zones of influence and dependence of partial differential equations
is essential for obtaining numerical solutions and understanding intricate questions.
In the research of the mathematical property of the SNS equations to date, only the
characteristic roots have been considered, but how to determine the zones of influence
and dependence of the SNS equations remains an open problem.

In the classical theory of mathematical physics,”” the zones of influence and
dependence of second-order partial differential equations with two independent varia-
bles are well known. Apart from some special cases, the extension of this concept
to equations of higher order and with more than two independent variables has been
limited to two limiting types of problems, the totally hyperbolic and totally elliptic.
As for more general intermediate cases, no method has ever been found in pure
mathematics to completely determine the zones of influence and dependence. Thus
we resort to the viewpoint of subcharacteristics, as with the case of 3-dimensional

boundary-layer equations®.

For simplicity, we take as an example the Cartesian SNS equations for 3-dimen-
sional steady flows of perfect gas. Supposing that the body boundary is composed of
straight parts on which either coordinate y or z is constant, and the flow field
has the x-axis fitted with its main stream direction, we have the following SNS
equations:

9Cou) , 0Cer) , 0(pw) _
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1. Characteristics

In the study of the characteristics, only the highest derivative terms in each
question of the system are of concernment. Let Q denote the characteristic surface,
then the corresponding characteristic equation can be given as

(52 +(22) (e 2+ 24+ 2
{2 B (@D o

where a is the sound velocity.

The first factor of the above equation implies that all surfaces normal to the
body boundary are characteristic surfaces. It also indicates that the speed of distur-
bances is infinite on the yz surfaces (x = const.). The second power of the square
bracket results from the viscous diffusion effect on the transfer of the momentum
component in the main stream direction and the thermal diffusion effect on the
energy transfer, which are all on the surfaces normal to the boundary according to

gs. (2.2) and (2.5).

The second factor originates from the influence of the convection over the con-
tinuity, which implies that the streamlines as characteristics carry the information

of mass disturbance.

The third factor, which corresponds to the propagation of pressure disturbance,
represents the quadratic sheet of the characteristic normal cone. It can be well illu-
strated by a comparison with the characteristic equation for 2-dimensional unsteady
flows of perfect gas.™ The direction of the rays given by the ratio dw:idy:dz(w =
x/u) represents the “propagation velocities” or the ray velocities for the disturbance.
The rays with parameter w satisfy the Monge equation

(@m—v)z+(-d—z——-w)z= a’, (2.7)
dw dw

As shown in Fig. 1, for given v and w, the local ray cone or the Monge cone of the
characteristic differential equation in the (x,y,2z) space, whose vertex we assume to
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Fig. 1. Windward zone of influence of pressure disturbance, according
to characteristics of SNS equations.

be at the origin x = y = z = 0, is represented by

-2y (2=

The local ray cone is therefore obtained by projection of the circle
(y—v)+(z—w)=d (2.9)

in the plane w =1 from the origin. Whether or not this circle encloses the origin
y =z =0, i.e. whether or not ¢* + w? < a?, the circle cone in question either con-
tains the x-axis or slants so much that the x-axis goes outside of it. This kind of
special conic zone of influence is a result of the unsymmetrical form of the SNS
equations. The momentum transfers in the y and z directions are inviscid, which
cause a Mach propagation with the convective propagation along the streamlines, a
global windward zone of influence can always be generated, no matter whether the
flow is supersonic or subsonic. This case is quite different from those of the
infinite influence zone of the NS equations or the Mach influence zone of the Euler
equations.

2. Subcharacteristics

The subcharacteristics of the SNS equations are obtained by neglecting all the
viscous terms in Egs. (2.2) and (2.5). The subcharacteristics so obtained are just
the characteristics of the corresponding inviscid equations, namely, the Euler equa-
tions. For the Euler equations, characteristics and corresponding zones of influence

and dependence are well known.*

3. Zones of Influence and Dependence

The streamlines -as subcharacteristics carry disturbances of mass, momentum and
energy with the flow, that is to say, the disturbances are merely convected with
finite local velocity along the streamlines. In the case of the SNS equations, the
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disturbances of energy and the momentum component in the main stream direction
are also transferred instantly in the y and z directions. This is because the signal
velocity of both the viscous diffusion and the thermal diffusion are infinite, Due
to the vast difference in speed, a disturbance transferred through diffusion always
overtakes that moved by convection. As a consequence, for the transfers of energy
and momentum component in the main stream direction, a disturbance at any point
influences the entire surface where the point is located normal to the body boun-
dary, the entire flow region facing downward stands for the zone of influence, and
the region upwind for the zone of dependence. For the transfers of momentum com-
ponents in other directions, the streamlines are the zones of influence and depen-
dence, which are determined by the subcharacteristics. Both the characteristics and
the subcharacteristics of the pressure disturbance can be effective. Because the in-
fluence zone by the characteristics is always windward, whether the overall influence
zone is windward depends on the subcharacteristics. For supersonic flow, the overall
influence zone of pressure disturbance is windward, whereas for subsonic flows, the
overall zone covers the entire flow field.

