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It is proposed in this paper that we can use frequency-modulated (FM) lasers to realize bond-
selective chemical reactions or to raise the efficiency of molecular isotope separation. Examples
are given for HF molecule and the C-H bond in some hydrocarbons.

1. INTRODUCTION

It is quite promising to make use of the remarkable fre-
quency characteristics of lasers to realize bond-selective dis-
sociation and reactions of the molecules." This can provide
not only low-temperature chemical reactions but also the
possibility to synthesize some special molecules. But due to
the anharmonicty of the molecular vibration and the interac-
tion among the vibrational modes, much difficulty still exists
if we use lasers with fixed frequencies for this purpose. For
instance, if we use IR multiphoton absorption to excite po-
lyatomics, the energy equilibration process caused by inter-
modal energy transfer is a serious obstacle for bond-selective
excitation, whether ns or even ps pulse is used.>* However, it
is gratifying that a series of experimental studies* have
shown that, in many hydrocarbons, the overtones of the C—
H bond (or C-D bond) can be described quite accurately by
the local-mode (LM) theory. If the potential of the C-H
stretching motion is simulated by a Morse function or a sim-
ple polynomial and the change of the dipole moment with
distance is properly considered, the energy levels, the oscilla-
tor strengths, the isotopic effect, and even the spectroscopic
line profile all agree very well with the experimental data.”>”’
This is brought forth by the smallness of the mass of the H
atom, so the fundamental stretching frequency of the C-H
bond (23000 cm ') is much higher than the frequencies of
other modes and its coupling with the latter is also weak.®
We may effectively excite the stretching motion of the C-H
bond without much stirring up the other modes. In the clas-
sical theory of the forced oscillations of anharmonic oscilla-
tors, it is well known that we can use FM excitation to pump
up the anharmonic oscillator to quite high energy states,
pumping through “nonlinear resonance.”® In order to inves-
tigate the quantum mechanical case, a comparative analysis
for both classical and quantum cases is made in Sec. II with
the conclusion that some basic results of the classical case
can be applied to the quantum case as well, at least when the
amplitudes of vibration is not too large. Then in Sec. I1I we
numerically computed the excitation of a quantum Morse
oscillator pumped by FM lasers. The result shows that prop-
erly adjusted FM pulse can really excite the molecule to very
high energy, much more effective than single frequency exci-
taton. Some problems relevant to the effect of the rotational
band and to the technological feasibility are discussed in Sec.
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IV. The implications of the present study to the enhance-
ment of isotopes separation are also discussed.

il. ACOMPARATIVE STUDY OF CLASSICAL AND
QUANTUM MECHANICAL DUFFING OSCILLATOR

First, we investigate the classical case. The equation of
motion reads
2.0
m =+ molq —4€q® = pEof (1), (1)
where m is the reduced mass, @ the frequency at small ampli-
tude, ¢’ the displacement, ¢’ the time, u the dipole moment,
E, f (t') the external electric field intensity, and € is a small

parameter. Put

ot' = t, m ql =4, —ﬁ?6—3 =E, II'EO = GK,
#i m JAima®
(2)
we rewrite Eq. (1) as
d’q deq® = €K, 3
g 9% =« S (). 3

The quantities introduced in Eq. (3) are nondimensiona-
lized according to the quantum case discussed later. The
method for solving Eq. (3) is well known, so we only cite the
main results of the method of “multiple time scales.” ° Put

to=t, t =6t (4)

q = qo(loty) + €9, (¢5:11), (5
and let

f () = F(et)cos w, 1, 6)

w, =1+ eo, (7D

where F(et) denotes the slowly varying amplitude, while Eq.
(7) means that we are investigating the case of principal
resonance when the excitation frequency is near the funda-
mental of the system. Substitute Eq. (5) into Eq. (3) and
equate the terms of the same order in ¢, we get

az

2 ta=0 (8)
0

3’q; 3 3%q, KF(t))

