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The relative K6,  values of metals are calculated with a simplified dislocation model. It is found 
tha.t the ratio of KIT,  to K I ,  and the temperature dependence of fracture toughness of some 
metals estimated with this model are consistent with the experimental results. 

Die Bezugswerte Ki,  fur Materialien werden mit einem vereinfachten Versetzungsmodell berech- 
net. Es wird gefunden, daB der Quotient K I I , / K I ~  und die Temperaturabhilngigkeit der Bruch- 
harte fur einige Metalle, abgeschiitzt mit diesem Modell, im Einklang mit Versuchsergebnissen ist. 

1. Introduction 

It is well-known that the contribution of the energy consumed by the plastic process 
in the plastic zone a t  a crack tip is much larger than the true surface energy of mate- 
rials. In the small scale yielding case, the stress field near the crack tip can still be 
approximately described by the linear elastic fracture mechanics, but the fracture 
toughness of materials cannot be simply estimated by their true surface energy of them. 
(i) Up till now, the relationship between KIIc and KI, calculated by linear elastic 
fracture mechanics are: KIIc/KIc = 0.87, 0.96, and 0.724 with respect to various 
theoretical calculations [l]. These relations can only be true for the ideal brittle case. 
This is not consistent with the experimental data of KIIc/KIc under small scale 
yielding. Experimental results of ultra high strength steels and other materials showed 
that KIrc is larger than K,, even under common brittle fracture [2]. (ii) Linear fracture 
mechanics does not explain the temperature dependence of fracture toughness of 
materials which is of importance to practical engineering design and new material 
development. 

This paper will suggest a simplified dislocation model to calculate the energy con- 
sumed by dislocation motion during the formation of the plastic zone. Dividing by 
the surface area created in the first step of crack propagation, we get the relative 
values of Ki,. 

2. A Simplified Dislocation Model 

Under the action of stress near the crack, edge dislocations will be created a t  the crack 
tip and move into the material reaching a certain location of stress balancing (Fig. 1). 
The dislocations will have a distribution in the plastic zone and this distribution will 
reach a critical value as the applied stress reaches the critical stress of fracture. 

1 )  Permanent address: Shenyang, The Peoples Republic of China. 
2) The notation is generally the same as in the book by J. F. Knott, Fundamentals of Fracture 

Mechanics Butterworths, London 1973. 
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Fig. 1. Dislocations in the plastic zone of a 
crack tip. (The plastic zone is simplified t.o 
be a circle.) 

Suppose a dislocation line of length 
L moves froin the crack tip to a po- 
sition q. The energy consumed is 

crack f$ slocation lines 
\ 

L ~ z ( T )  b d r  , 
i) 

where t is the shear stress acting on 
the dislocation line and b the Burgers 
vector of the dislocat.ion. Let the dis- 
location density be DP(q) which is the 
equilibrium distribution function of 
stress balance, so the energy consum- 
ed by P ( q )  dislocations from r = 0 
to r = q is 

'1 
LDP(q) J t ( r )  b dr . 

0 

If the applied stress reaches the value of fracture uF, then the farthest dislocation will 
reach a distance r*, and the total energy consunled by all the dislocations moving 
to  their equilibrium positions will be 

where we have assumed that the dislocations are continuously distributed in the 
whole plastic zone. The critical crack extension force becomes 

where L is the length of the dislocation line, A the first step of crack propagation 
which is determined by the microstructure of the material. In  particular, A = w - a 
for homogeneous continuous materials, where w is the width of the specimen and a 
the crack length. I n  order to calculate W i  in (I), D ( q )  and t ( r )  should be analyzed 
further. 

