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This paper is aimed at establishing a statistical theory of rotational and vibrational excitation of
polyatomic molecules by an intense IR laser. Starting from the Wigner function of quantum
statistical mechanics, we treat the rotational motion in the classical approximation; the
vibrational modes are classified into active ones which are coupled directly with the laser and the
background modes which are not coupled with the laser. The reduced Wigner function, i.e., the
Wigner function integrated over all background coordinates should satisfy an integro-differential
equation. We introduce the idea of “viscous damping” to handle the interaction between the
active modes and the background. The damping coeflicient can be calculated with the aid of the
well-known Schwartz—Slawsky-Herzfeld theory. The resulting equation is solved by the method
of moment equations. There is only one adjustable parameter in our scheme; it is introduced due
to the lack of precise knowledge about the molecular potential. The theory developed in this paper
explains satisfactorily the recent absorption experiments of SF irradiated by a short pulse CO,

laser, which are in sharp contradiction with the prevailing quasi-continuum theory. We also
refined the density of energy levels which is responsible for the muliphoton excitation of

polyatomic molecules.

1. INTRODUCTION

Using lasers to excite and dissociate molecules selective-
ly is one of the most important topics in laser chemistry. A
large amount of experimental data has already been accumu-
lated. Theoretical approaches also have made great ad-
vances.'™ However, the generally accepted quasi-contin-
uum theory, though quite successful in interpreting the main
features of the physical process, is still schematic and not an
ab initio theory, and the basic idea of quasi-continuum, i.e.,
the density of energy states relevant to the multiphoton ab-
sorption is still of some controversy.® As far as the present
authors are aware, only few attempts were made to develop a
systematic theory. In the work of GYFH,® the authors start-
ed from the Schrodinger equation of molecular vibration and
applied the idea of intramolecular energy exchange through
Fermi resonance to calculate the process of excitation and
dissociation of SFg; the rotational motion was considered in
an ad hoc way in connection with the idea of rotational com-
pensation. The approach adopted by Ho and Chu* is difficult
to extend to polyatomic molecules due to the computational
complexity. Recently Kwok, Yablonovitch, and Bloember-
gen’ made a series of elaborate experiments on SF and dis-
covered a remarkable deviation from the predictions of the
prevailing quasi-continuum theory. Due to the progress in
short pulse techniques, the study of the physical phenomena
pertaining to the molecular excitation is expected to be even
more active, and it is worthwhile to attempt a systematic
theory of coherent excitation, including both rotational and
vibrational motions, from first principles. We shall show in
the following our plan to achieve this goal.
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il. THE WIGNER FUNCTION AND ITS SIMPLIFICATION

Compared with the usual presentation of quantum sta-
tistical mechanics with a density matrix, the function named
after Wigner and originated by him in the early period of
quantum mechanics apparently has not been widely used.
Except for being able to take negative values, the Wigner
function shares many properties of a probability distribution
function.® For a system of weakly anharmonic oscillators,
we can make use of the classical concept and the mathemat-
ical method thereof, since for a system of harmonic oscilla-
tors, the Wigner function reduces simply to the classical dis-
tribution function.

We assume the molecule is comprised of N atoms (the
motion of the electrons is neglected by adiabatic approxima-
tion) with the Cartesian coordinates Q,, momenta P, , and
masses M, , then the corresponding Wigner function f(Q,
P, t) satisfies®

a Ny P 2 .

3{—+ y EVQkf ~ 5 sin

x [ 2947 @1 s@P.) =0, (1)

where Q, P are the sets of Q, and P,, U consists of the
molecular potential and the potential due to external field (in
dipole approximation). Vg operates only on U(Q). We can
also write

‘2—{ +2 5in [—;i-(é%,—a%)]flf =0, @
where '
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Q=Q,=Q
H = ;Pﬁ/ZMk + U(Q»t )’ (4)

are classical Poisson bracket and Hamiltonian, respectively.
If #0 Eq. (1) or Eq. (2) reduces to Liouville’s theorem. It is
noteworthy that although the Poisson bracket is invariant
with respect to canonical transformations,® Eq. (2) is valid
only for rectangular coordinates and not valid for arbitrary
canonical coordinates.!® Introducing the new coordinates:
mass center R (neglected in subsequent discussion), the Eu-
lerian angles for rotation (6,4,y) and the coordinates of prin-
cipal vibrational mode ¢, (i = 1, 2,...,3N-6) and their conju-
gate momenta (py, Py, P, ), Pi» We can write Eq. (1) as

