Numerical experiments on one-dimensional model of turbulence
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The initial-value problem of a forced Burgers equation is numerically solved by the Fourier
expansion method. It is found that its solutions finally reach a steady state of “laminar flow™
which has no randomness and is stable to disturbances. Hence, strictly speaking, the so-called
Burgers turbulence is not a turbulence. A new one-dimensional model is proposed to simulate the
Navier—Stokes turbulence. A series of numerical experiments on this one-dimensional turbulence

is made and is successful in obtaining Kolmogorov’s k

—5/3

inertial-range spectrum. The (one-

dimensional) Kolmogorov constant ranges from 0.5 to 0.65.

1. INTRODUCTION

The difficulties of the problem of turbulence are two-
fold: in part they are connected with the complicated vector-
ial character of the Navier-Stokes equation; in part they are
dependent upon the presence of nonlinear terms. The latter
feature is essential for turbulence; a linear dynamic system
cannot generate turbulence. Burgers proposed the equa-
tion!?

d a s
% u(t,x) + uft,x) ™ ultx)=v o u(t,x) (1)

as a one-dimensional analogy of the Navier—Stokes equation
in order to simplify the problem of turbulence by avoiding its
complicated vectorial character.

At present we cannot numerically simulate the flow
field at sufficiently high Reynolds number to produce the
inertial-range in two- or three-dimensional flow because of
insufficient computer capacity.’> The one-dimensional
model of turbulence is needed. The commonly used model is
the Burgers equation (1) or its forced form, the so-called
Burgers turbulence. The solutions of (1) can be expressed
explicitly in terms of initial data and such a turbulence (with-
out external force) has been studied by many authors.>!!
The numerical experiments dealing with an external force
were made by Jeng'? for small viscosity and Kida and Sugi-
hara'? for the inviscid limit.

All the analytical and numerical studies lead to the con-
clusion that the k ~?inertial-range spectrum is the character-
istic feature of the Burgers turbulence. In contrast, for the
Navier-Stokes turbulence the cascade transfer of energy
from large eddies to small eddies yields Kolmogorov’s k —5/3
inertial-range spectrum. That is related to the essential dif-
ference between the Burgers equation and the Navier—
Stokes equation, and indicates that the Burgers equation is
not a proper one-dimensional model of the Navier-Stokes
turbulence. '

This paper consists of two parts. In the first part, the
Burgers equation with a steady external force acting at the
lowest wavenumber is numerically integrated in order to
study the evolution of its solutions. The numerical results
show that after a sufficiently long time these solutions reach
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a steady state of “laminar flow,” which has no randomness
and is independent of the initial conditions, i.e., absolutely
stable to disturbances. The essential characteristics of a tur-
bulence are its randomness and instability to small distur-
bances. Hence, strictly speaking, the so-called Burgers tur-
bulence is not a turbulence.

In the second part of this paper, a new mathematical
model is proposed as an one-dimensional analogy of the Na-
vier-Stokes equation. It has a modified advection term and a
pressure-type term. A series of numerical experiments on
this one-dimensional model are made. We succeed in obtain-
ing Kolmogorov’s k ~*/3 inertial-range spectrum. The (one-
dimensional) Kolmogorov constant ranges from 0.5 to 0.65.

Our numerical experiments confirm the vital role of the
pressure term in hydrodynamic turbulence. The nonlinear
interaction of the advection term alone cannot generate tur-
bulence. The commonly used one-dimensional model of tur-
bulence (the Burgers turbulence) has a k ~? inertial-range
spectrum. We are successful in proposing a one-dimensional
model of the Navier-Stokes turbulence, which has Kolmo-

gorov’s k ~°/% inertial-range spectrum.

Il. THE FORCED BURGERS EQUATION AND ITS
FOURIER TRANSFORM

With a characteristic length L and a characteristic ve-
locity ¥ by means of the dimensionless quantities x’' = x/L,
t’ =tV /L and v' = v/(VL), Eq. (1) becomes

aJd , 4 , ., &

8t’u+u8x'u vax,zu. (2)
If we drop the primes in (2), (1) and (2) are identical. Hence (1)
can be understood as the dimensionless form of the Burgers
equation, and v is the reciprocal of Reynolds number. After-
wards all quantities and equations are assumed to be dimen-
sionless.

