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Abstract
The thermal conductivity of periodic composite media with spherical inclusions embedded
in a homogeneous matrix is discussed. Using Green’s function, we show that the Rayleigh
identity can be generalized to deal with the thermal properties of these systems. A technique
for calculating effective thermal conductivities is proposed. Systems with cubic symmetries
(including simple cubic, body centered cubic and face centered cubic symmetry) are in-

v,estig;.ﬁed in detail, and useful formulae for evaluating effective thermal conductivities are
derived.

1. Introduction

The transport properties of inhomogeneous media have been of interest since nearly the
time of Maxwelllll. The reason for this interest is, of course, the enormous variety of phys-
ical systems in which inhomogeneities occur. All polycrystalline and composite media, for
example, are inhomogeneous systems. Recently, evaluating properly constants of composite
media based on the first-principle approaches was received much attention!?2—8!, because many
important problems were raised in engineering field!2=° and some controversies with pro-
found theoretical background are related to it!*®~!2. In this paper, we discuss the thermal
conductivities of composite media. The reason for this investigation is not only the interest
of thermal engineering, but also its theoretical meaning. Present approaches in this domain
dealt mainly with electrical conductivities!!3!, dielectric constants!!4l and elasticities of the
composite medial'l and viscosities of suspensions!!®l. The common feature in these aspects
of the composite theory is that one needs to deal with continuous boundary conditions on
interfaces between different phases, that is, both the flow (or its equivalence) and potential
are continuous on interfaces. When we analyse the thermal conductxvmes of composite media,
we will encounter with a more general boundary condition for composxte media. The poten-
tial is no longer continuous on interfaces. It complicates the mathematical task intensely and
explains why these problems have been overdued such a long time.
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In Ref. [5]. We studied the thermal properties of composite media with spherical inclusions
arranged in a periodic lattice. Present article is a continuation of Ref. [5]. We comprehensively
approach the thermal properties of composite media with periodic structure and supply some
proofs and discussions about the basis of this study. The paper is arranged as follows. In
Sec. Il governing equations and boundary conditions for thermal conduction of composite
media are specified. In Sec. III, an identity, which forms basis of the study, is discussed. In
Sec. IV the definition of the effective thermal conductivities of composite media is established
and a technique for evaluating effective thermal conductivities of composite media is proposed.
In Sec. V, convergence of numerical evaluation is discussed. In Sec. VI, useful formulae for

the effective thermal conductivities of composite media with cubic symmetries are derived.

II. Equations and Boundary Conditions

Consider a composite medium whose matrix, with conductivity k,,, contains inclusions of
conductivity k;, and suppose that the contact resistance on surface of the inclusion is h;p,

with Apm; = him. The heat flow in matrix and in inclusion has component given by
qn = —km3eTm, in Qpn, (1)
g, = —kid,T;, in 0, (2)
where {2,, and {); denote, respectively, the domain occupied by the matrix and inclusion, and
T,n and T; are the temperature field in the matrix and inclusion.
In steady state,-the heat flow satisfies the following equations:
9agql =0 in Qp, (3)
Bagh, =0 in 0. (4)
The condition for continuity of the heat flow must be applied on surface of the inclusions:
Bim - q™ =Nim -¢¢ on Y,
where n;,, is the outward unit normal vector on surface of an inclusion. The secondary

condition for composite media with contact resistance is

oL,
- k,m’ = h,m (1“ Tm) on 30, . (5)

- II1I. The Generalized'Rayle;lgh Identity

We consider a lattice of identical spheres embedded in a homogeneous medium. We apply
a homogeneous temperature gradient Ty along the z axis. The radius of the sphere is a. Let us
introduce spherical polar coordinates (r, 8, ¢) relative to an origin placed at the center (O) of
a sphere. ¢ is measured from the z axis and ¢ is an azimuthal angle measured from the plane
of z — z. We characterize the field distribution within the composite medium by specifying
the temperature potential T'(r, 8, ¢} everywhere within it. T satisfies Laplace’s equation in
both regions, and so a general form suitable for its expansion about the point O is

oo i N
Ti(r, 0,8} =Do+Y_ Y. Dimr'Yim(6, ), (6)

