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ABSTRACT

In the case of suspension flows, the rate of interphase momentum transfer My and that
of interphase energy transfer E,, which were expressed as a sum of infinite discontinuities
by Ishii, have been reduced to the sum of several terms which have concise physical signifi-
cance. M, is composed of the following terms: (i) the momentum carried by the interphase
mass transfer; (ii) the interphase drag force due to the relative motion between phases; (iii)
the interphase force produced by the concentration gradient of the dispersed phase in a
pressure field. And E; is composed of the following four terms, that is, the energy carried
by the interphase mass transfer, the work produced by the interphase forces of the second and
third parts above, and the heat transfer between phases.

It is concluded from the results that (i) the term, (—azyp), which is related to the
pressure gradient in the momentum equation, can be derived from the basic conservation laws
without introducing the “shared-pressure presumption”; (ii) the mean velocity of the action
point of the interphase drag is the mean velocity of the interface displacement, D;. It is
approximately equal to the mean velocity of the dispersed phase, §,. Hence the work terms
produced by the drag forces are f; - D, and f,4 - U,, respectively, with ¥; not being replaced
by the mean velocity of the continuous phase, ¥.; (iii) by analogy, the terms of the momentum
transfer due to phase change are #,I", and ¥,I'y, respectively; (iv) since the transformation
between explicit heat and latent heat occurs in the process of phase change, the algebraic sum
of the heat transfer between phases is not equal to zero. Q;, and Q;; are composed of the
explicit heat and latent heat, so that the sum (Q; + Qig) is equal to zero.

Keywords: interactions between phases, suspension flows, shared-pressure pre-
sumption,
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Some of these differences arose from different physical models of two-phase flows.
while others were produced by confusion in concepts.

Many authors®® started from the equations of fluid mechanics, extended them
and obtained equations for describing two-phase flows. Although the equations of
fluid mechanics were reasonably established and proved by many experimental data,
the validity of this extension has not been demonstrated. In fact, different authors
used different approaches and achieved different results. At least, it is certainly
impossible that all the extension approaches are correct. Because of the difficulties
encountered in the measurements of two-phase flows, we cannot prove the validity
of these equations by experiments.

Many other authors®™ have built up the equations for two-phase flows based
on a quite rigorous mathematical derivation, starting from the conservation laws.
These equations are the most reliable at present.

Bouré and Delhaye™ have chosen a control volume element &v, which contains
the media of two phases, as the system to be investigated. The conservation |equations
(of mass, momentum, energy and other quantities) for & were built up in inte-
gral form with the effects of the discontinuous surfaces (interfaces) on the conserva-
tive quantities included. They obtained, by using Leibnitz’s rule and Gauss’s law,
the instantaneous local conservation equations of each phase in differential form and
the conservation relation suitable to these interfaces. Only within each phase, can
these conservation equations be applied and are physical quantities continuous and
differentiable. However, discontinuity of the quantities will arise when crossing these
interfaces. There are many discontinuous surfaces in motion. Therefore, each quan-
tity in the fluid field comprises fluctuating components which vary rapidly with
time and position. By averaging, the high-frequency fluctuations can be smooth-
ed out in order to make the physical quantities of each phase continuous and dif-
ferentiable. So each phase can be regarded as a pseudofluid which exists in the
whole fluid field. Bouré and Delhaye’s approach is essentially similar to Ishii’s™®
but with surface tension and phase change neglected. It greatly simplifies the
derivation procedures. Some other authors, such as Drew et al.”®’, used similar
methods in their researches.

Every mean conservation equation (of mass, momentum and energy) for two-phase
flows obtained by the above methods contains an interaction term between phases,
which is expressed as a sum of infinite discontinuities. It is not convenient to use
them and to compare them directly with other types of equations for two-phase
flows.

In this paper, we start from Ishii’s equations and the general expressions for
the interaction between phases and derive the formulae for the rates of interphase
momentum transfer M; and that of interphase energy transfer E; which have concise
physical significance. We obtain a set; of equations for the suspension flows,
which is convenient to use and easily compared with other types of equations. Finally,
we analyze and discuss in detail the physical significance of each interaction term
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between phases,

II. EquaTtions For GENErAL Two-Puase Frows

Using the approach of time averaging, Ishii presented a set of equations for
two-phase flows with the effects of phase change and surface tension included. In
this paper, the surface tension is neglected in order to simplify the problem.