Assuming the periodic boundary condition

u(t,x + 2m) = u(t,x), (3)
we can expand u(¢,x) into the Fourier series

ult,x) = ;U (k Jexp(ikx), (4)
where
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Ulk) = ?I;LM ult,xexp( — ikx) dx (5)

is a function of time ¢. From (4), the Burgers equation (1)
becomes

%U(k}: _ kW (k) — vk2U k), (6)

and
Wik) =%zv(p)v<k—p) 7

by the convolution theorem.

If there is an external force, which is supposed to have
the simple form u(k )U (k ), (6) can be generalized as follows

4a

dt
Both u(k ) and v(k ) in (8) are positive, u(k )U (k ) corresponds
to the energy source and v(k )U (k ) corresponds to the energy
sink. Whenp(k ) = Oand v{k ) = vk 2, (8) becomes (6), and the
energy sink is due to viscous dissipation.

The Fourier component U (k = 0) represents the mean
flow of the velocity field. From (6), we see that the mode
k = 0 has no interaction with other modes. For simplicity,
we assume that U (k = 0) = 0, i.e., there is no mean flow.

Ulk)= —ikWi(k)+uk)U(k)—vk)Uk). (8)

lil. ENERGY EQUATION

The intensity of mode k is

elk)=Uk)U*k). (9)
The asterisk means complex conjugate. From (8) we have

%e(k )=rk)+ 2ulk)e(k) — 2v(k Je(k ), (10)
here

k)= —ik[W(k)U*k)— WHk)U(k)] (11)
From (7} and (11), it is easy to prove that

Zr(k )=0. (12)
The total energy of all modes is

L)
elk)= — —=" }dx. 13

k};,o (k) N 5 (13)

The energy flow rate across the k space is
k
glk)= Yy k)= — ¥ rk’). (14)
k'>k k'=1

Ininertial-rangeu(k ) = v{k ) = O, from (10)and (14), we have
rlk) = 0 and g(k ) = constant for a steady state.
The ensemble average applied to (10) gives

g;E(k)=R(k)+2#(k)E(k)—2V(k)E(k), (15)

here

E (k)= {elk)) (16)
is the energy spectrum, and

R (k)= (rk)) (17)

is the energy transfer spectrum function, () means ensem-
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ble average. The energy transfer function is
k
Qlk)={qk))= > R(k')= — > R(k'). (18
k'>k k'=1
Ininertial-range u(k ) = v(k ) = 0, from (15) and (18) we have
R(k)=0and
Q (k) = €(constant) (19)

for a stationary turbulence. The € is the energy dissipation
rate.

IV. INERTIAL-RANGE DYNAMICS

The idealized model of inertial-range dynamics is that
an energy source is at the lowest wavenumber and a sink is at
infinite wavenumber, with an energy flow across the spec-
trum at a constant rate €. It is impossible to work with infi-
nite wavenumber in a numerical experiment. The truncation
approximation must be used, i.e., assuming

Uk)=0, if k>k,.. (20a)
Here k, is called the cutoff wavenumber. The energy source

is supposed to be acting at the lowest wavenumber k = 1
only, i.e.,

ulk)=0, if k> 1. {20D)
The sink is acting over the neighborhood of the cutoff wave-
number £, only, i.e.,

V(k ) = 0, if k<kd
where k, is less than &, but near k..

By (20), the generalized Burgers equation (8) becomes

(20c)

%U(l): — i)+ U1, (21a)
%U(k}: —ikWik), if 2<k<k,, (21b)
%U(k): —ikWk)—vk)Ulk), if k, <k<k,. (2lc)

Equations {21) describe the following process: The energy is
input at k = 1, is transferred to high wavenumbers by the
nonlinear interaction W (k ), and finally is dissipated over the
neighborhood of k.. With the truncation approximation
(20a), after some manipulation, Eq. (7) becomes

k,— k k1

Wik)= S U(—pUlk+p)+ % S Uk — p)

p=1 p=1

(22)