‘;{ +{H, Yo, — [ ; sin[—z- A -v,,] - vQ-v,,}

xXU(Q,t)f =0, (5)
where
JHJIf OH df | JH 3f
{H,1} ==z == 2
S Jos, = ps 30 ' 3p, 36 = dp, Iy
+ zélf_é_f__a_Hﬂ_ 9H 3f
dp; dg; 30 dp, I dp,
_GHdf OHILS (6)
aX apx T dq; dp;

The third term in Eq. (5) represents the quantum effect and is
very complex if written out in the new coordinates. How-
ever, due to the smallness of the rotational energy spacing in
comparison with the laser frequency in experiments, we can
treat the rotation classically and this is already included in
the second term of Eq. (5), while in the third term we can take
all the rotational coordinates as frozen, only appearing as
parameters in U(Q), and in the operators we only need to
consider the role of g; and p,. Since the principal mode co-
ordinates g;, p, can be taken as rectangular, the quantum
effect in it is obviously {(2/#)sin[(#/2)V,-V,]
— V.-V, 1U f (q, p, stand for the sets of g, and p; ). Therefore
Eq. (5) can be simplified to

d 2. (4
a—{ + {H’f}QPo - {—ﬁ-sln(?vq-vp) — Vq 'Vp }Uf = 0,
(7)
H=T, +T, + Up + Up, (8)
where T,, T,, Uy, U, are the molecular rotational and
vibrational energies, molecular potential and potential ener-

gy due to external field, respectively. If the principal mo-
ments of inertia of the molecule are 4, B, C, then

T, = {pe siny — (p, — P, cos 0)(sin §)~'cos y}*/24

+ {po cos y + (p,
2B + p2/2C. 9)

(The following discussions are referred to SFe so
A = B = C.) We take the vibrational modes coupled directly
with the laser as active (such as v, of SF), with coordinates
(g, p), and take all the remaining modes not coupled directly
or coupled weakly with the laser as background with coordi-
nates (g, p,), the corresponding reduced masses being m
and m , then

~ p, cos 8 )(sin 8)~ 'sin y }*/

T, =p*/2m + 2 pi/2m,. (10)

In regard to U,,,, the harmonic part is easy to write, but for
most molecules, the anharmonic part is not known precisely.
By spectroscopic data of the active mode, it is usually possi-
ble to describe its anharmonic effect by ( — €g*) (see Sec. V),
hence we write

Uype = ma’q’/2 — eg* + Zm s0545/2+ U'(g, q,),(11)
where U’(q, ¢ ;) stands for all other anharmonic terms. In
dipole approximation

U,

et = — E(t)ug cos 6, (12)
where E (t ) is the laser electric field (linearly polarized), u the
dipole moment. For the sake of simplicity, we only write one
term for the active mode in Eqgs. (10}—(12), but the v; mode of
SF, has degeneracy 3, it suffices to multiply the final relevant
results by the factor 3.
We integrate Eq. (7) with respect to [] dg; dp;. Define
bj

[Tl da,=F 00000 21001)
J
and with the help of the natural boundary condition

flql——voo = =O’

flpj—bec

we get

OF  OH'OF  OH' OF
ot  dp, 960  dp, O
OH' dF p OF JQH' JF
+___—_.__
apx dy mdg
a°%F
ap?