In contrast, the subcharacteristics do not play any role in determining the
main flow structure of the NS equations,” the entire flow region acts as the zone
of influence and dependence for all dependent variables.

III. Awnarvsis or Dirrusion Errects 1N Frow Preips AND THE

ConversioN oF THE NS Equations 1o THE SNS EQuATIONS

The differences between the SNS and NS equations stem from different descrip-
tions of the diffusion effects in flow fields. The conversion of the NS equation to
the SNS equation can be illustrated naturally by means of a detailed study of the
diffusion process occurring in flow fields. For simplicity, we start our study from
the heat transfer phenomenon.

1. Finite Diffusion Velocity——Heat Diffusion in a Steady Medium

The Fourier heat conduction equation in parabolic form requires an infinite ve-
locity of propagation, which implies that the effect of a thermal disturbance 1is
instantancously felt at any distance infinitely far from the disturbance. Even if the
effect at infinity is small, the effect may be important in some cases, e.g. the small
elapsed time during transient behavior. Therefore, the classical parabolic formulation
has been replaced by the following damped wave equations.'”

2
LOT 10T _ o, _ (3.1)
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where 2 is the heat conductivity, « the thermal diffusivity, ¢ the heat flux density,
C = (a/1,)7 is called the velocity of propagation of heat wave or the second sound
velocity, and 7, the relaxation time.
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Now we consider a simple process of heat diffusion in a steady medium. Suppose
that a point heat source with invariable temperature T, is suddenly released at the
origin of a coordinate system fixed in an adequately lirge medium with uniform
temperature T,. The change in temperature governed by the wave equation (3.1)

is found to be

T(r, ) =T, + *};‘ (T.—T)S(Ct— 1) - {exp(_gj)

o
C? r\2
A | ik ()
+5 .ﬁ_exp(.__). - dr}, (3.3)
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where I, is the Bessel function of first-order, and S(C?z— r) the unit step func-
tion, which equals 1 if Cz>r or 0 if C:<<r. Eq. (3.3) states that the heat

flux propagates with a constant velocity C rather than an infinite velocity. The
corresponding heat release rate at the point heat source is

R L1 = () (YO R M

where I, is the Bessel function of zeroth-order. When the second sound velocity is

infinitely large, we have

limg(0, ) = A(T. — To)/4v/ war . (3.5)
Under the same conditions, the classical Fourier equation
o Ot

has solutions
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It can be concluded from the above solutions that (i) the temperature discontinuity
across the face of the thermal wave is given by
T(Ct’ D - TQ 1
= —exp(—C%/[2a 3.9
D=l [20), G.9)
and the maximum heat flux in response to a step change in temperature is also

finite; (ii) if the propagation velocity of heat tends to be infinite, the solution of
the wave equation reduces to the solution of the parabolic equation.

The finiteness of the velocity of heat diffusion has been illustrated in the above
argument. In fact, this finiteness can also be obtained from the conventional para-
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bolic equation, for the solution of the Fourier equation involves an exponential
function exp(—r?/4az), which, as a dominant term, results in a damping structure of
the temperature field. Besides, the solution of the hyperbolic equation has a damping
behavior in nature although it is wavelike in form, for the temperature discontinuity
becomes very small as the time becomes moderately large. It is well known that
the determinacy of physical events has its intrinsic limit, the corresponding mathemat-
ical description is meaningful only within this limit. For heat conduction, it is reason-
able to set a certain limit, within which the variation of temperature is considered
as negligible and nc heat flux exists, and the region where temperature variation is
beyond this limit is defined as effective region of heat diffusion. According to the
wave equation, the magnitude of the region the propagation has reached is estimated as

r, ~ Ct, (3.10)

In contrast, the magnitude of the effective region of heat diffusion according to the
parabolic equation is

re~ A at. (3.11)

Since C? is usually much greater than «, the region of heat propagation is uaually
wider than the effective region of heat diffusion. In view of this fact, the parabolic
Fourier equation can be considered as more valid in expressing the finiteness of the
velocity of heat diffusion than the hyperbolic equations.

2. Finite Diffusion Region the Diffusion Process in Flow Fields

Let us consider a uniform flow field at uniform initial temperature. At zero
time a point heat source with invariable temperature and moving along the flow is
imposed upon the origin of the coordinate system in the flow field. From the stand-
point of an observer standing at and moving with the heat source, the expression
for the observed temperature variation process is just the same as that given in the
previous analysis for steady media. If a steady coordinate system is employed, the
temperature expression does not alter in form except that the distance parameter r is
transformed into

r= [(.r—ut)z+y2+zz]%,

where r represents the distance between the point source and the point (x,y,z), # is
the flow velocity, and the x-axis is oriented to the flow. For any flow field, it can
be recognized from the analysis of the hyperbolic equation of heat transfer that the
propagation of heat wave has behavior similar to that of the sound wave. As shown
in Fig. 2, the heat conduction would influence the entire flow region in the cases
where the flow velocity » is slower than the second sound velocity C, or influence a
conic zone facing windward. As C is called the second sound velocity, this cone is.
defined as the second Mach cone accordingly.