V. ENERGY SOURCE AND ENERGY SINK

Tentative numerical experiments of (21) show that
when g(1) in (21a) is too small the modal intensity e(k ) de-
creases with time; when p(1) is too large the e(k ) increases
with time, leading to overflow. It is more convenient to use a
reservoir-type energy source which is able to adjust its input
power automatically to keep the modal intensity (1) con-
stant. There are many ways to construct such an energy
source. One way to do it is to replace (21a) by
-:—t Ull)= —iW(1)+ C[|U[)] = [UMIJU(1). (23)
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Here Cis a large positive amplification factor and Uy1)is the
initial value of U (1). The means absolute value. The ad-
vection term — /W (1)in (23) transfers the energy from mode
1 to other modes and reduces the intensity of mode 1; the
energy source represented by the last term in (23) inputs en-
ergy to mode 1 as soon as its intensity becomes less than the
initial value, similar to a simple feedback system. An ideal
reservoir-type energy source can balance the advection term
— W (1) exactly and keep U (1) a constant, i.e.,

a U(l)=0.
dt
In our numerical experiments the v(k ) in (21c) assumes

the following form
vik) = vtk — k)" (25)

Here v, and n are positive numbers. This structure of v(k )

makes the transition from the inertial range to the dissipa-

tion range a smooth one. Our numerical experiments show

that the detailed structure of v(k ) does not influence the out-

comes of the inertial-range dynamics, so long as the intensity

of the energy sink matches the intensity of the energy source.
By (24) and (25), Eq. (21) becomes

(24)

g;U(l):O or U(l)=const, (26a)

diU(k)z — kW k), if 2<k<k,, (26b)
t

LUWk)= — kW lk) = vylk — kUK )

if k, <k<k.,. (26¢)

When &, and k, approach infinity, Eq. (26) corresponds to
the inviscid limit of the Burgers equation with an energy
source at K = 1 and an energy sink at kK = co.

The introduction of an energy source is indispensable
for studying the long-time evolution of a turbulence. If there
is no energy source, the turbulence will decay and finally die
out due to dissipation.

VI. NUMERICAL EXPERIMENTS OF EQ. (26)

The Adams method is used to solve the initial-value
problem of (26). The time increment A¢ = 0.005 for k. = 50
and 4¢ = 0.0025 for k, = 100 in order for the numerical pro-
cess to be stable. Ten runs of such numerical experiments of

TABLE I. Parameters for numerical experiments of Eq. (26) (Figs. 1-4).

(26) have been made on computer corresponding to four dif-
ferent initial conditions, two cutoff wavenumbers and three
types of energy sink. They are summed up in Table I and
Figs. 1-4. The four initial conditions are

U)=1, (27a)
Uk)=03, if 2<k<5, (27b)
Ulk)=0.001, if 6<k<k,, (27¢)
Ui)=1, (28a)
Ulk)=0.31623, if 2<k<5, (28b)
U(k)=0.001, if 6<k<k,, (28¢)
U(l)=1, (29a)
Ulk)=021, if 2<k<10, (29b)
Ulk)=0.001, if 11<k<k,, (29c)
and
U(1) = explin/2), (30a)
U(k)=0.21explirk /2), if 2<k<10, (30b)
U(k)=0.001 explirk /2), if 11<k<k,. (30c)

The general behavior of the solutions of (26) is illustrat-
ed in Fig. 1 which is the result of run 1 (the actual numerical
computation was done up to time ¢ = 15 instead of ¢ = 6).
Although Fig. 1 shows the time variation of the total energy
only, the time variation of the intensity and the phase of each
mode have the same behavior. During the early stage the
solutions of (26) undergo a transient process, the intensity of
each mode except mode 1 varies with time rapidly. This tran-
sient process begins at t=0and ends at t = 4 . Afterr =4
the solutions of (26) reach a steady state of “laminar flow,”
whichis characterized by the X ~?1aw for the modal intensity
in the range 3 < k < k_/3. (See Figs. 1-4.) It has to be empha-
sized that the numerical results given in Figs. 1-4 are for a
single realization, no ensemble average or time average has
been made.

In the final steady state of “laminar flow,” the ampli-
tude and phase of all modes are independent of time, so there
is no randomness in the flow field at all. Moreover, the final
steady state of “laminar flow” is independent of the initial
conditions, hence it is absolutely stable to the disturbances.
A comparison of Figs. 2 and 3 shows that in the final steady
state of “laminar flow” the behavior of the inertial range
(3 <k <k./3) is independent of the structure of the energy

Cutoff Time
Initial wavenumber Energy sink increment
Run No. condition k. vy n ky At
1 Eq. (27) 50 0.2 3 40 0.005
2 Eq. (28) 50 0.2 3 40 0.005
3 Eq. (29) 50 0.2 3 40 0.005
4 Eq. (30) 50 0.2 3 40 0.005
5 Eq. (27) 50 0.25 2 30 0.005
6 Eq. (29) 50 0.25 2 30 0.005
7 Eq. (27) 100 0.2 2 60 0.0025
8 Eq. (28) 100 0.2 2 60 0.0025
9 Eq. (29) 100 0.2 2 60 0.0025
10 Eq. (30) 100 0.2 2 60 0.0025
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FIG. 1. Time variation of total energy.

sink, whose influence is limited to the neighborhood of the
dissipation range.