— (mw’q — 4€g® — pE cos 6 )‘;—F — #eq
/4

2. (# 2 B)J‘ ,
— = —_— U dq,dp, =0, 13
sm(2 % o frjl q;dp; (13)

where

H'=p/2m + T, 4 (ma*¢*/2 — €g*) — uE (t )q cos 6.
(14)

In the last term of Eq. (13), due to the action of the operator

J. Chem. Phys., Vol. 84, No. 1, 1 January 1986

Downloaded 10 Nov 2009 to 159.226.231.70. Redistribution subject to AIP license or copyright; see http://jicp.aip.org/jcp/copyright.jsp



116 X. Bo-Min and W. Xie: Theory of multiphoton excitation

.(ﬁ a 8)
sin| ———,
2 dq ap

all terms in U’(q, g;) that contain merely the background
coordinates disappear, only the terms containing the pro-
duct of ¢ and g, i.e., representing the interaction between
the active mode and the background will be reserved. Equa-
tion (13) contains the integral of the unknown function f, so
it is difficult to handle. But it is remarkable that for a system
of harmonic oscillators with linear interactions, Ford et al.!!
had proved rigorously that when the number of oscillators is
large, the interaction between the active oscillator and others
can be characterized simply by viscous force. We borrow this
idea to simplify the last term in Eq. (13), and rewrite it as

OF OH'OF A OH'OF GH'JF  p o

E3 dpe E7) dps % dp, Oy m Jq
dH' dF 2 3 JF d°F
— — — 4€q® — uE cos O — — #
30 p, (mw*q q- — puE cos )3p €q P
—'(2£+1F)=o. (15)
mdp m

It can be shown readily by the method of classical statistical
mechanics,'? when %0, Eq. (15) is the equation of contin-
uity in phase space of a system of oscillators with viscous
damping, while the equation of motion of each oscillator is
mg + v§ + (mw’q — 4€¢’) = E (¢t} (Here and afterwards,
the dot means differentiation with respect to z.) We shall
clarify how to determine the coefficient of viscosity v later
on.

lil. THE MOMENT EQUATIONS

Since the coefficient of viscosity v can not be a constant
{see Sec. IV), we shall use the approximate method of mo-
ment equations to treat Eq. {15). We define the rotational
energy

E, = {ps + (s — P, cos O(sin 6)* + p} }/24,
the vibrational energy

E, = mo’q*/2 — €q* + p*/2m,
and use the symbol “ A to represent the ensemble average
in terms of Wigner’s function, e.g., E, = fE, FdQ,
(dQ = dOd¢dydpedp,dp, dqdp) then from Eq. (15) we can
get

dE, E —~
e _”T(peq sin @), (16)
dE — o~
s EE  cos 6) — 25 (17)
dt m m
4 (g cos 6) = {5 cos §) — {p,q sin 9) (18)
dt m A
—4" = =pg), (19)
dt m
d—~ i 3 2N VT
_tp = 2uE (p cos ) + 8¢(pg’) — 2mw*(pq) — —p~,
d. m
(20)

dt m
7~ N v~
+ 4eq +uE(qcos6’)—;(pq), (21)
d N N v 1 /\
Z(pcosﬁ)=yEcos20——(pcos0)——7(pgpsm0)

T

— mo*(g cos ) + 4€(g® cos 6). (22)
In deriving Eqs. (16)22), use was made of the boundary
conditions F |4_o =F |4_, =0 which are valid for the
classical distribution function and assumed to hold here too.
These moment equations cannot be closed without further
physical assumptions. For polyatomic molecules at room
temperature (much less under low temperature} the rota-
tional frequency is much lower than the vibrational one (the
ratio is about 1/100 for SF), while the laser frequency is
close to the latter, hence viewed from the rotational motion,
laser is of high frequency, the rotational energy cannot
change 9§wiably even in multiphoton process.'* For the
term (pyg sii @), gis a high/f@uency part while p, is a low
frequency part hence (pgq cos@)=p, (g cos 8)=x0{p, =0),
(p7q sif 6 )= 0. Obviously we can take cos’ § = 1/3. Finally
we assume (7> cos 0 )=x(g?)(g cosB), ¢ = W, the physical
significance of these is that for an anharmonic oscillator with
potential

P - gy

2 m
we take it to be a harmonic oscillator with an equivalent
frequency w,,, while w,, is calculated by the Wigner ensem-
ble average, ie., 0}, = w® — 2eg*(t)/m. With all these in

mind and writing g. =¢cos6, p, =pcosb, u=I(¢%,
v = (pg), w = [p?), we get from Egs. (16) — (22),

4. =p./m, (23)
be +vp./m + ma’q, = pE /3 + 4euq,, (24)
u=2v/m, (25)
0+ w/m — w/m + mo’u = uEq, + 3eu?, (26)
w + 2vw/m — 2mo’v = uEp, + 8euv, (27)
ifti = %Epc - ;V;w, (28)

and E, =const. Equations (23}+27) form a closed system. It
can be seen that they are not completely equivalent to the
equation of motion of a classical anharmonic oscillator with
damping. The quantum effect (%) does not appear explicitly
and this is a simplification brought forth by our assumption
(— eg*) about the anharmonic potential. However, # will
enter eventually through the coefficient of viscosity v.

