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Abstract—A crack impinging an interface joining two dissimilar materials may arrest or may
advance by either penetrating the interface or deflecting into the interface. The competition between
deflection and penetration is examined in this paper when the materials on either side of the interface
are elastic and isotropic. The energy release rate for the deflected crack is compared with the
maximum energy release rate for a penetrating crack. The results can be used to determine the range
of interface toughness relative to bulk material toughness which ensures that cracks will be deflected
into the interface.

1. INTRODUCTION

In this paper several problems are analyzed which provide insight and quantitative infor-
mation on the role an interface between dissimilar elastic materials plays when approached
by a crack. At issue is whether a crack impinging on an interface will pass through the
interface or be deflected into the interface. Such questions are of importance, for example,
in the design of the interface between fiber and matrix in fiber reinforced ceramic composites
where it is desired that any matrix crack approaching a fiber deflect along the interface,
thereby allowing the fiber to survive. The results from this study provide estimates of the
relative toughness of the interface to that of the material on the uncracked side of the
interface necessary to ensure that a crack will deflect into the interface rather than pene-
trate it.

The four sets of problems analyzed are shown in Fig. 1. In set A, a symmetrically
loaded, semi-infinite main crack impinges the interface at a right angle. The three problems
analyzed (problems Al, A2 and A3) permit an assessment of the competition between
penetration of the interface and deflection. Set B in Fig. 2 addressed the same competition
when the main crack impinges on the interface at an oblique angle. An unusual feature of
the oblique problem for the main crack (with @ = 0) is the fact that there is a single dominant
mode of deformation at the crack tip when the materials across the interface are dissimilar.
Thus the asymptotic behavior at the crack tip is influenced by the remote loads only through
a single stress intensity factor. The competition between penetration and deflection as posed
in problems Bl and B2 does not depend on the nature of the remote loads in a strict
asymptotic sense when the branch length « is arbitrarily small compared to the length of
the main crack.

A consequence of the existence of a single dominant mode of the main crack impinging
the interface at an oblique angle is a tendency for a crack approaching the interface to turn
either into or away from the interface, depending on the relative stiffnesses of the materials
on either side of the interface. In problem C in Fig. 1 the behavior of a straight wedge-
loaded, semi-infinite crack is determined as the crack approaches the interface. This problem
gives further insight into the tendency of a crack to curve into or away from the interface
when it approaches at an oblique angle. Finally, in problems D1 and D2 the competition
between penetration through the interface or deflection into it is analyzed for an oblique
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wedge-loaded crack. These problems are solved for finite values of a/l where /is the distance
of the wedge loads from the interface. The behavior as a/l — 0 is discussed in relation to
the problems in set B.

There are a number of earlier studies which analyze details of crack penetration and/or
deflection at an interface without specifically focussing on the competition between the two
modes of cracking. The solution procedures used in the present study are similar to, or
extensions of, the integral equation methods used in these earlier papers. Cook and Erdogan
(1972) and Erdogan and Biricikoglu (1973) investigate the behavior of a crack penetrating
the interface at right angles. Goree and Venezia (1977) analyze several problems involving
penetration and deflection for a main crack impinging the interface at right angles.
Additional work along these same lines is reported by Lu and Erdogan (1983). The tendency
for a crack approaching an interface or a free surface at an oblique angle to be deflected
one way or the other has been elucidated by studies of Erdogan and Arin (1975) and more
recently by Lardner et al. (1989).

In all cases the materials on either side of the interface are taken to be elastic and
isotropic with shear modulus y; and Poisson’s ratio v; where i = 1 and 2 correspond to the
arrangement shown in Fig. 1. For the plane strain, traction boundary value problems
considered, the solution variables of interest depend on only two non-dimensional com-
binations of the material parameters. These are the Dundurs’ (1969) parameters

a = [p(1—=vy) —p(1=v )]/ [ (1 =v2) +p2(1 = vy)] ey
28 = [ (1 =2vy) = o (1 =2v )]/ [, (1 —vo) + o (1 =) 2

The first parameter is most readily interpreted when expressed as a = (E,— E,)/(E,+ E,)
where E = E/(1—v?) is the plane strain tensile modulus. The solutions to the four sets of
problems are presented and discussed in the following sections. The problems are formulated
and analyzed in the Appendices.