In the runs 1-6, the cutoff wavenumber k, = 50, in the
runs 7-10 k., = 100. The increase of the cutoff wavenumber
k. ieads to the broadening of the inertial-range proportional-
ly, but the behavior of the inertial-range remains the same,
see Figs. 2—4. It is logical to conclude that the general char-
acteristics of the solutions of Eq. (26) will remain the same
when the cutoff wavenumber k_ approaches infinity and the
inertial-range becomes infinitely wide, which corresponding
to the inviscid limit of the Burgers turbulence with an energy
source at kK = 1 and an energy sink at k = «. If we consider
an ensemble of many realizations, corresponding to different
initial conditions and different external forces at lower wave-
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FIG. 2. Modal intensity of final steady state of “laminar flow.”

1960 Phys. Fluids, Vol. 27, No. 8, August 1984

ek

Run 5 or &

1072

NuMERT CAL

1073 -

2 5 10 20 K 50

FIG. 3. Modal intensity of final steady state of “laminar flow.”
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FIG. 4. Modal intensity of final steady state of ‘‘laminar flow.”

J. Qian 1960

Downloaded 11 Nov 2009 to 159.226.231.78. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



numbers, the ensemble average will yield the well-known
k ~? inertial-range spectrum, since the modal intensity of
each realization is proportional to k ~2 in the inertial range
according to our numerical experiments.

Vii. THE BURGERS TURBULENCE IS NOT A
TURBULENCE

The essential characteristics of a turbulence is its appar-
ent randomness and instability to small disturbances. Two
turbulent flows that are nearly identical in detail will appear
dramatically different at later time, i.e., the extreme sensitiv-
ity of the solution of the hydrodynamic equation to the initial
conditions. In the Burgers equation the only nonlinear term
is the advection term, there is no pressure term. According
to our numerical experiments desribed in Sec. VI, the nonlin-
ear interaction of the advection term reduces the chaos of the
flow field and builds up correlation between modes, finally
leads to a steady state of “laminar flow” which is stable to
disturbances. The advection term alone cannot generate tur-
bulence, no matter how high the Reynolds number. Hence,
strictly speaking, the so-called Burgers turbulence is not a
turbulence.

In the Navier-Stokes turbulence the pressure term
plays the role of a high-frequency random force to limit the
buildup of correlation between modes, the vortex structure
in the flow field is not stable. The chaos of the flow field
increases with time, finally leading to a state of turbulence
which is random and unstable to small disturbances.

The essential differences between the Burgers equation
and the Navier—Stokes equation lead to different inertial-
range spectrums: k ~ 2 for the Burgers turbulence; and &k —/3
for the Navier—Stokes turbulence. The Burgers equation is
not a proper one-dimensional model of the Navier-Stokes
turbulence. It is significant to have a one-dimensional model
which can simulate the Navier-Stokes equation as well as
possible and has Kolmogorov’s k ~°/* inertial-range spec-
trum. The numerical experiments on this one-dimensional
model can be used to test various theories of turbulence.

VIil. ONE-DIMENSIONAL MODEL OF NAVIER-STOKES
TURBULENCE

The proposed one-dimensional model has the following
form:

%U(k}z — kW, (k) + Plk)—vk)U(k). {31)
Here the — kW, (k) is a modified advection term, which
transfers the energy from one mode to the others but con-
serves the total energy of all modes. The P (k) is a pressure-
type term to simulate the role of the pressure term of the
Navier-Stokes equation as a high-frequency conservative
random force.