In Ishii’s model, the equation for general two-phase flows is™

_ér’);_ (ardn) + V « () = —V » Lax( Ty + ID)]

+ axprby + Iy (k =c,d), (2.1)

where the interaction term between phases I is

Iy = — E {[ffz;tbi.— +ngc Jul/Li}, (h=¢, d) (2.2)

and the mass flux across interfaces 7y is
my=mny » pp;i(V; —0;), (k=c,d). (2.3)

‘The subscripts X = ¢ and % = d denote the continuous and dispersed phases, respec-
tively. Eq. (2.1) is the generalized form of the conservation equations of mass,
momentum and energy. For various kinds of the conservation equations, ¢y, Jk and
¢x have their own expressions (see Table 1). ¢; represents the mass, momentum
and energy (including kinetic energy »3/2 and internal emergy #;) per unit mass in
phase k,J; the flux of ¢ flowing out of phase k. J{ is the flux of turbulent trans-
portation corresponding to Jy. oxpy is the source term of ¢y, oy is the time frac-
tion occupied by phase % at a point. It can be proved that o4 is also equal to the
probability occupied by phase & of a volume element, an area element, or a line
element containing the point. w; and p; are the velocity and density of phase %, re-
spectively. A double line “=" over a letter F; (such as F=p, p, @q). denotes
the mean value of a physical quantity F; within phase k. 1f a physical quantity has
an even distribution in phase &, then Fy = F;. The time-averaged value of the physi-
cal quantity Fy can be expressed as ozFy. apfy,apby: - -are defined as partial density,
partial pressure --- of phase k. A single line“ — "over a letter @i (such as @ = ¢,
v, u, etc.) represents the mass-weighted mean value of a physical quantity ¢4 of
phase %,

P = exPr/ P> (2.4)
n; is a unit vector drawn normal out of phase k. Obviously, we have
n.= —n;, (2.5)

w; is the velocity vector of interface displacement and v;, is its normal component.
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L; = v;,At, where Ar 1s the averaging time interval, z: denotes the; summation of
i

all the discontinuities through the observation point within Az, The subscript ki (J. e.
v.i» Pai» €tc.) represents the value of phase X at the interface. b,‘ is the extermal
body force acting on phase k. Ty is the stress tensor in phase %, including the
hydrostatic pressure (—pgl) and the viscous stress %;. Here [ is the unit tensor.
The body heating Q; arises from an external energy source. ¢qj is the heat flux in
phase k. Ty, My and E; are the rates of the interphase transter of mass momentum
and energy, respectively.

Table 1
Conservation
Equation of S Ji Dy I ‘55::
the Following
Mass 1 0 0 Iy 1
Momentum Vg -T, b, . M, Dy
Energy —;- vkt up | ~Ta-vat+que | by v+ Or/on| Eg '% v+ % vt

The conservation relation for every interface element is given by

Z (mgdys + g« J) =0, (2.6)
k=r,d
From Egs. (2.2) and (2.6), we obtain
I.+1,=0, (2.7)
Using the definition of the averaging and that of the time fraction, we have'”
aat/a‘ = Z (nk ‘v;/L;j), (k=r¢c, d), (28)
i
Voy = — 21 (m/Li), (k=¢, d). (2.9)
i

1. ExeressioN For INTERACTION TERMs M anp E;

In this section, we will discuss the discontinuities of physical quantities on
interfaces. For this purpose, we introduce the velocity wv;, stress tensor T; and
heat flux ¢q; of the interfaces, utilize them to express the discontinuities of
velocity, stress tensor and heat tlux at the interfaces and obtain some relations at
the interfaces which are simple in form and concise in physical significance. Then
the averaging rule of physical quantities along the interfaces will be introduced.
Finally, we obtain the quite simple expressions for the interaction terms between
phases, My and E,.
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If there is no slip”® between the tangential velocity of fluid v, and that of a
particle v4;,,at an interface element (it can be satisfied in general two-phase flows),
then the two tangential velocities are equal to each other and the tangential velocity
of the interface displacement can be defined as