2. DEFLECTION VERSUS PENETRATION FOR A CRACK PERPENDICULAR TO THE
INTERFACE (PROBLEMS A)

In the set A of problems the semi-infinite reference crack with a = 0 is perpendicular
to the interface with its tip at the interface. A symmetric loading with respect to the crack
plane is applied and the traction ahead of the crack in material 1 is characterized by

6.0,y = k;2my) 3)
where 1 is real and depends on « and § according to (Zak and Williams, 1963)

a+f?
1—f7

2(B—a)
1+8

cos Anm = (1-1)*+

A plot of 1 as a function of « for f = 0 is shown in Fig. 2. The amplitude factor k, is
proportional to the applied load. Explicit knowledge of k; is not needed here. The reference
crack is imagined to advance in the three ways indicated in Fig. 1: one by penetration
straight through the interface (A1) and two by deflection into the interface (A2 and A3).
In the case of penetration, the stress state at the advancing tip is pure mode I. By
dimensional considerations its stress intensity factor must depend on k; and a according to

K = c(a, Pkia'* *

where ¢ is dimensionless. The energy release rate is
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1—v, 1—v,
G = 2 _ 224122
P 2,“1 KI 2#1 cKra (5)

The traction on the interface directly ahead of the right-hand tip of either of the
deflected cracks (A2 or A3) is characterized by (Rice, 1988)

0,,(x,0) +io,,(x,0) = (K, +iK,)(2nr)~ "/?r* ©

where r = x—a,i=./-—1, and

1 1-p
In these cases, dimensional considerations require
K\ +iK, = kia"* *[d(a, B)a* +e(x, fa "] (8)

where d and e are dimensionless complex valued functions of « and . The energy release
rate of the deflected crack is

G, =[(1—v)/p+(1—=v)/u:](KT+ K3)/(4 cosh? ne) ©
where

Ki+K3 =kia'=*[|d|* +le|* +2R,(de)]. (10)

In each of the three cases the energy release rate goes to zero or becomes unbounded
as a — 0 depending on whether A is less than or greater than 1/2. But the dependence of ¢
on a is very weak since A differs only slightly from 1/2 except for & < —0.7 (cf. Fig. 2).
More importantly, the ratio 4,/%, is independent of a (and k,) and is given by

449, = [(1=B/(1—0)][|d]* +e|* + 2R, (de)]/c*. (11)

Thus the relative tendency of a crack to be deflected by the interface or to pass through it
can be assessed using this ratio.

Integral equation methods have been used to solve for the function ¢(a, ) for the case
of the penetrating crack and for d(«, §) and e(a, ) for the two cases involving deflected
cracks. The details of the solution procedures are given in Appendices I and II. The ratio
%./%,1s plotted as a function of « in Fig. 3 for B = 0 for each case. The effect of g has not been
systematically explored since it is felt that « 1s the more important of the two parameters. In
any case, the effect of f on the ratio is not expected to be large, as was seen in a similar
problem (He and Hutchinson, 1989). Note, for example, that § appears explicitly in (11)
only to order 2. The relative amounts of K, and K, at the right-hand tip of the deflected
cracks are presented in Fig. 4 using the measure y = tan™' (K,/K}).

Let %, be the toughness of the interface (which may depend on ) and let 4, be the
mode I toughness of material 1. The impinging crack is likely to be deflected into the
interface if

Gl9. < %4/%, (12)

since then the condition for propagation in the interface will be met at a lower load than
that for penetration across the interface. Conversely, the crack will tend to penetrate the
interface when the inequality is reversed. The deflected crack branching to one side (as
opposed to the crack with the double branch) generally controls the condition for deflection
into the interface since it corresponds to the highest ratio %,/9,, although the double
branching crack could control if %,. depends strongly on . For « not too different from
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Fig. 3. Ratio of energy release rate of deflected crack to penetrating crack at same amount of crack
advance a.

zero, the critical ratio is approximately 1/4. It increases to approximately 1/2 when a = 1/2,
corresponding to a plane strain tensile modulus of material 1 being three times that of
material 2.