The Navier-Stokes equation can be transformed into
the following form'>-'”

iX,- = —v X, +2Aijm)('].X,,,. (32)
dt e
Here the (X;; i>0) is the complete set of independent real
modal parameters, and is related to the real and imaginary

1961 Phys. Fluids, Vol. 27, No. 8, August 1984

parts of the complex Fourier components of the turbulent
velocity field. The remarkable property of the nonlinear in-
teraction coefficients 4, is that!®

Ay =0,

if any two of i,j,m are equal. (33)

ijm

The property (33} is related to the incompressibility which
requires the Fourier components of the velocity field to be
perpendicular to its wavenumber vector. However, when we
transform the Burgers equation (6) into the form (32), the
corresponding nonlinear interaction coefficients will not sa-
tisfy (33), for no incompressibility condition. In order for the
one-dimensional model (31) to simulate the Navier—Stokes
equation as well as possible, the W, (k) in (31) is defined as
follows

W, k)= Wk)—iUY2Kk)U*k), ifkisodd; (34a)
W, (k)= W(k)—iUP2k)U*k)— 0.5[ UMk /2)]?
+0.5[U(k /2))?, (34b)

Here W (k )is given by (7), the U "k ) and U ‘?(k ) are the real
and imaginary parts of U (k), respectively. We obtain (34)
simply by discarding these terms in W (k ) which will not sa-
tisfy (33).

Similar to (10), the energy equation of the one-dimen-
sional model (31) is

if k is even.

%e(k) = (k) + U*E)P k) + Uk )Pk ) — 2v(k Jelk ),

(35)
here
rulk)= —ik [W (k) U*k)—- Wkk)U(k)]. {36)
From (34) and (36), we have
>rmlk)=0. (37)

Equation (37) means that the nonlinear term — kW, (k) of
(31) conserves the total energy of all modes.

The pressure term in the Navier-Stokes equation likes a
special “isotropic™ conservative force; it scarcely transfers
the energy from lower wavenumbers to higher wavenum-
bers, but tends to equipartition the energy among all degrees
of freedom of the same wavenumber. In the one-dimensional
case, there are only two degrees of freedom for the same
wavenumber, corresponding to the real and imaginary parts
of U(k), respectively. In order for the term P (k) in (31) to
simulate the pressure term of the Navier-Stokes equation as
an “isotropic” conservative force, it is required that

U*k)P(k)+ Uk)P*k)=0. (38)
Let ¢ (k) be the phase of mode £, i.e.,

explig (k)1 = Ul(k)/|U (k)] (39)
then (38) means that

P(k) = +i|P(k)|explig (k)]. (40)

If the intensity of all modes is amplified by the same
factor C, the pressure term in the Navier-Stokes equation
will be amplified by the same factor C too. Therefore we
choose

P(k)=id (k)|U(1)|’exp[ig (k )]. (41)
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Here A (k) is real, positive or negative. The pressure term in
the Navier-Stokes turbulence plays the role of a random
force to limit the buildup of correlation between modes,
hence, we simply let 4 (k ) to be random variables.

In numerical experiments the 4 (k) is simulated by the
uniformly distributed pseudorandom numbers over the in-
terval ( — a,a), based on the recurrent use of residues, '®

a,,, =pBa,(mod M). (42)

For example § = 7° and M = 10'°. In our most numeri-
cal experiments, a = 2, so the average amplitude of 4 (k } is
equal to 1. The structure of 4 (k) will be described in detail
later.

It has to be pointed out that the above reasoning and
argument leading to the one-dimensional mode (31) with (34)
and (41) is plausible and rather arbitrary. The final justifica-
tion of this mathematical mode is that it is able to simulate
the essential characteristics of the Navier—Stokes turbulence
and yields the Kolmogorov’s k /% inertial-range spectrum:.
We are not going to transform (31) into (¢,x) space and give
the resulting equation a specious “‘physical meaning.” We
prefer to work in the (#,k ) space and consider our model (31)
merely a mathematical model of turbulence.

iX. ENSEMBLE AVERAGE AND TIME AVERAGE

According to Secs. IV and V, for studying the inertial-
range dynamics, Eq. (31) becomes

iU(l):in(l), (43a)
dt
%U(k): — kW, k) + Plk), 2<k<k,, (43b)
A Uky= — kW, (k)+ Pk
dt

—vylk —kg)"Ulk), ky <k<k,. (43¢)

If = 0, (43a) is the same as (26a), then the energy source is
identical with that described in the Sec. V. The introduction
of w in (43a) is for the convenience of numerical computa-
tion. The energy transfer rate from mode 1 to mode 2, from
mode 2 to mode 4, and so on, is quite sensitive to the phase of
mode 1. In order to calculate the spectrum and other statisti-
cal properties of a turbulence by ensemble average, it is nec-
essary to take account of all possible phases of mode 1. When
using (26a) instead of (43a), we have to solve the initial-value
problem of {(43) for many different initial phases of mode 1. It
will require much computing time. When (43a) is used with a
proper vale of @, the phase of mode 1 is rotating with angular
velocity w; it is possible to use the time average over a finite
period to replace the ensemble average and save much com-
puting time.