I=1m=-!
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. od i
T(r, 0, ) =Eo+D_ Y (Eim? + Fimr ™' )Yim (6, ¢) . (7)

=1 m=-l
Applying boundary conditions on surface of the central inclusion, we derive

Fir F,m(2l + 1)

Bim = Ga2i+1”’ Dim = I(1 - k+ lk/Bl)a?+1 "’
where
G = l-k+1k/Bl k—.lfi
TR+ 0+ (1+1)k/BL’ Tk
and
__ hima
Bl= =2 (8)

is the Biot number. According to the theory of Green’s function, discontinuities of the tem-
perature gradient and the temperature at surface of inclusion are equivalent to new sources
of temperature field with the intensity proportional to

00, ¢) = (22 - Um ),=a=;ﬂ%((2z+1)—%)nm(o, 9. ©

,m

oo

D(8,¢) = (T ~ Tr)ra = Y : Fim (21 + 1)k/BI

1—k + lk/Bl)ai+!

Yim (6, ¢) , (10)

respectively. The object of this section is to derive a generalized Rayleigh identity, both inside
and outside the central sphere. The sources of the temperature are the applied temperature
gradient and the induced sources of the temperature field on surface of each sphere, so the
temperature field at an arbitrary point r is given by

T(r) = Toz+—2/lr‘(‘) d? +—Z/D(.)n,,(.)a e d%s, (11)

where n,(s) is the unit normal vector on the area element d?s. In the summations ¢ refers to
the ¢-th sphere and the vector extends from the origin to area element d2s on its surface. We
sum over all spheres in the lattice and integrate over the entire surface of each sphere.

The evaluation of the i-th integral in Eq. (11) is facilitated by a transfer of the origin to
the centre R; of the i-th sphere. Let us write p; = r — R;, t = s~ R;, r — 8 = p; — . ‘We
first consider the case where the field point r lies inside the central sphere. We expand the
denominator of integrand in Eq. (11) using the addition theorem:

4mt! . _
'. — .l z (21+ 1) IT1 Ylm(o y ¢ )Ylm(oi, ¢:) ) 1#0
(12)

Zmylm(ﬁl ¢'VWim(8:, ), 1=0.

Here (0', ¢') are polar angles defining the orientation of ¢, while (6;, ¢;) specify p;., Using
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Eq. (12) and the orthonorma.lity properties of the sphérical harmonics we find

F,m 1 (lk/Bl) F,,,. 1- (llc/Bl)

_Z e I %in6, ¢)+EZFL1"11 e n0e#) (9

02‘+11—k+lk/Bl Zoim —k+lk/Bl
_ & Fim (,_ 1+ 1k/BLY Fim
Za2l+1 ( 1—k+lk/Bl) Ylm(a ¢)+‘#ZO§ £+1 Ylm(on ¢t)+T0z

We see that the terms with Bl in double summation due to D(s) just make a compensation
for that due to Q(s), so the terms for © # 0 do not obviously depend on Bl. In Eq. (13) the
first sum comes from the central sphere and the second sum is over all other spheres. Since
we have assumed |r| < a then

T(r) = T(r) = ‘z';(E,m + I’(”;_(l};(f}i /w; t;:z{‘ff)),mm(o, 4). (14)

The terms with Bl in Egs. (13) and (14) are the same. Comparing Eqs. (13) and (14) we
arrive at the desired identity:

S Bt Yim(8,8) = 53 'T‘;’; Yim(6:, 61) + Toz . (15)
l,m

1#£0 I,m ‘
This identity has the same form as the original one, but the restriction on continuity of the
temperature field on boundary has been removed!!3*7), A similar proof establishes the identity
in the region exterior to the central sphere. We omit this proof for simplicity.

IV. The Effective Thermal Conductivities of Composite Media

In this section, we discuss only composite media with cubic symmetry. For more general

systems, the procedures are more complex, but have no crucial difficulties!*3), In these systems,

- the thermal conductivity tensor reduces to a scalar. So calculating the effective thermal
conductivity along z axis is enough for these systems. As usual, we havel1®l

(¢:) = —k"(3.T) . (16)
Average value of the heat flow is
(gs) =—/k,-3,T.-dz —/kma'szdz = —(k; — km)/a,T.-dz km(8:.T) + k;:k aai‘ e,dS
04 Om 0; " (17)

‘= ~Duo (ki = kim - %) = km(9:T) .