Uit = Vgit = Ujge (3.1)
Using Eq. (2.3), the velocity discontinuity on the interface can be obtained
Oy — U; = (?ﬁ&fpai)ﬂp (k = c,d), (3.2)

It 1s assumed that all the interfaces are geometric surfaces which have neither
mass nor surface tension. Hence the tangential stresses T 4,,, and T,,, on the two
sides of an interface are equal to each other, and the tangential stress of the inter-
face T;,,, can be defined as

n nt Tdr.st : nle (3.3)
From Eq. (2.6), the normal stress T;,, of the interface can be defined as
myty o Og; — Tgiopn = tigity » ©; — T 005 (k=¢, d). (3.4)

Using Eqs. (3.2), (3.3) and (3.4) we can obtain the discontinuity of the stress
tensor on the interface

Tki - T:' == BkI: (k Cy d)) (3-5)
By = mi/ori» (k=¢c, d), (3.6)

By analogy, the heat flux of an interface q; can be introduced. From Eq. (2.6),
the normal component of q; can be defined as

ﬁ:’k (—;— vi; -+ “k") L TU . U;(,' -+ nk * Gii
= my [%v?+(v“—v;)-v;]—nk' T;l,--v,-+n§-q,'
=i —mTiov +n g, (h=c,d). (3.7)
The second equal sign in the above formula is obtained by using Eqs. (3.2) and

{3.5). From the definition of g;, we can obtain the normal dlscontmmty of the
heat flux on the interface,

v (qu — @) = —riy ["%—Wu —v|? + up — Tu,us/(’ﬁ]

1) In gasdynamics, the difference between the tangential velocity of a wall and that of gas
adjacent to the wall is defined as slip velocity. It is directly proportional to a molecular free
path and the gas velocity gradient there. However, in two-phase flows, the difference of
mean velocities of the two phases is defined as slip velocity too. These are two completely
different concepts. The slip used in this paper is the former. In order to avoid confusion
with the slip in gasdynamics, we suggest that “slip velocity” and “slip (phenomenon)” in two-
phase flows can be replaced by “difference of the velocities between phases” and “non-equili-
brium (phenomenon) of the velocities between phases”, respectively.
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= —mghy + 8y (K =c,d), (3.8)

where
oy = ting (Taien + 21 os — -}/ . (3.9)

In general, 8; can be neglected because it is very small. Ay( = #; + pi/py) is the
enthalpy of phase &.

Eq. (3.7) represents the total energy flux (related to the laboratory coordinates)
flowing out of phase £ and into the interface. The left side of Eq. (3.7) shows
that the total energy flux is composed of the following three parts: (i) the internal

energy #y; and kinetic energy —;—v}.; carried by the mass flux s, (ii) the work pro-

duced by the stress of phase &,(—ny + Ty » vy), (iii) the heat tlux (my + qy). The
right side of Eq. (3.7) indicates that the total energy flux can also be regarded as
the sum of the following three terms: (i) the kinetic energy (of the motion of
following) carried by the mass flux (-;— v?m,-), (ii) the work produced by the stress
of the interface, (—mny « T; « v;), (iii) the total energy flux in the coordinates rela-
tive to the observer moving along with the interface, (ng+ q;). From Eq. (3.8),
we can see that the total energy flux in the relative coordinates (ny + @;) is composed
of the explicit heat flux (my » q4;), the internal energy flux (wyri2z), the kinetic

energy flux (-%lvi,- — v,-l’n'zk) and the work produced by the stress [ —ny « Ty; « (v

— v;)]. In fact, the sum of the latter three parts is the total enthalpy in the rela-

tive coordinates (hk,- + —l;— oy — v,-l’) multiplied by 7; and can be named the latent

heat flux.