The analysis has not addressed the question of the load level required for the crack to
deflect into the interface or to penetrate it. Rather, it has exploited the fact that the energy
release rates of the competing crack trajectories depend on crack advance q, in exactly the
same way. Thus the relative energy release rates can be unambiguously determined and
used to assess which of the competing trajectories will be selected. When 4 < 1/2 it is
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Fig. 4. Combination of interface stress intensity factors at right-hand tip of deflected crack.
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Fig. 5. Stress singularity exponents for crack impinging interface at an oblique angle (f = 0).

necessary to invoke intrinsic flaws in either the interface or in material 1 for the crack to
grow from the tip when a = 0. The condition (12) implicitly assumes these intrinsic flaws
of comparable size. The above conclusions are also drawn under the assumption that the
crack approaches the interface quasistatically. Dynamic effects may alter the conclusions
somewhat when the impinging crack is traveling at a significant fraction of the elastic wave
speed.

3. CRACK TERMINATING AT AN INTERFACE AT AN OBLIQUE ANGLE

There is a peculiarity to the problem of a crack impinging on an interface at an oblique
angle which makes a discussion of the relative tendency for deflection or penetration
somewhat more complicated than the case of the perpendicularly impinging crack. The
peculiarity concerns the nature of the singular stress fields for an oblique crack terminating
at the interface with the geometry shown in the insert in Fig. 5.

For a homogeneous material (¢ = § = 0) or for the crack making a right angle with
the interface between two different materials (w, = 7/2), the most singular stress fields of
physical interest at the tip can be written as

0, = kir~04,(0) + kur () (13)

where 4 = 1/2 for the homogeneous material and 4 is given in Fig. 2 for (@, = 7/2). In
these cases, the eigenvalue problem for the exponent 4 has a double root yielding two
linearly independent fields 6}, and o} which can be taken to be symmetric and anti-symmetric
relative to the crack plane. When the crack lies on the interface (w, = 0) the eigenvalue is
also double with 4 = 1/2 when = 0.

For values of w, between 0 and 7/2 the eigenvalue problem no longer has double roots
when the materials are dissimilar. Instead of (13), the two most singular fields of interest
are

oy = kir~hal)(0) +kor 0P (0) (14)

where A, and 4, are real for § = 0. Corresponding to each eigenvalue is only one eigen-
function instead of two. The two exponents 4, and 4, are plotted as a function of w, in Fig.
5for a = +0.5 with § = 0. If 4, is identified as the larger of two exponents, the dominant
singular field is
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penetrating crack at same a for asymptotic problem characterized by (15) when a - 0 (8 = 0).

oy = kirai(0) (15)

where ¢! (0) is 2 mixed mode -variation which depends on w, and a.

Thus, unlike the problems mentioned above—indeed, unlike most linear crack prob-
lems—~the oblique crack terminating at an interface has a fixed mixed mode (i.e. a fixed 6-
variation) independent of the remote loading combinations acting on the body. The zone
of dominance of (15) may be very small and must vanish as « and § vanish since then the
two-term representation (13) holds. Similarly, dominance must vanish as w; — 0 or n/2. In
spite of the limited range of dominance expected for (15), we have considered the com-
petition between penetration and deflection at an interface for an oblique crack where (15)
specifies the dominant field at the tip of the main crack. These results are discussed in the
next section. In the last two sections, we circumvent the issue of limited dominance of the
asymptotic problem by analyzing an oblique crack under a specific wedge-loading.

4. ASYMPTOTIC LIMITS FOR DEFLECTION VERSUS PENETRATION FOR AN OBLIQUE
CRACK (PROBLEMS B)

In problems Bl and B2 (cf. Fig. 1) the dominant singularity field (15) is imposed as
the remote ficld on the main semi-infinite crack. The competition between penctration of
the interface and deflection into the interface parallels that discussed in Section 2 for the
perpendicular crack under symmetric load. Now, however, the direction taken by the crack
penetrating into material 1, @,, must be determined. The direction chosen will be that which
maximizes the energy release rate.