The stationarity of the turbulence is another reason
why we can use the time average to replace the ensemble
average. The energy source at mode 1 is continuously sup-
plying the energy to the turbulence to prevent it from decay-
ing. After the early transient process ended, the solutions of
(43) can be considered a stationary stochastic process, the
time average is equal to the ensemble average. In our numeri-
cal experiments the time average is taken over the interval

1962 Phys. Fluids, Vol. 27, No. 8, August 1984

from ¢ =10 to # = 60 or 110. The numerical results show
that the initial conditions have little influence on the out-
comes of the time-averaging of the solutions of (43), thereby
confirm the legality of using the time average.

Theenergy spectrum E (k ), the energy transfer spectrum
function R (k ), and the energy transfer function Q {(k ) are giv-
en by (16)—(19), but the r(k ) in (17) has to be replaced by r,, (k )
of (36), and the ensemble average is replaced by the time
average in the numerical experiments.

X. NUMERICAL EXPERIMENTS OF EQ. (43)

The Adams method is used to solve the initial-value
problem of (43) up to t = 60 or 110, then the time average
from ¢t = 10 to t = 60 or 110 is used to calculate the energy
spectrum E (k ) and the energy dissipation rate €. The cutoff
wavenumber k. = 50 or 80. The time increment 47 = 0.005
for k. = 50, and Ar = 0.01/3 for k. = 80, in order for the
numerical process to be stable.

The random variable 4 {k } in (41) is constructed by the
folowing procedure. First (42) is used to produce 5000 ran-
dom numbers f{j) uniformly distributed over the interval

(—aa),

—a<fliica (= 1,2,..,5000). (44)
Then fortimet = nAT (n = 0,1,2,...) the computer generates
(k. —1) pseudorandom  integer numbers  s(k,n)

(k = 2,3,...,k.) which can be any integer between 1 and 5000,
by means of (42). The AT will be defined later. Finally, let

Alk)=f[slk,n)] for nAT<t<(n+ 1)AT. (45)

Theaverage amplitude of 4 (k )isa/2. The 4 T can be roughly
considered the correlation time of the random processes
A (k). In order for P (k) to simulate the pressure term of the
Navier-Stokes turbulence as a high-frequency random
force, we must let

AT<«1. (46)

In order for the Adams method to be suitable for solving (43)
which has a rapidly fluctuating term P (k ), we must let

AT>At. (47)

In the numerical experiments we choose AT = 104¢. For
example, for k. = 50, 47 = 0.005, s0 AT = 0.05 which satis-
fies both (46) and (47).

More than ten runs of the numerical experiments of (43)
have been made on computer, corresponding to different ini-
tial conditions, different cutoff wavenumbers, different sets
of random numbers for 4 (k ), different sources and different
sinks. We succeed in obtaining the Kolmogorov law for the
inertial-range spectrum:

E(k)=Koe'* k53 (48)
The dimensionless constant Ko is still called the (one-dimen-
sional) Kolmogorov constant. The numerical results of four
of these runs and the relevant parameters are given in Figs.
5-8 and Table II.

The initial conditions and the structure of the energy
sink have little influence on the inertial-range spectrum. The
influence of the energy sink is limited to the neighborhood of
the dissipation range. When the cutoff wavenumber in-
creases from 50 to 80, the inertial-range 3 <k <k /4 be-
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FIG. 5. Energy spectrum of one-dimensional turbulence.

comes wider proportionally, and the Kolmogorov constant
seems to decrease slightly. See Figs. 5-7.

The average amplitude a/2 of 4 (k) has great influence
on the spectrum. When a is very small, the term P (k ) can be
neglected and (31) becomes a modified Burgers equation, we
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FIG. 6. Energy spectrum of one-dimensional turbulence.
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FIG. 7. Energy spectrum of one-dimensional turbulence.

get k 77 inertial-range spectrum.When a is very large, the
term P (k) will be dominant and the advection term can be
omitted, theinertial-rangespectrumisneitherk ~2nork —3/3
type. When 1<a<3, i.e., the average amplitude is between
0.5 and 1.5, both the modified advection term and the pres-
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FIG. 8. Energy spectrum of one-dimensional turbulence.
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TABLE Il. Parameters for numerical experiments of Eq. (43) (Figs. 5-8).