The advantage of using the second expression of the total energy flux related to
the laboratory coordinates (the right side of Eq. (3.7)) is that every sum of the
corresponding terms of phase ¢ and phasaﬂ d is zero. That is

X v+ Lo, =0,
2 2

—n,-T,--v,--ndoT,--v,-=0, (310)

nc°qi+nd°QE=ol

Such an advantage no lonaer exists when using the first expression. For some of
these terms, the algebraic sum of the corresponding terms of phase ¢ and phase d is
not equal to zero. For example, from Eq. (3.8) we have

n,eq;+nge qi~ —milhy — ki), (3.11)

This formula indicates that the transformation between the explicit heat and the
latent heat occurs in the process of phase change.

When there is no phase change (#, = m4s=10), we can obtain from Egs. (3.2)
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(3.5) and (3.8)

U, = Vg4 = Ujy
T,=T;=T, (3.12)
qei = qai = g

because @.i,1»qai,, and gq;,, are obviously equal to each other.

The mean value of a quantity Fy along all the interfaces in &v is the same as
the mean value for all the discontinuities in Az. It is defined as

Fu= 2] (Fu/Lj) /Z} Lit =L, > (Fu/L3)s (3.13)
] 7 1
where the total area of the interfaces in unit volume is
L'= D> Lj, (3.14)
j
For suspension flows with particle radius r, it is not difficult to prove that

L7 = 3ay/r,

Let i'.- be the average value of the stress tensor of the interfaces, T; the part
deviating from the average value, Using Eq. (3.5), we can obtain

Ti = T:‘ + T:s
Tl‘. == Bkl + T,‘ -+ T:, (3.15)
T, =0,

ka = §ll + T;.

Let (—pgd) be the part of the hydrostatic pressure of tensor Ty, and T the part of
viscous stress, we have

Ty= —pd + 15, (f=1c,dyiyci,di), (3.16)
Using Egs. (3.15),(2.2),(3.2),(3.6),(2.9) and (2.2), we have

M, = — > {Uingwi + ping — mg » (Ti + )1/ Lj)

= ﬁiri +$5vﬂk+fk'l’9 (k= ¢ Or d, 1{’= d or C), (3.17)

where the drag force between phases Fyr; is defined as

foo= Z {[ngs (T; +1;) — f?'ﬂdv:‘]/Li}

= Z {[ﬂ, * (T: + %l) - "‘I:U:]/L:} = _Fa': (318)

Obviously, M. and M, expressed by Eq. (3.17) still satisfy M, + M, =0,
Using Eqs. (3.7), (2.2), (3.15), (3.16), (3.18) and (2.8), we obtain
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Ey= — Z {[-%z—riztvf-l— ngeqi—ng (Ti+ %) 0, +ny - (BI) - v; ]/Li}

i

Sl

=(1—?”f+"1—;‘—:’+ k;)T;‘+Qn+fm' ‘!-;i_‘ﬁi 60(:
2 2 ot

(JE soor d’) (3.20)

kF=4dor c,

where the heat flux between phases Q;; (with the explicit heat and latent heat
included) and Qy; (with the explicit heat only) are, respectively, defined as

Qi = Z {[—nko g+ (Ty+ %) v

1

'—%”.’&(9;‘—”?)]!14 }=Qk’k+;tir{: (k=c,d); (3.21)

Opr = 2] {[—"t cqutm s (T + %) - v — %’ﬁt(":“ — o)

H

. = ) 1 .
— 1y (hyi — hgi) + Thisnaz/ ori — ‘?mi/Pii}/Li }

k=rcord
~ > (—ny* qu/L), ( , ) (3.22)
i kR =dorc
Obviously,
Qie + Qig= 10,
Qca + Que = (hei — hai)T4, (3.23)
E; + Ed’ = 0.

In general, Eq. (3.23); is not equal to zero except I'y=0. In analogy to Eq.
(3.11), Eq. (3.23), represents the transformation between the explicit heat and
latent heat in the process of phase change.