The stress intensity factors at the tip of the penetrating crack are related to k, and a
by

K1+iK“ =C(a,wl,wZ)k]al/2_ll (16)

where ¢ is a dimensionless complex-valued function and attention wil be focussed on
material combinations with § = 0. The energy release rate of the penetrating crack is
I—v

= Ty 27.2,1- 24,
4, 2. le|*kda'~ 2, (17)

The maximum energy release rate with respect to w, for fixed a is denoted by %;**. The
interface stress intensity factors of the deflected crack can be expressed as (8) with ¢ =0
and k; and A replaced by k, and 4,, respectively. The ratio of the two energy release rates
is again independent of @ and is given by

Y,%9;™ = (1—0) " '[|d|* +le|> + 2R, (de)]/Ic|*. (18)

Numerical results for this ratio as a function of « are shown in Fig. 6 for the case where
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w, = 45°. When material 1 is stiff compared to material 2 (¢ > 0) the maximum energy
release rate of the penetrating crack is only stightly larger than that of the deflected crack.
In fact, when « is greater than about 0.5 the maximum energy release rate of the penetrating
crack is attained for w, — 0 so that the critical penetrating crack coincides with the deflecting
crack. When material 1 is the more compliant material the energy release rate of the
penetrating crack significantly exceeds that of the deflecting crack.

The discontinuity in %,/4,** in Fig. 6 at a = 0 is associated with exchange in roles of
(A1, 4,) and (¢'V(6), ¢'P(0)) in (14) as « changes sign. The §-variation of the dominant
singularity field (15) changes discontinuously as « changes sign. As has already been
mentioned, the dominance of the single field (15) vanishes as « — 0.

We proceed from here by considering the specific wedge-opening loading indicated in
problems C and D in Fig. 1. One consequence of a single dominated mixed mode for the
crack terminating at the interface is that a straight crack approaching the interface will
necessarily experience a mixed mode at its tip. This is illustrated by example in the next
section where its implications are discussed. In Section 6 we reconsider the competition
between penetration and deflection for the oblique crack under the wedge loading for finite
values of a/l.

5. STRAIGHT CRACK UNDER WEDGE LOADING APPROACHING AN INTERFACE
AT AN OBLIQUE ANGLE (PROBLEM C)
With the tip of the crack in material 2, the near tip fields are a combination of modes
I and II. Here we examine the history of K| and K}; for the semi-infinite, straight crack
loaded by the opening wedge forces per unit thickness P shown as C in Fig. 1. The solution
for the stress intensity factors can be written as

K +iK, = cPl™'? (19)
where [ is the distance of the tip from the loads and where ¢ is a dimensionless, complex

function of a, 8, w, and //l,. When / is small compared to /, the crack tip is in mode I with
the well-known result

2\l/2
K - (n) PI=Y% for iy« 1. (20)

As [ increases the crack tip interacts with the interface and some amount of mode II is
induced. Plots of K|,/K, as a function of ///, are given in Fig. 7 for three angles of approach

(w, = 307, 45° and 60°) for two material combinations (« = 0.5 and « = —0.5, each with
B = 0). These results have been computed using an integral equation approach given in
Appendix B.

When the crack approaches a more compliant material across the interface (o < 0) Kj
become negative, although it is very slightly positive for an initial range of ///,. If it were
free to curve following a path with K, always zero, the crack would curve toward the
interface since the straight crack has Kj; < 0. Conversely, when the straight crack
approaches a stiffer material across the interface (« > 0), K;; becomes positive suggesting
that an actual crack trajectory satisfying K;; = 0 would curve away from the interface.
Conjectured trends are sketched in Fig. 8. Similar conclusions have been drawn in the
studies of Erdogan and Arin (1975) and Lardner et al. (1989).

The variation of the energy release rate

(1—vy) ,P?
g :T,thz_|c|2“l__ 1)

with //];1s shown in Fig. 9 for @, = 60° and for « = 0 and +0.5 with § = 0. These variations
reflect the behavior that is well-known for a crack approaching an interface at right angles.
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Fig. 8. Conjectured trends for crack approaching an interface.

When the material across the interface is stiffer than that where the crack resides (o > 0),
% must drop to zero as the interface is approached. But note from Fig. 5 that 4, is only
very slightly smaller than 1/2 for w, = 60° and a = 0.5, and thus % has not yet started to
drop steeply even when //l, = 0.95. When o = —0.5, corresponding to a more compliant
material across the interface, 4, = 0.67 and the increase in % as the interface is approached
is more dramatic.