9 L4 =4g -2 +

gz TR T G 2

x{ei(to+at.) +e—i(lo+0'tl)}. (9)
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The solution of Eq. (8) can be written as

go=2U1) o—ioy AN i, (10)
V2 2
When Eq. (10) is substituted into Eq. (9), in order to avoid
secular terms which would make the perturbation Eq. (5)
void, we should put

a4 =i(3A g0y KU e‘i‘"'). (1
dt, 242 ‘

So the approximate solution of Eq. (3) is
g= 3% o—io 4 co 1 0. (12)

V2

Now we turn to the quantum case. The Schrodinger equa-
tion is

2 2
ad _ _ RV ma o,
ar’ 2m dq”* 2
€q%Y — pE.f (t')q'Y, (13a)
or after using the notations of Egs. (2),
. Y 1% ¢ 7
/= = - —eK f()qy.
' 2aq+2'/' €K f (t)q¢
(13b)

Introducing the annihilation and creation operators a,a™,
g=/(a + a*)/\2. We write the Hamiltonian as'°

=(a*a+})—€> F,,(a")"a"

~ KO 54, (14)

where
Zan (a+)nam=i(a+)4+ (a+)3a+g(a+)2a2

+a*ad® + e +3(a")? +3a%a + 30 +3
(15)
by which F,,, are defined. Denote the evolution operator by
U ie, |¢(t)) = U|¥(0)). Then,
%Y gy (16)
at
We use the method of multiple time scales as before and put
U=uo(to,t,) + €u, (o)) (17)

and assume f(¢) to have the form of Egs. (6) and (7).
Substituting U from Eq. (17) into Eq. (16) and comparing
the terms of the same order in €, we get

A —i(a*a +1)u,, (182)
du, _ G4
at, HiatatPu = at

+i [z F,.(a*)"a™ +Kf(t) +“)] 4o

7
(18b)

Hence,

Uy = e~ il DY (1), (19

where A(¢,) is an undetermined operator. Putting u, from
Eq. (19) into Eq. (18b) we get

9 [einlata+ J=— a4
ato dtl
+i [Z Fppe=mo(a* yrgm 4 2L
n,m 2J—2—

X(e—i(to+o'at,)+ei(t°+a'at,))(e—it0a+eit°a+)}A
(20)

In writing Eq. (20), we have made use of the following for-
mula for operators'!:
¢4 Be~ ™ =B+ x[A,B] + [A (4,B]] + - (21)

In order to avoid secular terms in u,, we should put

—_ = [ZF"(a+)nan
+ KF(tl (eiat,a+e—iat,a+)]A =o' (22)
22
For solving Eq. (22), we put
A=e"*5"e 5" B(1)), (23)

where y(¢,),£(t,) are undetermined functions, § * is the c.c.
of £ B(t,) is an undetermined operator. For a harmonic
oscillator, it can be shown readily that the exact solution of
Eq. (22) canbe written in the form of Eq. (23), while B hasa
simple expression. Putting Eq. (23) into Eq. (22) and mak-
ing use of Eq. (21), we have

4 % . ] d§ 2B+ 9B

dtl toa @ TED t
. KF

=i W@ +EN (@ +8)"+ —
s~ 5

X [ei""(a+é’)+e_i°"(a++§"‘)”B- (24)

We equate to zero separately in Eq. (24) the terms which do
not contain the operators a and a™ and which contain a or
a™ only and obtain

Y _ _gedE [ 3EE* *)2
ar, 3 ar, +H3+3EE* +3(6E™)
" ﬁ(em,g_'_e—im.é-t)], (25)
22
d§ [ 2 KF _m}
—_— =1 3 +3 *+ -_€ 't (26)
ar, E+36°% 25
L2 — iV + ) + 360N + £ *Na)
1

+ 6EE*N +3£%(a™ ) +3(£*)alB, (27

where N = a*a. Another equation for £ * is the c.c. to Eq.
(26). Equation (25) determines the normalization factor y.
Equation (26) is the quantum counterpart of Eq. (11). &
represents the complex displacement of the wave packet [see
Eq. (32)]. The additional term of Eq. (26) in comparison
with Eq. (11) is brought forth by the noncommutating prop-
erty of @ and a*. Equation (27) represents the quantum
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corrections, i.e., the dispersion effect of the wave packet. The
approximate solution of Eq. (27) can be obtained by ex-
panding B in terms of the powers of £ when the amplitude | |
is not too large. Put