Apart from the assumptions included in Ishii’s Eq. (2.11), some additional
assumptions have been introduced in this section. They are mainly as follows. There
is no slip between the tangential velocities of a particle and of fluid adjacent to the
interface. The interface is a geometric surface with neither mass nor surface tension.
Most of the preceding results are correct for various two-phase flows where these
assumptions are valid. However, these results are still too complicated to solve
practical problems. In the next section we will deal with the suspension flows. In
most cases of these flows, some of the terms are small and can be neglected. As a
result, we can obtain a set of equations for suspension flows which 1is suitable for
solving practical problems. '



174 SCIENCE IN CHINA (Series A) Vol, 34

IV. Equartions For SuspensioN Frows

Substituting Eqs. (3.17) and (3.20) into Eq. (2.1), we can obtain equations for
suspension flows with phase change (k=1¢ or d, k' =d or ¢):

_66? (uBr) + V » (Bydy) = Ty, (4.1)

~(%— (axfidy) + V * (yfidydy) = —ayVpy + V + [o3(8;+TP)]

+ (B: — )V + oyl + Fyy + 51, (4.2)
0 [ - (— 1 2 1 - )}
2 T +v
ot AN 2 7t 2 v

. [“’(5(51{ (“& + “;— vy + ‘li' o )} = —V + (oxpx0y)

+ V- [ag(By + TP - 9] — v« [eg(Gy + qb)]

- - = = = 6
+ akptbk . Uk + aka -+ fk'k *U; ~+ Qk’t — pi af:k

+ (}?,(,- + % v} + —;— 5%)1”*. (4.3)

For the phase of constant density, using the continuity equation (4.1), we can reduce
some of the terms in the energy equation (4.3) as

= e = 6 = - =
—V + (qpxbr) — bi ‘*é‘:—{ + hyl'y = —oyby * Vi
= Gi— ) 2 4 (hy — BTy + T, (4.4)

If the density p; is constant, the corresponding three terms in the other phase &’
can be reduced as

- Ou

—V - Caypydy) — pi 6:’ + hyiTy = —ayoy + Viy
— (i — 5&;)% + (hy; — by )Ty + apTy + A, O s)
where
A= py [«9—- — V- () + = () ]
P Pk
+ lpwlow — bulBe1Ty. (4.6)

If both the phases ¢ and d are incompressible, then A= 0,

For the suspension flows, it is valid in general that
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63,’ = '6‘, (47)‘
93,‘ = 54, (4.8)

(see Appendix). This shows that the mean value of the velocity and temperature of the
particles averaged along the interfaces, ¥;; and 84, are approximately equal to those
averaged in the control volume (it is equal to the value of time averaging), &; and
34. For phase ¢, there are no such relations as Eqs. (4.7) and (4.8). If there is
no phase change (s, = m;= 0), we can obtain v; = v, = v,; from Eq. (3.2). We
can also obtain ¥; = ¥4 = U,; after averaging them along the interfaces. If m, = —m,
2 0, we still have

5:‘ =2 53:‘ = 6:-’, (49)

because W; (k= c¢,d) is not a large term in most cases.
From Egs. (4.7) and (4.9), we have
U; =~ Dy, (4.10)
From Eq. (4.8), we can also obtain
hai = ha. (4.11)

The temperature jump between the phases must be small provided that the slip between
the tangential velocities of the two phases 1s small. That is,

Sﬂ' = Sdi! §n‘ = 9‘;‘ = 9:!- (4'12)

Thus, the enthalpy of the fluid phase averaged along the interfaces can be expressed
as

hei = h(54), (4.13)

where 4.(3;) is the enthalpy of the fluid phase corresponding to the temperature
5,.

When phase change does not occur very rapidly (s2; and Ty are somewhat
small), we can assume approximately

(see Eqs. (3.9) and (3.6)) so that there are

Gy — q; =~ —myhying, (4.15)

T,—T;=~0, (4.16)

fox~ 2 [Imy« (Ti + E)/L;1, (4.17)

Qwr~ >, [—ng - aqu/ L), (4.18)
i

.(see Eqs. (3.8), (3.5), (3.18) and (3.22)). It is not a bad assumption that §,; =~
Pes Pai ~ pg. Combining it with Eqs. (4.16) and (3.15), we obtain

= =

PP i Ppui = pi=p, (4.19)
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Assuming that both p. and p,; are constant and using Egs. (4.4), (4.10),(4.11),
(4.13) and (4.19), we can reduce the right hand sides of Eqs. (4.2) and (4.3) as

