Nonlinear theory of a positive column in a magnetic field
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A nonlinear theory of an intermediate pressure discharge column in a magnetic field is presented.
Motion of the neutral gas is considered. The continuity and momentum transfer equations for
charged particles and neutral particles are solved by numerical methods. The main result
obtained is that the rotating velocities of ionic gas and neutral gas are approximately equal.
Bohm’s criterion and potential inversion in the presence of neutral gas motion are also discussed.

I. INTRODUCTION

The theory of an intermediate-pressure discharge col-
umn in a magnetic field has been described in Refs. 1 and 2.
“Intermediate pressure” implies that both the electron-neu-
tral and ion-neutral collision mean free paths are of the same
order of magnitude as the radius of the tube. This theory
coincides with the “free-fall theory” in a magnetic field at
low pressure, and also with the ambipolar diffusion theory at
high pressure. The same range of pressure is considered in
this paper.

In Refs. 1 and 2, it was assumed that the neutral gasis at
rest. In fact, the neutral gas is in motion. In some applica-
tions,>* the motion of neutral gas is of great importance. In
this paper, therefore, we shall discuss not only the variation
of electric field and the density and velocity of charged parti-
cles, but also the motion of neutral gas, especially the rotat-
ing velocity of neutral gas.

The discharge chamber is cylindrical, the wall of the
chamber is dielectric. We assume that both the discharge
and the applied magnetic field are longitudinal. The radial
and azimuthal velocities of charged particles have been ob-
tained in Ref. 1. The assumption of this nonlinear theory is
that the ion motion close to the wall is inertia-controlled
rather than collision-controlled. Persson®® first showed that
the nonlinear inertial term in the equation of motion of the
ions gives rise, in the plasma approximation, to a plasma
boundary where the density and potential are finite, and the
ambipolar diffusion velocity equals the isothermal sound
speed. Reference 1 indicated that this boundary condition is
just the singular point of the equations, and the Bohm’s crite-
rion for formation of a monotonic sheath is satisfied. There
are two singular points when the motion of neutral gas is
taken into account. In this case, is Bohm’s criterion still val-
id? This problem is well worth discussing.

We shall also investigate the rotational velocity of the
neutral gas, the distribution of number densities and the po-
tential inversion.

. FUNDAMENTAL EQUATIONS AND BOUNDARY
CONDITIONS

We assume that:
(1) the positive column is composed of three component
gases: the electron gas, ion gas, and neutral gas;
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(2) collisions between electrons and ions may be neglect-
ed;

(3) the collision frequency is independent of the relative
velocity between particles;

(4) only single-stage ionization is taken into account;

(5) ion-electron recombination occurs at the dielectric
wall only; both volume recombination and electron attach-
ment are negligible;

(6) we use the first two moments of the Boltzmann equa-
tion; the ion temperature, the electron temperature and the
temperature of neutral gas are assumed to be uniform in
spatial distribution, and each of them has a Maxwellian dis-
tribution at its own temperature;

(7) the positive column is steady and the longitudinal
gradient is negligible;

(8) the column extends very far so as to make end effects
negligible;

(9) dissipative factors such as viscosity and heat conduc-
tivity are negligible.

The basic equations of a three-component gas are:
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where N,, N,, N, are the number densities of electron gas,
ion gas, and neutral gas; T, T, T, are the temperatures of
electron gas, ion gas, and neutral gas; V,, V,, V, are the
velocities of electron gas, ion gas, and neutral gas; M,, M,

© 1982 American nstitute of Physics 2278

Downloaded 11 Nov 2009 to 159.226.231.78. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



M, are the mass of an electron, ion, and neutral particle; v,,
v, are the electron-neutral and ion-neutral collision frequen-
cy; V' is the average ionizing collision frequency for an elec-
tron; E is the electric field; its component in the longitudinal
direction is given, the potential in the radial direction is ¢,
and ¢ = 0 at r = 0; B is the magnetic field, in the longitudi-
nal direction; K is the Boltzmann constant; and e is the
charge of an electron. As to the collision frequency we have
v=CN,,v,=CN,,v, = CN,. The valuesof C,, C;, C;
are different for different gases and can be found in appropri-
ate refernces. In the case of argon, for example, C,, C,, C; are
computed in Ref. 7 [expression (15)].