IV. INTRAMOLECULAR ENERGY EXCHANGE
BETWEEN VIBRATIONAL MODES AND COEFFICENT v

Now we turn to the problem as how to determine v,v
characterizes the energy exchange between the active mode
and the background. The most important process regulating
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the energy exchange between various vibrational modes is
Fermi resonance. Two conditions must be met for such pro-
cess to occur. First, the resonance condition must be satis-
fied, at least nearly, i.e., the energy defect of the correspond-
ing process is small (say, less than 30-50 cm ') and second,
the anharmonic term of the potential that causes such modal
transition should be consistent with the symmetry of the
molecule. Since the more the vibrational modes involved, the
smaller the corresponding probability, it generally suffices to
consider the lowest order processes. For the molecules SF,,
the Fermi resonances and the anharmonic terms causing the
corresponding transitions are the following®:

vy + v =¥, + vs + 16 cm ™" (¢1459596),

v+ vy =2v, + 16 cm™ ' (¢ ¢:94)s 29)

V3 + v = 2v, + 28 em ™ (g3 ¢396),
V3 + v =V, + v, + 55 cm ™! (¢29:9.96)-

We apply the well-known SSH theory'* to treat these ran-
dom processes. The SSH theory, though simple enough, has
yielded quite good results in treating the intermolecular pro--
cess of vibrational energy exchange.'’ Neglecting all deduc-
tions {see the Appendix), for the processes (29), we get

%2 = R (1,5-3,6) + R (2,4—3,6)

+ R (1,1-3,4) + R (2,2—3,6), (30)
where

R k=i, j) = P(.-, /){(1 + AN+ A Md,

— A1+ A1+ 4} (31)

and R (k,J—i, ) = — R (i, j—k,!),A; = E,/#iw; is the num-

ber of quanta of mode i (E; the vibrational energy, @; the

frequency). Wheni = j(ork = /), wetakethem tobe belong-

ing to different degenerate energy levels. P(i, j) = P(k, ,) is the
k1 ij

transition probability of the process (v, +v; = v, +v/)
such that the quanta of /, j change from 1 to O (or 0—1) and
the quanta of k,/ from O to 1 (or 1—0). It is noteworthy that if
the relevant modes of some process are in thermal equilibri-
um and can be characterized by temperature 7, then
A; = A P={exp(fw,/kT)— 1} ' and R = 0O (the energy de-
fect of the process being neglected), i.e. there is no energy
exchange among them in average. For a polyatomic mole-
cule, the number of background modes is numerous, and
because they are not coupled with the laser, we can use the
idea of “heat bath” and characterize their states by tempera-
ture 7. For the active modes, naturally its energy cannot be
described by temperature 7. Specifically for SF, we put
A; =A0TY(i#3), A, = AP + A5, From Eq. (30) we get

ds_ _ re 0
= SHT)A, —AD(T)], (32)

where

£
1 1

e e [P (1 +AO + A0 OO

(7575 @) [Fupft +200 wasme

+ Bl +ADPADLD + Pl + A DALY

1,1 12

+ P(s,e)(l +AD+ADU DA (6()!]' (33)

2,4

Obviously the change of the background temperature T is
much slower than the change of 4., we can take T as quasi-
stationary. Equation (32) can be written as