—ayVp + V « [og(Fy + T + aypyby + Fyry + 0.1, (4.2)’
(k = Csd)
and
—oyfy - Vp+ V [ax(Z+ TP » 9] — V- [ax(Gg + q)]
+ atskbk c o + aké,{ + f&’* s U, + Qk'i

(T L0+ L) I D(80) — (3O
(l{:c or d ) (4.3)
k=dorc / |

In order to make it easy to discuss later, we write down the total enthalpy
equation, kinetic energy equation and the equation of heat enthalpy plus turbulent
kinetic energy by using Eqgs. (4.1), (4.2) and (4.3) as follows (k=c or d, k' =d

or ¢):

_Q_.{ =(Z +-;"+~1~§2)]+ -[.’=ﬁ(£ + Ly
5 L74Pr M LI V | oPrOx | 24 5 vk
1 -2 . . ? TT . 5 = F
+ )| = VLB +T5) - 8,1 — V- [oy(Gi + qi)]
. - = _ op
-+ “tpkbi 'Y + t’Iin_ -+ fl'l c gy + Qk’& + O -'5;-
+ [0 + Lo + Lat]n, (4.20)

6 (1 = —2) ( ]. m ™2 = ) — - -

—\— 0 ) +V: | — U, | = —a;0; * + o

ar \2 oxPOt ) T V 5 MOV oy * Vp + 0y
* {V * [“{(i.{ + T{)]} + “'k‘itbk . '—‘,k

+ Fog - By + (a‘, . —l—ﬁi)r“ (4.21)

= (7 1 == (7 1
(s 27 v e (or 1)
= a2 +5, 0 o+ @@+ TD:Vo — V- (@ + aD)

+ axOx + Fyx » By — ) + O

+ [ + L7+ Lia,— o, (4.22)

Using the generalized Gibbs’ relation

9{6'31 = g (I_'z'k + *%—;?) — dp/,b'“
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the energy equation can be obtained as

P9 (—687 + o5+ V )Et = ux(Bx + T1): V0 — V + [ox(gy

+ g + O + Fg » (82— 03) + Qi

+ [f'k(-%) — hy(Sy) + % v — *;— vF + -21—|54 — 5&1’]11&- (4.23)

V. DiscussioN

1. The interphase force M; (see Eq. (3.17)) is composed of the following
three terms: 0;T'y, Fyy and p;Vey. The first term is due to the mass transfer between
phases. When some of mass is transported from one phase to the other, the momen-
tum possessed by the mass will be carried into the latter phase. The second term
is caused by the relative motion between the two phases and depends on the difference
of the velocities and that of the accelerations between the two phases. The third
term has nothing to do with the relative motion and the mass transfer. It remains
even under the conditions without phase change and relative motion. The buoyance
acting on the dispersed phase is related to this term.

The rate of the interphase energy transfer E; (see Eq. (3.20)) includes the
similar three terms: (-—;-_v? -+ *&:Q,-)Ti, Fyy» 0; and [pul's/ pri — piOcs/ O1]. Besides, there

1s the fourth term: the heat transfer between the phases, Qy. For the phase p; ==
constant, it seems that the third term of Ej and that of Mj; have no relation to
each other in form. Only for the phase py = constant, can the third term of E; be
approximately expressed as [7; W « (ex@5)] (but not p;5g » Vay!), so that the relation
between the third term of Ej; and that of My becomes obvious and can be easily
understood.

2. Since the process of phase change is accompanied with the release or absorp-
tion of latent heat as well as the expansion or contraction of volume, the algebraic
sum of heat transfer between phases, (Q.¢ -+ Q4), is not equal to zero, and the
algebraic sum of the work produced by the third term of the interphase force,

}Z [F;ertl’@u — E‘ ﬁi] >

k=c,d ot

is not equal to zero too.

" If the enthalpy (with the enthalpy of formation included) carried by the mass,
which is transported in the process of phase change, is added to the heat transfer
between phases, Oy, We can obtain the total energy flux out of phase %k in the
relative coordinates, Qix (see Eq. (3.21)). Then the algebraic sum (Q; + Qi) is
always equal to zero.

3. Since it is on the interfaces that the drag forces f,; and £, act, their
action points are moving at the velocity of the interfaces, ¥;. Therefore, the expres-
sions for the work produced by f,; and f,. are f,;«&; and Ff,;  0;, respectively.
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They are approximately equal to f.; + &; and F,, » ; with ¥; not being replaced by
v..