B=B©® 4 ¢BY 4 EBY 4 .. (28)

and write£inEq. (27) as€,£, & * as€,£ * (weshallpute, = 1
later on). Substituting Eq. (28) into Eq. (27) and equating
the terms of the same order in €,, we get

©
dft —§(N? + N)BO, (292)
dB :l)
L — W+ NBY 4 3 N + € *Na) B,
1

(2%)

Utilizing Eq. (21) we can solve Egs. (29) successively. For
B@and B we get

B(O) - ei(3/2)'.(N’+N), (303)
B(l) = 3ei(3/2)t,(N2+N) jtl {§e‘i3"Na+N
0
+ £*PNTD N aldr,. (30b)

In Egs. (30a) and (30b) use was already made of the condi-

tions B ©(0) = I (identity operator) and B *(0) = 0. Sum-

marizing the above results, we have

U = e~ "IN+ 172157 + ga* e " {RBO BW + -} + O(e).
(31)

Since ¢|0) = N |0) =0 and assuming further ¥(0) = |0),

we have [with errors of O(¢) and the square terms of the

“amplitude”]

Il/l(t)) —_ th(o)) —_ e-—ito[N+ 1,2} ey+§a*‘0>

— e~ /D +7 g—itN Z _51_ In)
n=0 m
=~ /D +y M’n)

n=v \/—rj

—it\2
=1r“"‘exp[—i—t— +y+ (5" )
2 V2

1 .
— 5 (g7}, (32)
This represents the motion of a Schrodinger wave packet!?
with the amplitude y2|£ | for which no dispersion effect ex-
ists. The equation satisfied by £ is essentially the same as the
classical one. Putting £ = pe®, we get from Eq. (26),

dp = KF(1) sin 8, (33a)
dt, 22
a9 (33b)

— =0B4+o)p+3p+ £}icose',
dt, 22
where@' = @ + ot,.Incase F = constant, Egs. (33) possess
stationary solution dp/dt, = d@'/dt’' = 0 and the “‘response
curve”® interrelating the “amplitude” | p| and the excitation
frequency o( = (w, — 1)/€) is

KF

B+op+3p°+ —2\/—5 =0. (34)

[l

Ly,

01

FIG. 1. Classical response curve of Duffing oscillator. Electric field cou-
pling strength uE, = 0.3 eV/a, (a, Bohr radius), K = 7.82; AB-CPD is for
HF; A'B'-C'P'D’ is for DF. w, = laser frequency, oy = mechanical fre-
quency of HF.

Figure 1 depicts the response curves of HF and DF with the
necessary data obtained in the following way. When the po-
tential of the oscillator is (#’¢*/2 — €g*), the energy levels
of the bound states can be obtained by ordinary perturbation
method®: E, =fiw[(n+1) —3e(n + 5)2] (n=0,1,2,...).
For HF we have'*#iw = 0.5137 eV, (0 =4143 cm™!),
€ = 0.014, the coupling strength of the electric field with the
dipole of HF is taken to be uE, = 0.3 eV/a, (a, Bohr radi-
us), so we get K =7.82. For DF we may use the rule’

o« 1/Jm, and from Eq. (2) K<m?®* (m = the reduced
mass) to get the necessary data. It is well known from classi-
cal theory that if we use an excitation force with gradually
decreasing frequency, the amplitude of the oscillator may
grow up continuously, zig-zagging up either of the lines AB
or A'B’. For two isotopic oscillators, the response curves of
them will be somewhat different due to the differences in m
and w, such as the curves AB-CPD and A’'B'-C'P'D’. Since
DP and D'P’ are unstable states, if we start the excitation
with a frequency somewhere between N and N, it is imagin-
able that the energy of one oscillator will increase along
A’B’, while the energy of the other one cannot grow much
along PC. This situation is surely helpful for isotope separa-
tion and is confirmed by numerical computation in the next
section.