The windward orientation of the influence zone of heat transfer can also be
predicted by the parabolic equation of heat conduction. The effective velocity of
heat diffusion, according to Eq. (3.11), can be obtained

C.~ +ajt (3.12)
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u<C u=C

Fig. 2. The second Mach cone in a fluid flow field.
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Fig. 3. Formation of the zone of influence of heat diffusion in a fluid flow field.

and it decreases as the time increases. For any given thermal diffusivity and flow
velocity (# 2= 0), the convective movement will overtake inevitably the effective dif-
fusion of heat transfer. The critical time for the gradual overtaking process can be

estimated as
te ~ af W, (3.13)

and the corresponding critical distance of upwind propagation, which is the maximum
distance the effective diffusion can influence, is then

le ~ afu., (3.14)

For media frequently utilized in engineering, thermal diffusivity of liquids, such as
water, is of the order of magnitude 1077 m?/s, and for gases, such as air and steam,
107°—107* m?/s, consequently, even for creeping flows with very small velocity, say,
# =1 cm/s, the maximum upwind distance is very short in the orders of magnitude
107 m and 107*—107? m for liquids and gases, respectively.

The above statement is illustrated in Fig. 3. Suppose that the initial location
of the point source is at the origin of the coordinate system, and the time increases
in alphabetical sequence of A, B, C, ---, M, then it can be seen that initially the
effective diffusion is faster than the convective movement, and heat flux propagates
gradually upwind, but at a decreasing velocity; at the critical time represented by
E, the maximum upwind distance of effective diffusion is reached, and the effective



No. 8 THEORY OF SIMPLIFIED NAVIER-STOKES EQS. 953

velocity of heat diffusion balances the flow velocity. As the time goes on, the effec-
tive diffusion becomes slower and slower compared with the fluid motion, and the
effective diffusion becomes downward to the initial location of the heat source. In
this way, the overall effective region of heat diffusion forms a revolutionary body
with x-axis as its symmetrical axis. The magnitude of size of the body in the di-
rection normal to the flow should be

-

I, ~ A at. I (3.15)
As the longitudinal coordinate 1is
x = ut, (3.16)
we have
Iy ~ \/ax/u, ‘ (3.17)

which means that the symmetrical body of revolution is of the parabolic type.

3. Conversion of the NS Equations to the SNS Equations

The relative importance of the upwind diffusion of heat can be represented by
the maximum upwind distance of the effective heat transfer. Supposing that the con-
cerned characteristic length of the flow field is L, which is a measure of the
overall length of the influential revolutionary body of heat transfer, the ratio of the
maximum effective distance to the overall length is estimated as

le/L ~ af/ulL = 1/P,, (3.18)

where P, 1s the Peclets criterion. It 1s well known that P, represents the ratio of
the convective effect to diffusion effect of heat transfer in flow fields”. Eq. (3.18)
shows that P, can also stand for a symbol of the relative importance of upwind pro-
pagation of heat diffusion. For the cases of large P., the upwind diffusion can be
neglected, and the heat diffusion would be considered as downward.

In the general cases, heat disturbances are continuously distributed in a flow
field, and at any point along a streamline there exists a revolutionary body of in-
fluence of heat transfer just similar to that discussed previously for an isolated heat
source. Among these bodies, the bodies corresponding to disturbances located in the
downward side of the streamline would be included in the bodies corresponding to
upwind disturbances. As a result, the overall body of influence of a streamline shares
the same geometrical orders of magnitude with the body of a point source. In the
light of the above facts and in accordance with the energy equation of fluid flow,
the ratio of the diffusion effect of heat transfer in the flow dxrcctmn to that in the
direction normal to the flow is obtained

91/ 4x ~ 1/P,, (3.19)

where ¢; and q; are the diffusion terms with respect to the flow direction and to
the direction normal to the flow, respectively

q~ T/L?, (3.20)

o~ T/]at = TulcL, (3.21)
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Hence, the Peclets criterion can also present the relative importance of the streamwise
diffusion in heat transfer. For the cases of large P., the streamwise diffusion is
negligible, and the energy equation converses to the parabolic form in the SNS equa-
tions. :

The above conclusions are applicable, except that the criterion is altered, to the
momentum transfer and the mass transfer. The Reynolds number Re acts as the cri-
terion for momentum transfer. Apart from its classical meaning in representing the
ratio of the inertia force to the viscous force of floid motions, the Reynolds number
also represents the ratio of the viscous diffusion effect in the direction normal to
the flow to that in the flow direction. For the flows with large Reynolds number,
the streamwise viscous effect is negligible, and the complete NS equations converses
to the SNS equations consequently.
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