The cylindrical coordinate system (7,0,z) is introduced
and nondimensional substitution is made under the assump-
tions that all quantities are independent of & and z; that the
nonlinear inertial term of electrons may be neglected; and
that v,»v, v,»V, N, =N,, U, =U,, M, =M,,and T,

pr?
= T,. Dimensionless varlables are deﬁned as

M 172 _ N
S=r (——-———P ) ‘V;,(O), Ne = - s
K(T,+T,) N, (0)
N,=N,/N,(0), N,=N,/N,0) (7)

where — (d¢ /dr) = E,. The dimensionless parameters are

r 4
r=—2, 4 =i,
T, v,
R:=MPV; =MPVP M= e
My, Myv,’ v,(0)’

where v, =v, + v, v, =v, + v, £2, = eB /M, and the no-
tation “0” in the parenthesis denotes » = 0.

Using the assumptions listed above, projecting Eqs. (4}~
(6) in the directions of 7 and 6, and noting that U, is uncou-
pled, we obtain seven nondimensional equations from (1)-(6)
which form a closed set for seven unknown functions U,
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The boundary conditions are as follows: at S = 0,

U,=¢=Usy=mhN,=U,=U,=0,

InN, =1InN,(0), (15)
and

S=S,, U.,=1,or U, =[r/(1+7)]"3 (16)

where In N, (0) is known, and S, is to be determined.
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Since some terms on the right-hand side of Egs. (8)-(14)
may become 0/0 at S = 0 under the condition of (15), i.e.,
they are indeterminate, other constraints are needed. We
assume that, near S = 0, the quantities U,,, Uy, U,,,, U,, are
proportional to s. Substituting these relations into the equa-
tions, and taking the limit S—0, we have

du, 4 dhN, _ dg
T ds ds

as 2’ ds 0.
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TABLE I. Parameters identifying the two reference cases.

T A R’
Case A 0.0431 0.393 53.9
Case B 0.1 0.01 30.3
Wpo ____ —M (_1‘_4;+ <1+A)2)
dS 214+4)2+4)\M, R’ ’
dInN, dU,, A=
=0’ = __Ne(o)’
ds ds 2
dU —
v _ ~4A%¥,0,
ds 2
du, M(l M, 1
o _ Ml +A)(—+-—, . (17)
ds 22+4) \M, R

The numerical results were obtained on a TQ-16 com-
puter using the Runge-Kutta method with variable step
sizes.

lil. RESULTS AND DISCUSSION

We have computed the case U,, = U,, =In N, =0 as
aspecial one with7=0.1,4 =0.01,R' =303, M =172 or
17.2. In Ref. 1, the computational results of the potential ¢
were presented with 4 =001, R’'=30.3, ¢*= 1000
(M~172) or ¢ = 10 (M ~17.2). Comparison of the present
values of @ with the results in Ref. 1 shows very good agree-
ment.

With motion of the neutral gas, the system of differen-
tial equations involves seven physical variables. Two cases
were calculated: case A and case B (see Table I). For the sake
of comparison, the values of the three parameters in case B
are the same as Ref. 1. For brevity, the values of the other
two parameters M and In N, (0) are represented by the sym-
bols M, and N, respectively (see Table II). The special sets of
the five parameters corresponding to the curves in Figs. 1-8
are listed in Table II1. The computational results of the seven
variables are presented and discussed in the following:

A. The radial velocities {/,,, U,, and Bohm'’s criterion
Bohm’s criterion is an analytical result. It states that

only when the kinetic energy of ions that arrive at the sheath
is more than half the electron thermal energy, will a stable

TABLE I1. Density and frequency ratios used in Figs. 1-8.

e 7

FIG. 1. Spatial variations of U,, and U, for case A.

sheath then exist (see Ref. 8).

Reference 1 indicates that at the boundary the ambipo-
lar diffusion velocity is equal to the ambipolar thermal veloc-
ity U,, = 1, i.e., Bohm’s criterion is valid here. However, U.,

= 1is also a singular point of the equations, so that it is
appropriate to integrate the equations until U, =1 is
reached. However, the motion of neutral gas introduces an-
other singular point U,, = [r/(1 4+ 7)]'/? in the equations.
Mathematically, it may be possible that U,, = [7/(1 + 7)]'/2
is reached before the integration reaches U,, =1, so that
further integration is meaningless. In this case, Bohm’s crite-
rion will not be satisfied. Physically, this corresponds to say-
ing that a stable sheath may not exist in the presence of neu-
tral gas motion and that the plasma sheath model must be
reconsidered.

For the sets of parameters which we have computed, all
integrations reach U, =1 before U,, = [7/(1 + 7)]"/% so
Bohm’s criterion is still valid for these sets of parameters.

The computational results for U,, and U, are shown in
Figs. 1 and 2. It can be seen that the radial velocity of the
neutral gas U, is one order smaller than that of the electron
gas U,,.