There is only one sphere in a unit cell of s.c. lattice. There are two spheres in a unit cell
of b.c.c. lattice and four spheres in a unit cell of f.c.c. lattice. Therefore, the relationship
between the volume fraction f and sphere radius a is different for different lattices (see Table
1). Combining these two formulae, we obtain

k*  (k—1-k/Bl)fDio
P 1+ @) . (18)
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Table 1. Coefficients and quantities in Eq. (27) for s.c., b.c.c. and f.c.c. lattices. f is
the volume fraction occupied by spheres. f. is the critical volume fraction at which
the spheres touch, and a. is the critical radius corresponding to it.

8.c. ) b.cc. f.c.c.
61 1.3045277 0.057467 0.0047058
b 0.0147922 0.166117 0.130683
b2 0.4054101 1.35858 1.20500
c1 0.1258627 0.000950738 0.00603255
c2 0.5288918 0.733934 5.73021
cs 0.0699313 0.134665 8.20884
Ca 6.1672713 0.0465862 0.295595
f (4/3)ma® (8/3)na® (16/3)ma®
fe m/6 (V3/8)m (V2/6)r
ac 1/2 V3/4 V2/4

This calculation cannot be performed until an expression for (8,T) built from given quantities
is derived. We choose a sphere sample and apply an external temperature gradient along =
axis. Imposing the boundary condition at infinity, we determine solution as

T: = arcosf r<R,, (19)
Tm=T0(§-+r) cosf r>R,. (20)

The coefficients & and 8 are determined by matching.boundary conditions on surface of the
sample, which are

_ 3RJT0him. ht'm.Rok* * _ k* R,S
=T 2 ( 2o +himBy = K°) ﬂ_(l_Tokm)Z
After letting R, approach infinity, we obtain )
3T, 3To
= — 8,T) = ————. 21
R T Ty P (0:1) = o33 (21)
It completes the formula for the effective thermal conductivity:
* —2fF0/Toa
k* 1-2fF,/Toa (22)

km L+ fRo/Toa®

V. Numerical Method and Its Convergence

In order to determine the unknown coefficients Fo[_ ,,, we apply the Rayleigh identity at
two points within the unit cell, namely Q = (ro, 8o, ¢o) and @ = O = (0, 0, 0), and equate
odd order derivatives with respect to z of both sides of Eq. (15). The procedure yields a set

of linear equations for the Fp;_; ,,. A typical equation, obtained from the (2n + 1)-th partial

derivative is
o 21-2n-2

Z Z AS 2 By 8 TIPS _o(cos o) cos(meo)
l=n+1 m=0

(23)
ow L oo
+Y DY AT By g 2T PR 5 (c08 ;) cos(mi) = Tobno

=1 m=0i=1
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where L.= 2l — 1, A" = n!/(n — m)!. In the sums over 7 we run over the lattice points for all
positive or negative integers (u, v, w) excluding (0, 0, 0). Define

UMQ) = Y ot B (cos ) cos(m) (24)

i=1

where each U™ depends on the coordinates of Q, since

o —u Yo — U
pi = ({20 — u)* = (yo = v)* + (20 — w)2)1/2 , cosf; = P cos ¢; = Zo—w"
By using Eq. (24), equation (23) becomes
f: 2‘_225_2 APFHIRy ) 2 2P _o(cosfo) cos(mdo)
a-1
I=n+1 m=0 Gm—la
' (25)

oo L
+ Z Z ALK ™ Fat—1,m Uiy 2 (Q) = Tobn o -

In the case of electrical conduction, when the conductivity of the inclusions is infinite and
nearly touching, the conductivity of the composite medium will develop a singularity. This
singularity will not occur in the case of the thermal conduction of composite media, because
of the presence of contact resistance. We expect, therefore, that the convergence of numerical
method will b:z much better. We shall show this fact by a set of evaluations.