6. DEFLECTION VERSUS PENETRATION OF A WEDGE-LOADED CRACK
IMPINGING AN INTERFACE AT AN OBLIQUE ANGLE (PROBLEMS D)

The main semi-infinite crack in Set D in Fig. 1 is subject to opening wedge loads, P, a
distance, /, from the interface along the crack line. Competition between penetration (D1)
and deflection (D2) is analyzed. As noted in the previous section an oblique crack under the
wedge-opening loading is not expected to approach the interface as a straight crack.
Nevertheless, the problems analyzed in this section should give further insight into the
crack deflection process. Moreover, the results of this section place the behavior of the
perpendicular crack in perspective.

The solution for the stress intensity factors in problem D1 can be written as
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K +iK, = c(o, 0y, w,,a/) Pl "* (22)

where ¢ is a dimensionless complex-valued function of the arguments indicated (f is again
taken to be zero). The energy release rate is

%, =7MT|C|“T- (23)

~ Conjectured behavior tor

Ocasg<< .}

-05 o] 05

w, = 45°

Fig. 10. Ratio of energy release rate of deflected crack to maximum energy release rate of penetrating
crack at same a for w, = 45°and f = 0.



Crack deflection at an interface 1063

— | 1 |

-1.0 -0.5 o] 0.5 1.0
Q

Fig. 11. Ratio of energy release rate of deflected crack to maximum energy release rate of penetrating
crack at same a for wedge loaded crack with w, = 30°, 45°, 60°; a// = 0.1 and § = 0. The curve for
w, = 90" is from Fig. 3.

With § = 0, the interface intensity factors for the deflected crack can be expressed in
a manner similar to (22), i.e.

K, +iK, = d(o, 05, a/[YPI~ V2, (24)
The energy release rate of the deflected crack, %, is again given by (9) (with ¢ = 0) where

Ki+K3 = |d|*PYL
The ratio of the competing energy release rates is

=
l[J:fon(%z) --90°

- ~80°

—-0.5 o] 0.5 1.0

Fig. 12. Combination of interface stress intensity factors at tip of deflected crack for w, = 30°, 45°,
60° and 90°.
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G %5 = (1=)~"d)?/|c]?. (25)

This ratio is plotted as a function « for w, = 45° in Fig. 10 for @/l = 0.5 and 0.1; the
asymptotic limit of Section 4 for a/l — 0 is also included, taken from Fig. 6. Equation (25)
has a finite limit as ¢ — 0, and we believe that this limit must be the asymptotic result of
Section 4. We have not attempted to compute the ratio (25) for values of g/l smaller than
0.1. However, we conjecture that results for significantly smaller a/l will approach the
asymptotic limit in the manner indicated in Fig. 10.

Curves of %,/47** as a function of « are shown in Fig. 11 for ¢/l = 0.1 and w, = 307,
45°, and 60°. Included also is the curve from Fig. 3 for the singly deflected crack with
w, = 90°. The associated measure  of the relative combination of the stress intensity factors
of the deflected crack is given in Fig. 12. As one would expect intuitively, the competition
between deflection and penetration becomes more favorable to deflection the more oblique
is the crack impinging the interface. If one desires to design the toughness of an interface
such that a crack of any orientation will be deflected, then the results for the perpendicularly
impinging crack (w, = 90°) control the choice of interface toughness. For a-values in the
range of —0.5 to about 0.25 the toughness of the interface (measured in energy units) must
be less than about one quarter of the toughness of the material across the interface if all
cracks are to be deflected.
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APPENDIX A: INTEGRAL EQUATIONS
In this Appendix we set up the integral equations for the plane strain problem specified in Fig. A1, which is
representative of several of the various problems.
Let a.(n) and ay(n,) be the r and # components of an edge dislocation located on the radial line 6 = w, at

Z,=n,e", and let b.(n,) and by(n1,) be the r and 0 components of an edge dislocation located on the radial line
0 = n+w, at Z, = y,e' "9, The stresses induced by a dislocation can be obtained using the Muskhelishvili

method and are given as follows.
Zn’”’)f ian
uy

22= nze i(m+wy)