Cutoff Energy Interval Dissipation  Kolmogorov
Initial wavenumber source Energy sink for time- rate of constant
Fig. No. condition k. @ vy n kg averaging energy € Ko
5 Eq. (28) 80 /2 0.2 2 50 10~ 60 0.470 0.60
6 Eq. (28) 50 /2 0.1 3 40 10— 60 0.451 0.63
7 Eq. (28) 50 1 0.2 2 30 10-110 0.645 0.58
8 Eq. (49) 50 0 0.2 2 30 10— 60 0.457 0.61

[the average amplitude of 4 (k ) is a/2 = 1 for Figs. 5-8]

sure-type term are important in (31) or (43), similar to the
case of the Navier—Stokes equation, and we obtain the Kol-
mogorov’s kK ~>/3 inertial-range spectrum (48). The Kolmo-
gorov constant increases by 10%-20% as the average ampli-
tudeof 4 (k )increases from 0.5 to 1.5. If different values of ¢,
B3, and M in (42) are used, different sets of /{j) and 4 (k ) can be
obtained by means of (44) and (45). When using different sets
of 4 (k ), we still get the Kolmogorov inertial-range spectrum
(48) with slightly different Kolmogorov constant, so long as
the average amplitude of 4 (k) is the same and between 0.5
and 1.5. Figures 5-8 correspond to a = 2.

The introduction of the angular velocity o in {(43a) ena-
bles us to use the time average over a finite period to replace
the ensemble average to calculate the spectrum £ (k ) and the
energy dissipation rate €, but the value of @ cannot be too
large. When w is greater than three in the case of the modal
intensity e(1) = 1, the inertial-range spectrum begins to be
different from the Kolmogorov inertial-range spectrum (48).
When w increases from 1 to 7/2, the Kolmogorov constant
increases a little, see Figs. 6 and 7.

As mentioned in the preceding section, when w = O the
energy flow rate from mode 1 to higher modes strongly de-
pends on the phase of mode 1. If the phase of model 1is 0, the
energy flow rate is nearly zero; if the phase of mode 1 is 7/4,
the energy flow rate is maximum; if the phase of mode 1is 7/
6, the energy flow rate is medial. Hence, we expect that when
o = 0and the phase of mode 1 is 77/6, the time average over a
finite period will also correspond to the ensemble average. In
order to confirm this expectation, we use the following initial
condition

U (1) = explin/6), (49a)
Ulk)=0.31623, if 2<k<5, (49b)
Ulk)=0.001, if 6<k<k, (49¢)

and let @ = 0 in {43a), then do the numerical experiment of
(43). Its result is shown in Fig. 8, which confirms the expecta-
tion.

The (one-dimensional) Kolmogorov constant obtained
in our numerical experiments of (43) ranges from 0.5 to 0.65.
Ko = 0.5 is obtained in the case of w = 1, k., = 80, and
a=1. Ko=0.65 is obtained in the case of @ = /2, k.
=50,and a = 3.

The outcome of the time-averaging over longer time
interval is more smooth and has less fluctuation. Figure 7
shows the result of the time average from ¢ = 10 to ¢ = 110.
Figures 5, 6, and 8 show the results of the time average from
t=10to ¢ = 60.

1964 Phys. Fluids, Vol. 27, No. 8, August 1984

XI. DISCUSSION

The argument, which leads Kolmogorov to propose the
k —3'% law for the inertial-range spectrum of a turbu-
lence,'**° is so general that it is logical to expect that Kolmo-
gorov’s k ~°/3 law is valid despite the dimensionality of a
turbulence. Unfortunately the commonly used one-dimen-
sional model of turbulence (the Burgers turbulence) has the
k ~? inertial-range spectrum instead of £ ~*/*. Hence two
questions arise. The first one is: what is the essential differ-
ence between the Burgers equation and the Navier-Stokes
equation which leads to the different inertial-range spec-
trums? The second question (which is more challenging) is:
how does one find a proper one-dimensional model of turbu-
lence which has Kolmogorov’s k ~%/* inertial-range spec-
trum? We hope this paper can help to answer the two ques-
tions.