3. The Dislocation Distribution Function in the Plastic Zone at a Crack Tip 

Up till now, what we can take as a basis of DP(q) is only the BCS crack dislocation 
model. According to  this model [3], 
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where 
U 

n =  (2a + $1 
(r; + a) ' m = r t  

(r: + a) ' 
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As to our small scale yielding process, we can make some approximations to get an 
analytical form of the solution. Let x, = a. + s, s x 0 (8 < r t  < a) ,  

g(s)  z cosh-1 - (m z 2ur$/(rt + a) x 2r: . I: I 
We notice that (s/m)lI2 cosh-1 (m/s) x 1, as s/m is between 0.1 and 0.6. AB s/m < 0.1, 
Dos -, 0, due to  s -. 0; on the other side, as s/m > 0.5, Dos -, 0, due to  D -, 0. We 
can approximate DP(s) to (4) without large error in calculating WI according to (l), 

DP(q) x const s-1/2 . (4) 

4. The Stress Field Near the Crack Tip 

There will actually be a dislocation shielding effect on the stress field near the crack 
tip but in our small scale yielding case, we may neglect this effect. We use the linear 
elastic stress field approximately. Then, 

for mode I, 

for mode 11, 

where 

The rr's have been chosen such that the area of the circle is approximately propor- 
tional to the area of the original critical plastic zone of the material under various 
modes of loading and temperatures. The boundary of the critical plastic zone was 
determined according to Von Mises criterion, that is 

(6) 
- 
0 = [(US - ~ ~ ) '  + (0" - + (0, - + 6&] = , 

where o,, is the unaxial tension yield stress; o,, a,, uZ, and zm are the components of 
stress at  a point on the boundary of the plastic zone. 

5. Results and Discussions 

Prom (I), (4), and (5) we get 

w, = E ~ ( K ; ' ) ~  F,(eo) r?(eo)llz , 
37 physica (a) 87/3 

(7) 
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where 

5.1 The ratio of Kec to KiC 

In order to compare our calculations with experimental results, we took a GC-4 steel 
specimen as  an example. The respective data of do, F(d,), and r;(e,) are shown in 
Table 1. 8, is the direction of rzax of the plastic zone. Choosing the values of KTIc/K;c 
and Kgc/K& according to the result calculated by energy release theory, 0.724, we 
get 

- = 2.08 for plane stress, K2C 

K1 c 

KIIc x 2.4 for plane strain. . .  
KI, 

The latter is roughly consistent with the experinienbal plane &rain results of coniplex 
mode fracture tests [2]. 

Table  1 
Calculated results for GC-4 steel [2] 

I plane stress 70.5' 0.385 0.52 0.113 
plane strain 90' 0.354 0.332 0.033 

I1 plane stress 0' 1 6.824 11.869 
plane strain 0' 1 5.19 8.173 

5.2 Temperattire dependen.ce of KiC 

From (9) we see that the main strongly temperature-dependent factor is r r ;  then 

where av is the yield stress of the material. This equation is true only under the condi- 
tion that the microstructure of the material is siniple and unchanged. 

Fig. 2 shows the linear relationship between GI, and o i 2 .  The data were taken from 
[4] and [S]. We assume them to be of similar microstructures due to their similar heat 
treatments. 

It is well known that [6 t o  81 

a,(T) = a,, exp  ( -BT) , (11) 
where B is a parameter which can be determined by yield stress measurement and 
also can be analyzed by interatomic rotential function [7]. From (10) and (11) we get 

K1, = const exp (BT)  . (12) 
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Fig. 2. The G I ,  values (quenched and 
tempered at 650 "C for 2 h) [4] and 6;' 
values (800 "C annealed in vacuum) [5] 
of Fe-C alloys (0.03 wt% C) - 

0 5 I0 15 20 25 
G,c (kJIm') - 

We may now compare relative values of Ki, under different temperatures 

The most important parameter is B whioh controls the temperature dependence of 
the material. For example, for low carbon steels B x 6 x 10+ K-l [7]; therefore, 
K1,(273 K)/KIc(77 K) x e ,  ~ ~ ( 2 7 3  K)/u,(77 K) x e2 = lo!!  This means that if the 
critical crack length of a material is 10 mm at room temperature, then, a t  77 K,  the 
critical crack length decreases to  1 mm. Low carbon steels a t  77 K are much brittler 
than a t  room temperature. 
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