%[/13—1‘;”(7")1 = fHT)[A—ADT)]. (34

On the other hand, for a harmonic oscillator with damping
mX% + vk + mw®x = 0, the energy dissipation rate is — vx*.
If we count the energy from its equilibrium value in Eq. (34),
then Eq. (34) is also the dissipation equ% therefore
vi2 = fHT)[A; — A D(T)]#w. Moreover, mx*/2 =#iwi /2

thus we get
v=mfHT)[1 -A0/4;]
=mfT)[1-EOTVE,], (35)

where EO(T) = #iwd O(T), E, is the energy of the active
mode. Equation (35) makes the bridge connecting the viscos-
ity vand the probability P. The background temperature T'is
determined by the total energy E,. We use the convention
that when E, is distributed over all modes to reach an equi-
librium state, the corresponding temperature T is called the
background temperature. SF, has 15 modes, so the tempera-
ture T is defined by

R 15
E = zﬁa)i{exp(ﬁco,-/kT) —1}-. {36)
=1
If the energy of the active mode is also characterized by 7,
then v =0 from Eq. (35). From Eq. (28) we see equation
governing E, should be (v, has degeneracy 3)

dE, dE,

Lo (8 v )23
dr 3( dr +m2w) mE(t)p°' (37)

Now the only problem unresolved is the transition probabil-
ity P.

V. THE TRANSITION PROBABILITY P

Neglecting the rotational band temporarily, the energy
levels of a specific vibrational mode can be approximately
represented by E, = fiwf(n + 1/2) — x,(n + 1/2)%]. It can
be proved readily by perturbation theory'® that an oscillator
with the potential (mw?g?/2 — €q®) possesses this energy
structure, where € = 2x, m’w»*/3#. From the spectroscopic
data of SFg,'” for mode v, we have x, = 0.0013, It is legiti-
mate to assume the anharmonic part of the potential being
derived from the expression, such as
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2 6 4
Ugy = — 7:,( zq:) : (38)

i=1

where g/ = m}?w¥*q,/#"/%, because this reduces to ( — €g*)
if all g; vanish except i = 3. Expanding Eq. (38), we get the
terms such as ¢;g3;qsqs, which induces the transition
(1,5e23,6) etc., therefore, we take the interaction potential
among various modes as — 4x,Cq1¢3¢5¢s, etc., where Cisa
constant of order 1-10. From the conventional perturbation
theory we get

P —E—g-ixzﬁ(w wsws0q) *p(E ) (39
(1,5)— 13 e Th@1@50306 P\E ), )
36

etc. In regard to the density of energy levels, if we follow the
current quasi-continuum concept and consider the inevita-
ble rotational energy change accompanying the vibrational
energy transfer caused by Coriolis effect, we should seem to
take the density of rotational energy levels. For the spherical
top SFg, its rotational energy E;, = #°J (J + 1)/24 with de-
generacy(2J + 1) thusp(E ) = dN /dE =4A4J /#*. The typi-
cal value of J at room temperature is 50. The result of m

merical computation with this data put in shows that tkL.
energy exchange is too fast and the energy absorption can
not match with the experiments.Recently, Abram et al.’ also
cast doubt on the quasi-continuum hypothesis. We are in-
clined to consider the correct physical picture as following.
The Coriolis effect induces the degenerate vibrational levels
to split and induces the scrambling of vibrational modes (this
effect is particularly remarkable for spherical top'®). In the
intermodal energy exchange, not all (2J + 1)? rotational lev-

els play the same role, the density responsible for this energy
exchange should be dN /dE = (AE) ! where (AE ), is the or-
der of Coriolis splitting of degenerate vibrational levels,
i.e.,'® (AE), = {J#/A, the constant { has order 1. This can
also be interpreted as one kind of rotational compensation.
For SF, (AE), is about 10 cm ™, thus p(E )=4 /#J. Put
J = 50 into Eq. (39), we get
2

P ( ;z) = Tﬂ:;é‘;xf(a’la’swsws)”“- (40)
The other probabilities can be calculated in a similar way.
Thus far, we have completed our theoretical scheme. Except

one adjustable parameter C, all is derived from the basic
principles of physics.