We wish to consider the general solution, and will suppose that we have to determine Mj
coefficients of the form Fo1_1,0 and My coefficients of the form Fp;_; ,,. We take Q = O, the
corresponding equa.tions are '

L
Fant1,0 > o
Gzn +nla4n+3 Z Z Agtn-z_zln U +2n(O) F21—1,m = Tobno - (26)

Thus, if we write down the first My equation from Eq. (26), there will occur therein M,
unknowns of the form Fy_1,0, as well as the M, unknowns Fp_; ... In order to get the extra
My equations required to solve the field identity, we use Eq. (25) for a point Q lying away
from.O. We take this point in Q(zo, 2o, zo) with zo = 1/44/3. We calculate the thermal
conductivity for a composite medium with simple cubic symmetry, the results are tabulated
in Table 2. In order to show amply the convergence of the numerical method, we had chosen
a much small contact resistance (with Biot number 100) and a rather large volume fraction
of inclusion. From Table 2, we draw two useful conclusions. The convergence of numerical
method is rather rapidly and azimuthal terms have little influence on the thermal conductivity
of composite media.

VI. Formulae for Effective Thermal Conductivities of Composite
Media

Owing to the rapid convergence of the numerical method, we can derive neat formulae for
the effective thermal conductivity of composxte media with cubic symmetry, which may find
applications in engineering.

The solution of Eq. (25) to order 4, without azimuthal terms, yields the following formulae
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Table 2. Convergence of the numerical method.
Bl =100
M, M;f 0.32 0.38 0.42 0.46 0.48 0.50
2 2.4083 2.9036 3.3433 3.7317 4.3124 4.7795
3 2.4092 2.9095 3.3627 3.9955 4.4308 5.0055
0 4 2.4096 2.9117 3.3699 4.0224 4.4867 5.1313
6 2.4096 2.9119 3.3710 4.0296 4.5074 5.1987
8 2.4096 2.9119 3.3710 4.0301 4.5094 5.2099
3 2.4096 2.9108 3.3653 4.0010 4.4390 5.0182
1 4 2.4098 2.9123 3.3710 4.0244 4.4894 5.1349
6 2.4098 2.9125 3.3720 4,0313 4.5095 5.2015
8 2.4098 2.9125 3.3720 4,0318 4.5116 5.2127
4 2.4097 2.9118 3.3694 4.0196 4.4812 5.1208
"6 6 2.4099 2.9127 '3.3725 4.0325 4.5113 5.2046
8 2.4099 2.9127 3.3724 4.0325 4.5125 5.2139
r the effective thermal conductivity of composite media:
k* D-2f
k D+f’
" - (27)

D= Gl—l _ b105f14/3 _ CI,G7f6 _ a1f10/3

2.0

1— coGsfH/3 + 63G§f22/3

G314+ baf7/3 — c4Gs f©
he coefficients a3, by, bs, ¢1, ¢2, ¢3 and ¢4 for different lattices are listed in Table 1. Using
1ese formulae, we study the dependences of the effective thermal conductivities of composite
edia on Biot number, which are depicted in Fig. 1. If h;,, = oo these formulae coincide with
te formulae for the effective electrical conductivity of composite media.
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Fig. 1. Dependence of the effective thermal conductivity of composite media on Biot
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VII. Conclusion

Much effort had been invent in wide and comprehensive exploration on the electrical con-
ductivity of composite media and some efficient methods have been developed. The thermal
conductivity constitutes also an important aspect of the theoretical approach of the properties
of composite media. In article [5], we had expounded that the existence of the contact resis-
tance on surfaces between different phases of composite media changes the thermal properties
dramatically. Unfortunately, the boundary conditions for the thermal conduction complicate
the problem and are an obstacle for theoretical treatment of thermal properties. As the aware-
ness of authors, among the present methods for treating the electrical properties of composite
media, only the Rayleigh method and the method of long waves!?®l, invented by M. Born,
can be generalized to deal with the thermal conduction of composite medium. The former is
the most efficient ﬁrs't-principle approach; but it has a strict restriction on geometry of the
microstructure of composite media, only the composite medium with spherical or cylindric in-
clusions can be treated by this method. The solution of the thermal conduction for these two
cases provides, therefore, reasonable data for developing new method in treating the thermal
properties of composite media.
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