1. EXCITATION OF AQUANTUM MECHANICAL MORSE
OSCILLATOR BY FM LASER

Previously, Walker and Preston'> (WP) made a de-
tailed numerical computation of the excitaiton of an anhar-
monic oscillator with a Morse potential by a laser of fixed
frequency (the concrete example is a HF molecule). They
found both the quantum and classical solutions were close to
each other in regard to the energy absorption and the aver-
aged motion of the oscillator as well. This is understandable
from our previous analysis. We have mentioned before that
the stretching motion of the C—H bonds of quite a few hydro-
carbons can be adequately described by the LM theory with
a Morse potential. Their relevant data are close to those of
HF molecules. The vibrational energy levels can also be ex-
pressed as E, = n(A4 + nB). Table I shows the mechanical
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TABLEI. Mechanical frequency X, anharmonicity X,, dipole moment® M(x) of HF and the C~H,C-D bonds

of some hydrocarbons.

Compound X, (cm™") X,(cm™") M(x) (D)
Benzene C-H bond** 3154 —57 —0.81x + 0.2x*
Benzene C-D bond*? —0.95x + 0.42x*
Cyclopentane C-H bond® 3017 — 60

Cyclohexane® 3006 —57.7

Naphthalene C-H bond® 3104 —57.7

HF® 4143 —86.8 1.5x

® x is the difference of the atomic distance minus the equilibrium value (A).

®Calculated from the data of Ref. 13.
°Reference 4.
9 Reference 5.
¢ Reference 6.

frequency (i.e., the classical frequency at small amplitu-
de)X,; = A-B and the anharmonicity X, = B of some such
molecules. Similar to WP, we take HF as a typical example
for our numerical study. The Morse potential is
V = D(1 — e~ **)? the energy levels of the bound states are

(35)
(36)

E, =4Dx.,g(n) (n=0,1.2,.),
gn) =(n+14) —x,(n+1)?

where x, = #a/(2y2mD ). The relevant data of HF are'*:
D=06.125 eV, a=1.1741 a5 1 mgy =1.00797 amu,

We expand the wave function in terms of the eigenfunctions
of H, but only retain the lowest 12 terms (all bound states)
for numerical computation. Taking more terms does not in-
crease the practical precision.'® Denoting the coefficients of
the expansion by a; (i =0,1,...11). We have

9B _ i Wa,
dr
where 7 = Qt '/2m. ), is a characteristic frequency defined
in Eq. (45). ais a single column matrix with element a;, Wiis

a (12<12) square matrix with the element

(37)

(38)

Wnn’ = - 21r [Enann' + M_E‘a(i (axnn’) H

where 6, =1 (n=n') or O(n#n'). When n>n’, we

mp = 18.9984 amu. Now the total Hamiltonian is

{H, + pE(2")x}, O
# 32
Hy= — —— + V(x).
0 2m ax? + Vi have'*
|
(=1 [ [1—n' + Dx,][1— 2n+ Dx, ]xz~"(nl)

" [gn) —g() L [1— (7' + Dx.][1— (' +2)x,] = [1 —nx, ] (n])

while when n = n’, we can calculate from the eigenfunctions
of the Morse potential’® to get

n
- 2 (n) 4 (n)
ax,, = — N E a;%a;
Lj=0

x{pk—-2n+i+j—1) —Ink}

XT(k=2n+i+j—1), (40)
N? = (k—n—1)(k—n—2)(k—2n) ’ 1)
nC(k—2n—1)
o™ = (=1
' (k=2n)(k=2n—1)(k—=2n+i—1)
(n!)
M-’ (42)

where I'(z) is the Eulerian I' function, ¥(z) = (d/
dz)InT'(z), k=1/x,. For HF x, =0.021, we take
x, = 0.02, so k = 50. In calculating ax,, according to Eq.
(40), we encounter the products and divisions of large
numbers which bring forth inaccuracies. In circumventing