Fig. Al. Geometry conventions.
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The stress components g,y and 6,5 at a point Z = 1,¢'™**? on the radial line & = n+w, induced by the
dislocation at Z, = n,e'"*? are given by
Oo+i0,0 = 2B(n;y) €1 (n—1,) + B(1)G (M3, £5) + B(n3) G (12, 1) (Al)

Similarly, the stresses at a point Z = {, e on the radial line 0 = @, induced by the dislocation at Z, =

n, e+ are given by
Goo+i6,5 = B() Fa(ns, 1)+ B(n;)Fa(na, 1)), (A2)

The stresses at a point Z = ¢, e on the radial line § = w, induced by the dislocation at Z, = 5, ¢'1 are given
by

Og+iog = 24(n,) € (t,~n)+A@)IF(n, 1)+ AWM ) Fa(n1,10). (A3)

The stresses al a point Z = ¢, €™ *? on the radial line § = 7+, induced by the dislocation at Z, = #, €' are
given by

OonF+i0,0 = AM)G3(m1, t) + A7) Golny. 1) (Ad)
wherei = ./—1, () denotes the complex conjugate, and

A(n)) = w,/[4ni(1 —v)](a, +iay) e
B(n,) = po/[4ni(1—v,)](b, +1b,) eitr+oy) A5)

and where

1 Z,—2, -z
G, =—6 — — + %2 —
! ((z—z» G-z " (Z—Zz)'>

—5( 1 Z;— 2, 2‘“,2522*52)(24”2_2_25))_ A 2,
z

G = f—zz_(z“fz)z e (z—12,)* _;_726
5y 1781 o B8 H1-8) 50, -)
=h (z—2,)
—A L (1=6
G4=(l' _I)_+_621m3( I)
2=z z—2z,
! iz 2w, G1—2)
" _‘S‘<7—?.'(z'~z,)2 BRERNCEEAE
- 1 Zy—Zy 2, (z,—2))(z4+2,-22) AL
Fa= 61(5—21 (2“21)2+e (z—z)° =5
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The semi-infinite reference crack corresponding to 0 < 7, < o is represented by a distribution of dislocations
B(n,), and the segment of crack corresponding to 0 < n, < a is represented by a distribution A(y,). The B(n,)
and A(n,) are chosen such that the net tractions resulting from eqns (Al), (A2), (A3) and (A4) are zero everywhere
on the crack surface. Since the a-dependence of the solution is known from dimensional considerations, a can be
taken to be unity. The dual integral equations are then
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2'( -_——(,(7”2) f) d’72+£ [B(12)G1(13, £2) + B(n2)G1 (2. 13)) dnz+f A0 )Gy, 1)+ An)Ga(ni, 1)1 Ay =0
0 27 2 0

zf Am) dnu+r (Br)Fs(n, 1)+ Bl1a)Fatnan12)] s
o (Li—m) 0

+J; [AWmIF ¢y, 1)+ AN Fa(ny, 1) dny = 0. (A9)

With the changes of variables
na=(1+&)(1=E&), = (+u)/(1—us). (AL0)

The integral equations (A9) can be rewritten as
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where D(&,) = B(n,). The representations of A(x,) and D(&,) for the different problems are constructed in
Appendix B. The stress intensity factors at the tip of a deflected crack are given by

K +iKy = Qm)¥? e lim {1—n)""4(n)}. (Al2)
L i

APPENDIX B: DISLOCATION REPRESENTATIONS

The representation of the dislocation distributions for the different problems are summarized here.

Problems Al and Bl

The remote field imposed on the semi-infinite crack is (3) in Al and (15) in Bi. Let § = u(r, —n+w,)
—u(r,m+w,) be the relative displacements of the crack faces associated with these fields. From the singularity
analysis for the crack terminating at the interface, the remote dislocation distribution can be obtained from
b = dé/dn, and eqn (AS) as

B(n,) = coni*k (BL)

where k =k, in Al, and k =k, and 1 = 4, in Bl. The complex constant ¢, is determined by the singularity
analysis.

The most singular stresses in the vicinity of the kink of the crack (at x = y = 0) have the form & ~ r~76(6)
where, in general, p is a complex number depending on «, §, w, and w,. Hein and Erdogan (1971) have obtained
the equation for p. When f§ = 0, p is real. In the neighborhood of the kink B ~ n3” and 4 ~ 57”.