4. The term (—oVp) in Eq. (4.2) results from the combination of the surface
force [—W(ayp)] and the third part of the interphase force (pWay) (Eq. (4.19) is
assumed to be valid). In mathematics, they can be combined in such a way, but in phy-
sics they are two different quantities. The former is a kind of surface force (it can
be expressed as a body force only after using Gauss’s law) while the latter is a kind
of body force. For the chosen control volume, the former is an external force which
remains in the equation for the mixture while the latter is a kind of interphase
force which will be offset by the corresponding term of the other phase in the equa-
tion for the mixture. The expression of the work produced by the former is [—V

 (axpP;)] while that produced by the latter is [p(]‘kfﬁk — _%f‘_&)] In general,
¢

the combination of these two kinds of work is not equal to (—aP; » Vp) unless p
is constant (see Eq. (4.4)). If we ignore the fact that (—a3Vp) is composed of
the two different kinds of forces in concepts and this term is introduced into the
momentum equation as the so-called “shared-pressure presumption”™, we would get
something wrong with the corresponding term in the energy equation, or cannot

understand why that is [-—V » (axpBp) + p (r"/ﬁ" - gjk )]'

5. In the enthalpy equation (4.22) and the entropy equation (4.23), the term
fyy » (84— D) is approximately equal to zero for the phase k= d. For the phase
k = ¢, this term is always greater than zero except ¥, = ¥,. The velocity of the
fluid surrounding a particle is gradually changed, from &;(=,) at the interface to
O, far from the particle in the average sense. There exists the process in which the
mechanical energy is transformed into heat in this layer (boundary layer or other
kinds of viscous layer). It is this term that represents the irreversible energy trans-
formation.

Appendix
Choose a control volume V in a suspension as the system to be investigated.
Let V4 be the mean volume of a particle. Thus, the particle number in ¥ 1s
Ny = a,V[V,.
Let A be the surface area of the control volume V. In statistics, a part of it, a,4,
is within the particles at the control surface. The area crossed by A4 and a particle

is proportional to V¥ while 4 is proportional to V?¥’. Hence, the particle
number crossed with 4 is N,

N 4oy (V[V ), N4 Nyoc(Vaf VI = (aal Nv)'.
If Ny is very large, then N4 < Ny. The number of the integral particle N, in the

control volume V is approximately equal to (Np —_ —% N,{).

Let &) be the mass weighted: mean value of the particle’s velocities in the control
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volume. Y%; is the mean value of the particle velocities at the interfaces. The average
goes over all the interfaces in the control volume V. From the ergodic hypothesis,
D and 0}; are equal to the time averaging value &, and g, respectively. Let oy
be the mass weighted mean value of the velocities over the N; integral particles, Oy;
is the mean value of the particle velocities at the interfaces. The average goes over
all the interfaces of the N; integral particles. Les m, and a, be the particle mass
and surface area of particls s, v,, and v,, the mass-center velocity and the mean
surface velocity of this particle, Av, = v,, — v,, the difference of these two veloc-
ities, Hence,

Ny Ny
0y = 2 (msv:p) /Z My

£=1 s=1

Ny N;
= <».v..>/z o, = & + 8 + b,

=1 §=1

where

5= 0/ 0= 2/ )] 3 o

s=1 tr=1 =1 £1=1

5= S (av0) / S,

5 =1 =1
Furthermore, we assume &8, = &) — 0, 8 = 04; — Oy;, then we have
a; ~ 55 = 65 + 81’
Dai = 0y = 0y + 8, + 8; + 8,

If the particle number in the control volume is very large, there is not much
difference in size and shape of all particles, and there is no sharp mass distribution
inside every particle, then &8, — &, are all very small. Consequently, the mean
velocity of the particle phase &, is approximately equal to the mean value of the
particle velocities at the interfaces U,;. By analogy, it can be shown that the mean
temperature of the particle phase &; is approximately equal to the mean value of
the particle temperature at the interface &4. That is,

Dy = Dy, 4 =~ 9y,
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