VI. COMPUTATIONAL RESULTS AND DISCUSSION

The system of equations to be solved are Egs. (23)-(27),
or after eliminating p. and v, are the following three equa-
tions involving ¢.., # and w:

mij. + vl +mo'q, = LBy cos 0,1 + deug, (41)
mii + vt + 2mo*u — 2w/m — 8€u*> = uE,cos w,t - q.,
(42)
miw + 2vw 4+ m*wi — dem>uts = 2um?Eq cos w,t - §,
X[E(@)=E,cosm,t]. (43)
E, and E, can be determined from Egs. (28) and (37). We use

the usual method of “slowly varying amplitude”!® to solve
Eqs. (41)~(43). Put

N

40

30

20

10

A 1

FIG. 1. Unimolecular energy ab-
sorption of SF. Intensity of laser
I=10" W/cm? Laser frequen-
¢y w, = CO, P(20) = 0.9%6w, »
the frequency of v; mode. n, =

number of photons absorbed by
one molecule. n, = number of
photons absorbed by cach v,
mode. T= kT /fiw. T the equi-
valent vibrational temperature.

o 1 2

ax10’
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-

0.6

FIG. 2. Unimolecular energy
absorption of SF,. 1= 10° W/
cm?. o, = 0.999w. Other sym-
bols have the same meanings as
in Fig. 1.

changes, the physical picture remains the same. The other

- 1 L { ,
° ! 2 3 4 sxio® Ot
g. = Q\(t) cos @1 + Ot} sin w1,
u = Uylt) + Uy(¢) cos 20,1 + U,(t) sin 20,1, (44)

w= Wyt)+ W,(t)cos 2wt + W,(t) sin 2w,¢,

where all Q, U, W are assumed to be slowly varying (com-
pared with w, ) functions of ¢. Substituting Eq. (44) into Eq.
(41)-(43), neglecting Q, U, W and all terms of frequencies
higher than , or 2w, , we obtain a system of equations in-
volving Q,U, W, and then solve them numerically. In the
course of computation, v is determined from Eq. (35), T from
Eq. {36), P(J,,) from Egq. (40), etc. After trial computations,

3,6
we decided to take C = 1. If C varies in a certain range (e.g.,
0.8<C<3), only the numerical value of energy absorption

100
n

o

/_CALCULATION
. EXPERIMENT’

o1 1 1
0.001 0.0t 0.1

FLUENCE (1/cm?)

FIG. 3. Relationship between energy absorption of SF, and fluence.
@, = P(20)CO,. Pulse duration 30 ps.

data needed in such computations are: The frequencies of
various modes of SF,, @, =773.6, w, =642, w, =948,
w, = 615, s = 523, wg = 364 cm ™', the dipole moment of
each v, mode taken from the average value given by Bloem-
bergen® but divided by /3. As for the initial conditions, we
should take into account the zero point oscillation,?* so
mw’qh, = Py /2m = fiw/4 (the effect of room temperature
is neglected due to its smallness). Since €0s” = 1/2, we take

q.(0)= ,/% (Oi = 2—\1/_2—\/7(517) . Besides, we put

U(0) = #2mw)~", W(0)= mwfi/2, U,0)= U,0)= W,(0)

= W,{0) = 0, T'(0) = 300° K. Figures 1 and 2 depict the typi-
cal results. At low laser intensity, the bottle neck effect due
to anharmonicity is not overcome yet, the average absorp-
tion shows nearly periodic structure with average value
slowly increasing with time. At high laser intensity, due to
the strong intermodal interaction and the scrambling of en-
ergy levels, the energy absorption is significantly enhanced.
If the pulse duration is fixed, the energy absorptions increase
with the fluence (Fig. 3), i.e., with the intensity. The increase
of absorption with laser intensity is much faster than the
increase with time at fixed intensity. At high intensities, par-
ticularly, the absorption strongly depends on laser intensity
(Fig. 4). This demonstrates clearly the difference between the
present theory and the quasi-continuum (QC) theory. In the
latter case, one replaces the Schrodinger equation by appro-
priate rate equations, and in doing so, the phase relation
between the excitation force and the molecular vibration is
completely neglected. This approximation is valid only
when the intramolecular dephasing time 7, is much shorter
than the characteristic transition time wy ', or’

or<T 5 L (45)