The numerical experiments reported in this paper con-
firm the vital role of the pressure term in the hydrodynamic
turbulence. The advection term builds up the correlation
between modes and reduces the chaos of the flow field; final-
ly, all modes are precisely locked in phase over the entire
spectrum. The nonlinear interaction of the advection term
alone cannot generate turbulence. The pressure term acts as
a high-frequency conservative random force to limit the
buildup of correlation between modes and to destroy the
spectrum-wide phase locking, leading to a turbulence with
Kolmogorov’s k ~*/* spectrum for the inertial subrange.

Tatsumi and Kida'®!' treat the Burgers turbulence
with the statistics of shock waves. In their treatment the
velocity field u(¢,x) is determined by the initial condition
u(0,x) in a deterministic way, the randomness of the turbu-
lence artificially comes into the flow field through the initial
ensemble, instead of being generated by the Burgers equa-
tion itself. The velocity field of a single realization is not a
stochastic process. They obtain the k ~? inertial-range spec-
trum, by assuming that the correlation of velocity field ap-
proaches zero faster than any negative power of  as » ap-
proaches infinity. Actually the k¥ ~? inertial-range spectrum,
according to our numerical experiments of Eq. (26), is merely
a simple consequence of the fact that the modal intensity of
the inertial-range of each realization is proportional to k ~*
after the transient process ended. Since the modal intensity
of each realization is proportional to X ~%, no matter what the
initial condition is, an asymptotic kX ~? inertial-range spec-
trum is evidently valid for any ensemble of initial velocity
field.

In Jeng’s and Kida-Sugihara’s numerical experiments
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of forced Burgers turbulence,'>"? they also get K ~2 inertial-
range spectrum, and the randomness of the turbulent field is
produced by the random external force acting at lower wave-
numbers in addition to a random initial velocity distribution.
In the Navier-Stokes turbulence the randomness and insta-
bility to disturbances are inherent properties of the Navier—
Stokes equation. The external force is sometimes introduced
to prevent the turbulence from decaying so that we can deal
with a stationary turbulence.'>'®

In our opinion, the difference between the Burgers
equation and the Navier—Stokes equation is more interesting
than their similarities. It is significant to have a one-dimen-
sional model of the Navier-Stokes turbulence, which yields
Kolmogorov’s k ~>/? inertial-range spectrum. In this paper
we propose such a one-dimensional model. According to the
numerical experiments of Eq. (43), the Kolmogorov constant
of this one-dimensional turbulence is between 0.5 and 0.65.
This result can be used to test various approaches to the
closure problems of turbulence theory.

Our numerical experiments are over a wavenumber
range of 50-100. Of course nowadays computers allow us to
do numerical study of the (three-dimensional) Navier—
Stokes equation over a wavenumber range of almost the
same order and a numerical study of the Burgers equation
over a wavenumber range of thousands. But the numerical
study of the Navier-Stokes equation over wavenumber
range of the same order (e.g., 32) could hardly provide any
significant information on the inertial-range dynamics of a
turbulence. For our numerical experiments the wavenumber
range of 50-100 is wide enough to produce an inertial sub-
range containing enough experimental data to indicate
whether the specturm is &k ~2 or kK ~%/3, and in the case of
k —3/3,to obtain quite accurate Kolmogorov constant. In the
numerical experiments of Eq. (26) the emphasis is on the
study of long-time evolution of a single realization. In the
numerical experiments of (43) the emphasis is on the time-
averaging over a long period to get a k ~>/* inertial-range
spectrum and the Kolmogorov constant.

Introducing an energy source at the lowest wavenum-
ber is fruitful. If there is no energy source, due to dissipation,
a turbulence will decay and finally die out; there is no possi-
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bility to study the long-time evolution of a single realization.
Moreover, in the numerical experiments of Eq. (43) the solu-
tion of (43) becomes a stationary stochastic process due to
the balance between the energy source and sink. Therefore it
is possible to use the time average to replace ensemble aver-
age and save much computing time.

It is advisable to consider the one-dimensional model
(31) or (43) as a purely mathematical model of hydrodynamic
turbulence. It is not recommended to transform the one-
dimensional model (31) into (z,x) space and to extract the
“physical meaning” of the resultant equation. The most im-
portant thing is that the model (31) or (43) can simulate the
essential feature of the cascade transfer of energy in a turbu-

lence and has a Kolmogorov k ~%/3 inertial-range spectrum.
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