172
] ) (39)

this we may use the normalization condition
n

1=N? Z aPaf"(k—2n+i+j—2), (43)
Lj=0
and transform Eq. (40) to

ax,, =(y+Ink)—-L,/M,,
L, = Z a}”’a}"’

Lj=0

% (k—2n+i+j—2—l-) (k—2n+t+_]—2)'

m—1 m (k—2n+2)!
(44)

M, = i af"’a}"’ (k——2n+i+j—2)!.

ii=0 (k —2n —2)!
In Eq. (44), ¥ =0.5772 is the Euler constant. The initial
condition for the matrix Eq. (37) is taken tobe g; (0) = 6,
i.e., the molecule is in the ground state initially. The field
strength of the laser is takento be E(¢ ') = E, cos (¢ ', while

Q =Q4(1 —Br), (45)
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13

eney)

FIG. 2. HF excited by FM lasers, influence of different modulation speed 8.
Laser electric field E(¢') = E, cos Q' = Ey cos 2m(1 — Br)r. Electric
field coupling strength fixed at pE,=03 eV/a,, The FM ‘is
O =Qy(1 —pr), 7=04'/2m. Mechanical frequency wy of HF:
fiwy = 0.5137 eV, e(r) the energy absorbed by HF. 11: Q, = 0.9467 wy
B=0 [WP’s result (Ref. 13) recalculated], 22: Q,=0.9467 wy
B=18x1073 33: Q,=0.9467 0y B=0.9X1073, 44: N, = 0.9467 vy

B=9%X1073

where 8 is a small parameter, ), the initial frequency of the
laser, and we write

E(t") =E,cos 27w (1 — Br)™. (46)
We take in accordance with WP E, = 0.96 V,uE, = 0.3eV/
a, and use Magnus method's® to solve Eq. (37). When
Ar = r; — r;_, is sufficiently small, we get, from Eq. (37),

a(r;) =4V a(r,_ ), (47)
where 7 =05(7; +7;,_, ). Let S be the matrix which dia-
gonalize W(7), i.e., S™'WS = diagonal D(7). Since W is
real, S and S™! are also real. It can be shown readily,

eiArV_V(?) — S(S—l eiArW S)S—l = S(;)eirAD(;) S—l(;)’

r S

e(THev)

]

0 20 20 50 80 T

FIG. 3. FM excitation of HF, influence of different initial frequency £,. 11:
0, =0.9467 oy B = 1.8X1073, 22: O = 1.0064 &y B = 1.8X 1073, 33:
N, =090 wy f=18x10"3.

4 e(miev)

22

A

i 2. — 1

Q 20 40 | 60 8o T

{

FIG. 4. Selection action of FM excitation for HF and DF.

E(t") = Egcos Q' == Eycos 2w (1 — Br)r

BE;=0.3¢eV/ay, Q') = Qy(1 — B7), 7= Qut /2.

Mechanical frequencies of HF (wy ) and of DF (wp ): fiwy = 0.5137 eV,
fiwp =0.3727 eV, 0, = 0.7533 wy; = 1.037 wp,, B==1.5X 107>, 11: ener-
gy absorption of DF, 22: energy absorption of HF.

while e is diagonal. Eq. (47) can be written as

a(r;) = S(1)evPDS™(Pa(r,_,); (48)
the numerical work can be simplified a lot in this way. The
step At = 0.1 yields satisfactory precision.

The results are depicted in Figs. 2—4. Just as we have
conjectured, the FM laser has much superiority in exciting
the anharmonic molecule. The curve 22 in Fig. 2 shows the
molecule is actually pumped to increasingly higher states. At
7=100 (¢'=0.8 ps), the molecule already absorbs eight
photons, much more efficiently than in the case of fixed-
frequency excitation (curve 11 in Fig. 2). It can also be seen
that just as in classical case, the modulation speed 8 is quite
influential. Figure 3 demonstrates that the selection of initial
frequency (), is also important. We can get some idea of the
appropriate value of {}, from the response curve in Fig. 1.
Figure 4 is a typical result which shows that with the same
FM laser DF is effectively excited while HF is practically not
excited at all.