where w, = #i~ 'uE, is the Rabi frequency. But for the pico-
second pulses with high intensity, as pointed out in Ref. 7,
the inequality (45) is not obeyed and hence the QC theory is
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as| N t
40
35 r—
FIG. 4. Relationship of energy ab-
30} sorption of SF4 with laser intensity.
Fluence = 0.2 J/cm?®. @ experimen-
tal results (Ref. 7),— present theory.
25 The shade area represents the
asymptotic behavior based on quasi-
continuum theory (Ref. 7). The verti-
20k cal lines are the error bars in the ex-
periments.
15 |-
10 |
5| .
[ ]
. J 1(W/CM?)
1
10 10° 108 100 10%

invalid. While in this paper, we observe the phase relation
between the excitation and the active mode from the begin-
ning and therefore the effect of coherent excitation is includ-
ed, though approximately. But due to the introduction of
viscosity v, the dephasing time T, can not be predicted ac-
curately. The familiar results of red shift in absorption for

SF, is also revealed in our computation. For instance, when
I'= 10" W/cm?, the peak of absorption is at @, = 0.996w,
while when I = 10®* W/cm, it is at , = 0.999w. Figure 5
shows the change of E ‘j"/f'l',, with time, this ratio embodies
the extent of approaching equilibrium among various
modes. When the intensity is low, although the absorption is
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FIG. S. E,,, the vibrational energy
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weak, the imbalance of the energy between the active mode
and the background persists and does not decay to thermal
equilibrium. But when the intensity is high, the energy distri-
bution approaches thermal equilibrium more readily. We
can also see from these results that just as in previous investi-
gations,?! the isotope selectivity is determined essentially by
the match of laser frequency with the frequency of the active
mode. This match or mismatch controls the excitation of
molecular vibration. Due to intermodal interaction, say
when I = 10'° W/cm?, after the duration of several hun-
dreds of vibrational periods, the energy absorbed is basically
distributed evenly over different modes, and the excitation
cannot be bond- selective, neither can the dissociation chan-
nel be controlled. Also no wonder that the experiments car-
ried out several years ago with a ns pulse could be explained
very well by the statistical RRKM theory.2! If we want to
achieve mode-selective excitation, it seems we should
further compress the pulse duration and experiment on the
molecules with less symmetry and less degeneracy.
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APPENDIX: THE PROBABILITY DESCRIPTION OF THE
INTRAMOLECULAR VIBRATIONAL ENERGY
EXCHANGE

The process of vibrational energy exchange in SF, mole-
cule through Fermi resonance, e.g.,

Vi+veg=v, +vs+ 16cm™!

is governed by the anharmonic term ¢,¢,¢sg¢ of the poten-
tial. We abbreviate this process as (@ + b=2c + d ). For this
monomolecular reaction of a system of molecules, suppose
that the probability of the vibrational quanta number being
(I, k, i, j)is (here and afterwards, we use the approximation of
harmonic oscillators)

Cixiy = CPCRCECY, (A1)

where C' is the probability such that the quanta number of
-4 1i—»i—1

be the

k—k+1,j—j—1
transition rate of the corresponding process, then we have

vibrational mode a is /. Let

dp® ( -+ li—i—1 )
= — Crii /P L
dt ,(;o kit k—k + l,j—j—1
i=j=1
-l —1i—i+1 )
= 2, Cuif (k—>k —~1j=j+1
i=j=0

I+ 1oli—i+1 )
o
+ kzl Cl+l,k,l,j k—Pk— 1,j“fi+ 1
i=j=0
l—1-li-i—1
I o)
+ ,;, A VI j—j—1

i=j=1

(A2)

Also we have
a,b,O-—->l _ a,b,l—-»O)___ i ,
P(c,d,l_m) =P (c,d,O—»l =P (A3)
and
PP, =(U+1)PY,,, (Ad)

then multiplying Eq. (A2) by /, summing over /, and noticing
that

(l—>l+ Li—i—1 )
k—k+1,j—j—1

=P(I:’»I+IP(I:’Lk+1P(if-)-i—1P?—)-j—l’ (AS)
Spp=y, (A6)
I=0
o E®
ZIP(I"-: =/la! (A7)
=o fiw,

etc., where E® is the energy of mode a, we finally get
1 di,
e G, 4, + A
? ar Aa + DA, + 1A,

_Aa/ib(/{c + 1)(/14 + l) (AS)

Considering all the relevant processes, we get Eq. (30) in the
text.
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