The representation of D(&,) which builds-in the correct singularity at the kink and which approaches eqn
(B1) remote from the interface is

1=&, V(1 —7 m
D(¢,) = ( 2é~) ( ‘;fz) [Cok+(l_‘fz) Z, dka—](éE)] (B2)

where the ds are complex coefficients which must be obtained in the solution and process and T,(,) is the
Chebyshev polynomial of first kind of degree ;. The representation for A(n,) is taken as

A(m) =n7r(1—y,) "2 z ami! (B3)
=1
and, by (A12), the stress intensity factors at the tip of the crack are

K +iky = 2m)¥r e Y a,. (B4)
j=1

By substituting (B2) and (B3) into the two integral equation (A11) one obtains the two equations,
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S B ) + AP )]+ 3. [,G () 4 6,H ()] = L) (BS)

k

i [ Ex(t) +dFalt)]+ i [a,Go, () +a,Hy (1)) = Li(¢y) (B6)
= =1

1 i=

where integral expressions for Ey, Fy, G, H, and L, are readily identified. To determine the m+n complex
coefficients d, and a,, (B5) is satisfied at m Gauss—Legendre points on the interval —1 < u, < 1, and (B6) is
satisfied at n Gauss—Legendre points on the interval 0 < 1, < 1. On the basis of numerical experimentation with
various choices of m and n, the calculations were carried out with m = n = 8. We believe the results for the energy
release rates reported in the figures are accurate to within about one percent. In the case of problem Al, symmetry
implies that the real parts of d, and «, are zero.

Problem D1

The formulation of problem D1 is similar in most respects to Bl except that the concentrated wedge loads
must be applied. This is accomplished by considering the solution for a concentrated force P acting on an otherwise
traction-free boundary of a semi-infinite plane. The singular behavior of N(r,) near n, =/ must be consistent
with this solution. i.c.

B(n;) » — P e“:f[2n%(n, D] (B7)
as n, — [. The dislocation density remote from the wedge loading will have the form
B(n;) cn7* for ny— oo (B8)

where 1* is the eigenvalue of the problem in Section 3 which is the next larger than 4, and 4, in (14). This exponent
characterizes the asymptotic outer solution to the semi-infinite crack problem for a loading which is confined to
the vicinity of the tip.

A representation for D(&,) consistent with the above features and the singularity at the kink is

D) = (1-£)"(1 +éz)"’[C(€z—fo)’ : +ki & T, 1(62):| (B9)

where

C=—Pe"r (18> “(1+&,)"/(4n?) (B10)

and &, = (/—1)/(1 +/). The representation for A(n,) is still given by eqn (B3). The integral equations reduce to
the form given in (B5) and (B6), and the solution procedures are the same as described above. The results reported
were computed with m = n = 8.

Problems A2, A3, B2 and D2

The formulation of these problems differs from their counterparts above only in that the portion of the crack
beyond the kink lies along the interface. When § = 0, eqn (A3) gives the traction on the interface when w, -0
with Fi =0and F, = —(8,4+A))/(t,—n,). The second integral equation in (Al1) reduces to

"A(m) dﬂ

1—
(1= o (ti—m)

+£1 [DEDF3(n2, 1)+ DEDFa(ny, D1~ &) dé, = 0. (B11)

The representations for A(xn,) and D(&,) are still given by (B2) and (B3), and the interface stress intensity factors
are given by

K, +iK, = (1—)(2m) ¥ i a, (B12)

Jj=1

Problem C
The integral equation governing the dislocation distribution B(n,) for the wedge loaded crack approaching
the interface is

o

2L Bmyn—n~" e dﬂ+J [BDG, (1, )+ BG,(n.0] dn = 0 (B13)

0

where 7 and ¢ are zero at the crack tip. The distribution B(r) must be consistent with the wedge loading (B7) and
a square root singularity at the crack tip. The representation used is the same as that in (B9) and (B10) with
p = 1/2. The integral equation is reduced to algebraic equations for the m complex coefficients d, as in the previous
problems. The results reported in Figs 7 and 9 were computed with m = 20 for ///, < 0.7 and m = 30 for //l, = 0.7.