M
In N, (0)

M, =265 M,=265 M, =265 M,=112 M, =545 M,=172
N, = —4.605 N, + M, N +M, N +M, N, +M, N, + M N, + M,
N, = —6.908 N, + M, N,+ M, N, + M, N, + M, N, + M, N, + M,
N,= —9.211 N, + M, N, + M, N, + M, N, + M, N, + M; Ny + M,
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TABLE III Parameters corresponding to the curves of Figs. 1-8.

Case A Case B
Fig. 1 Fig. 3 Fig. 6 Fig. 7 Fig. 2 Fig. 4 Fig. 5 Fig. 8
N, N,
Curve 1 M, + N, M,+ N, M,+ N, M,+ N, M,+ N, Mg+ 1N, My + 4N, My + N,
Ny N,
N, N, N, M,
Curve 2 M, +i{N, M, + 1N, M, + 1N, M, +N, M, + N, M+ N, M;+ N, Mt + N,
N, N, N, M,
N,
Curve 3 M, + N, M, + N, M, + N, M,+ N, M.+ 14N, M, + N, M, + N, M, + N,
N,
Curve 4 M+ N, M, + N, M;+ N, Mq+ N,
Curve 5 M, + N, M,+ N, M, +N, M.+ N,
Curve 6 M, + N, M, + N, M+ N, M,+ N,
Curve 7 M,+ N, M,+ N, M+ N,
N.
Curve 8 M, + [ N:Z;
Curve 9 M, +N,

B. The azimuthal velocities U,, and U,

For the sets of parameters computed here, U, and U,
are found to have nearly the same value. In this case, the
electromagnetic field gives momentum to charged particles,
mainly to ions, and the ions give momentum to the neutral
particles through collisions. It follows that it is not appropri-
ate to neglect U,; and retain Uy, in the equations such as was
done in Refs. 1 and 2.

Aoy

FIG. 2. Spatial variations of U,, and U,, for case B.
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Since the steady state is considered, there is little influ-
ence of initial electron density on the magnitude of U,, and
U,o- However, if the accelerating process is considered, the
greater the electron density, the shorter the transient process
will be, i.e., the steady state should be reached more quickly.

The magnetic field has a larger effect on the neutral gas
rotation. The higher the magnetic field, the greater U,, and
U,e. i.e., the faster the rotation. Since the driving force for

ld

the ion rotation is proportional to B, this result is reasonable.

Tlny  —ipy
0-2 —

= 1
0-1{ 2

B 3

{ | | 1 | U W W S R
0 $/s0
0.5 1.0

FIG. 3. Spatial variations of U, and U,, (they are nearly the same} for case
A.
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FIG. 4. Spatial variations of U,, and U, (they are nearly the same) for case
B.

The associated results are shown in Figs. 3 and 4.

When 7 =0.1,4 =0.01, R’ = 30.3, M = 172 (there is
no effect from the initial electron density), we obtain U,
= — 0.86 at the wall. The magnitude of U,,|,_,, may be
even greater for other chosen parameters.

C. The quantity ¢ and potential inversion

If one considers the rotation of the neutral gas, the
phenomenon of potential inversion becomes less frequent. It
is seen from Fig. 5 that in the case of M = 172, all parameters
are the same as Ref. 1, potential inversion appears when
rotation of the neutral gas is not considered, but disappears

S/sb

FIG. 5. Spatial variations of ¢ for case B.
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FIG. 6. Spatial variations of ¢ for case A.

when rotation is considered. The potential inversion still ap-
pears with other sets of parameters, such as those given in
Fig. 6, curve 3.

When the potential inversion is absent, the radial com-
ponent of the electric field points in the direction of increas-
ing radius. The associated charge distribution is such that
there is more positive charge near the center and more nega-
tive near the wall.

FIG. 7. Spatial variations of N, (curves 1-5)and N, (curves 6-9) for case A.
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FIG. 8. Spatial variations of N, {curves 1-3) and N, (curves 4-6) for case B.
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D. The density logarithms in N, and In AV,

The electron density profile shows that N, is much larg-
er at the center than at the wall, and the ion profile is the
same since we have assumed a fully neutralized plasma.
These profiles may be treated as the solutions of the zero-
order iteration. When the electric field is known, from the
electric field equation V-E = (N, — N, )/€,, we may obtain
the charge profile as the solution of the first-order iteration.

As the result of neutral gas rotation, a radial pressure
gradient appears. For the isothermal case, this means that
the radial gradient of neutral particle density is present. It
can be seen from Figs. 7 and 8 that the greater the value of M
(i.e., the stronger the magnetic field), the larger the pressure
gradient. However, the N, profile is little affected by the
initial electron density.
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