V. DISCUSSIONS AND CONCLUSIONS

We must consider the following problems before apply-
ing the idea advanced in this paper to practice. Firstly, al-
though the C-H bonds in many hydrocarbons show spectac-
ular LM characteristics, but the recent experiments and
theoretical analyses'>! indicate that those observed over-
tones are not purely local modes. Their linewidths are rather
broad (FWHM = 100 cm ~!), and the lifetime of the excited
LM is short (about 0.1 ps by calculation). Therefore, it is
natural to ask: can we really excite the C-H or C-D bonds
locally by FM signals? Taking benzene as an example—al-
though some details of the intramolecular energy transfer
process need refinement—the analysis of Sibert ez al? al-
ready provided a clear physical picture. There exist interac-
tions between the LM of the C-H bond and other molecular
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vibrational modes, though weak enough so that the charac-
teristics of LM demonstrate distinctly; but since the vibra-
tional modes are numerous, Fermi resonances of different
tiers exist among them. The profile of the LM absorption line
actually consists of many transitions of near frequencies, and
the lifetime of a pure LM overtone is also short due to these
interactions. Now if we use the aforementioned FM signal to
excite the molecule, the response of the various transitions
composing the profile will be different.All those transitions
not belonging to LM cannot always keep pace with the signal
and will be gradually eliminated due to detuning or dephas-
ing. The more modes involved in the transition, the more
difficult for them to keep pace with the signal, and only those
transitions involving basically LM can be excited consecu-
tively to high energy states. In other words, the FM excita-
tion has better selectivity than single-frequency excitation or
consecutive single-frequency excitations (i.e., each single
frequency acts for some time consecutively). In regard to the
short life of LM overtones, since the process is something
like going through the nonlinear resonance continuously in
classical case, the stay on these overtone states is instantan-
eous so that the overtone life does not constitute an obstacle
(of course the laser intensity should be strong enough so that
the LM can be pumped up quite fast, e.g., the HF molecule
discussed in the last section can absorb 8 photons in 0.8 ps).
We conclude from these considerations that FM excitation
has great superiority and potential.

Secondly, how does the rotational band of the molecule
affect the LM excitation? The reasoning underlying this
question is similar to the first one and the answer is also
optimistic. The selection action of the frequency-modulated
signal only chooses those vib-rotational transitions which
can always match the signal and in this way excites the LM
to high energy state. A numerical computation for this prob-
lem is now underway and will be published elsewhere.

The third question is about the technological feasibility
to realize this sort of FM. In order to attain necessary high
power density, we should use short pulse. If the duration of
the pulse is 7, then its frequency bandwidth is Av~T 1.
Taking the calculation in Sec. III as an example in the dura-
tion of 7= 100, the change of the signal frequency is
AN =0.18 Qg the modulation cannot be fruitful unless
Av¢AQ,ie, T>(0.18 Q,) ~'=7fs. Obviously, ns or even ps
pulses suffice for this requirement. As far as the authors are
aware, there seems to be no ready method to achieve the FM
for such short pulse, nevertheless it is not an impossibility in
principle. With the rapid progress of pulse and modulation

techniques, it is worthwhile to do such experiments in the
future.

Finally, we would like to point out that if the idea put
forward in this paper is applied to a specific normal mode of
some molecule, such as v; mode of CHF, (or CDF;), a mol-
ecule used for the separation of light isotopes,? or the v,
mode of SFg, it turns out that due to the smallness of the
anharmonicity of these modes [if the energy of the pertain-
ing modes is expressed by Eq. (35), then™?* for CDF,
x, =7.2X1073, for SF,4 x, = 1.3 107?], the selective ac-
tion of FM is not so remarkable as in the case of HF. This is
also understandable from the classical perception. Therefore
among the various bonds with characteristic frequencies® in
molecules, it is advisable to choose those with large anhar-
monicity to experiment on with FM excitation.
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