PEG化磷脂膜在蛋白质芯片表面 修饰中的应用

Application of PEGylated Phospholipid Membrane in Surface Modification of Protein Chips

张义浜¹, 陈艳艳^{1,2}, 靳 刚^{1,3} (1 中国科学院苏州纳米技术与纳米仿生研究所,江苏 苏州 215125; 2 中国科学院生物物理研究所,北京 100101; 3 中国科学院力学研究所,北京 100190) ZHANG Yi-bang¹, CHEN Yan-yan^{1,2}, JIN Gang^{1,3} (1 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, Jiangsu, China; 2 Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 3 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China) **摘要**:用 PEG化磷脂膜修饰蛋白质芯片的二氧化硅表面,通过调节 PEG的含量,考察磷脂膜对蛋白非特异性吸附的抑

制要:用FEG化磷脂族修饰蛋白质芯片的二氧化硅农面,通过调节FEG的苔重,考察磷脂族为蛋白非符并住吸附的种制,以及对蛋白分子固定的影响。结果表明,经过 PEG化磷脂膜修饰的二氧化硅表面,可以显著抑制蛋白的非特异性吸附,并通过功能化的 PEG分子有效固定配基及其抗体。

关键词:磷脂膜;表面修饰;椭偏光学成像技术

中图分类号: TP212 文献标识码: A 文章编号: 1001-4381 (2008) 10-0208-03

Abstract : Application of PEGylated phospholipid membrane in surface modification of oxidized silicon is studied here. Silicon dioxide surfaces are covered by phospholipid membrane with variable molar fractions of DSPE-PEG2000-COOH, and obvious resistance to non-specific protein adsorption on PE-Gylated phospholipid membrane is obtained. Also, ligand and its corresponding antibody can be effectively assembled on functionalized PEGylated phospholipid membrane.

Key words :phospholipid membrane; surface modification; imaging ellipsometry

细胞膜的骨架是由磷脂分子构成的双分子层 (Phospholipid Bilayers, PB),其中镶嵌了大量的各种 蛋白、酶、脂类、糖类等活性分子。采用磷脂分子在固 体表面人工模拟细胞膜结构 ,形成的磷脂双层膜具有 良好的液态流动性,不仅可以高度保持生物分子的生 物学活性[1-3],还能有效抑制其他生物分子的非特异 性吸附[4,5],因此,磷脂双层膜在跨膜蛋白、生物传感 器等研究领域,具有良好的应用前景。然而磷脂膜形 成的驱动力是疏水作用力,需要依赖周围的水分子,因 而在空气中不能形成稳定的磷脂双层膜,不利于其在 芯片表面修饰中的应用。有人^[6]采用聚乙二醇(PEG) 分子使磷脂双层膜具有空气稳定性,同时 PEG分子还 具有抑制蛋白非特异吸附的特点[7]。以 1,2 - 二豆蔻 酰磷脂酰胆碱(1,2-Dimyristoylphophatidylcholine, DMPC)为磷脂骨架分子,在二氧化硅表面研究不同 PEG含量的磷脂膜对蛋白非特异吸附的抑制以及对 蛋白固定的影响。

1 实验材料和方法

1.1 磷脂囊泡的制备

采用水浴超声结合挤压过膜的方法制备尺寸均一的小单壁磷脂囊泡(SUVs),具体步骤如下:将DMPC 溶于氯仿中,掺入不同摩尔比例的1,2-二硬脂酰甘 油-3-磷脂酰乙醇胺-N-羧基(聚乙二醇2000)(1,2-Distearoyl-*sn* Glycero-3-Phosphoethanolamine-N-[Carboxy(Polyethylene Glycol)2000], DSPE-PEG-COOH),用氮气将氯仿挥发殆尽后在真空下干燥至少 2h,以在管壁形成磷脂薄膜。然后加入一定体积的 PBS 溶液(pH7.5),使DMPC 浓度为1 mM,漩涡振 荡 5min 后,水浴超声至清。采用 MiniExtruder (AvantiPolar Lipid Co.)挤压溶液过聚碳酸酯膜(孔 径 50nm)至少11次,将制备好的囊泡溶液保存于4 备用,并采用激光粒度仪(Sympatec,GmbH)分析囊 泡粒径大小及分布。

1.2 硅片表面的磷脂膜修饰

将硅片(表面为自然氧化的二氧化硅层)切割成 1cm ×1.5cm 后,采用 Piranha 溶液(H₂SO₄ H₂O₂ = 3 1)清洗、氧化,使其表面呈亲水性(接触角约为 5)。将硅片表面用磷脂囊泡溶液室温下处理 30 ~ 60min,即可在硅片表面形成磷脂膜层。由于磷脂分 子具有亲水头基和烷基尾链,在亲水表面形成脂质双 层结构,如图 1 所示。

图 1 亲水表面形成的磷脂膜层结构示意图 Fig. 1 Schematic picture of phospholipid bilayer on hydrophilic surface

1.3 磷脂膜对蛋白非特异性吸附的抑制及蛋白在膜 层表面的固定

将不同摩尔含量 PEG的的磷脂囊泡,在亲水性二 氧化硅表面自组织形成磷脂双层膜结构。对磷脂膜表 面的羧基采用 N-羟基琥珀酰亚胺(NHS)和 1-乙基-3-(3-二甲氨丙基)碳二亚胺(EDC)活化处理(NHS和 EDC 的终浓度分别为 50mM 和 200mM),然后将人血 清白蛋白(HSA,0.1mg/mL)作为配基分子共价固定 在膜层表面,再与 HSA 的抗体(30µg/mL)反应,研究 蛋白在该膜层表面的固定情况。同时做膜层未经 NHS/EDC 处理的对照,与同样的蛋白溶液反应,以考 察磷脂膜修饰表面对蛋白非特异性吸附的抑制情况。 结果采用椭偏光学成像系统观察。

1.4 椭偏光学成像系统及微流道反应系统

椭偏光学成像系统^[8],将传统的光学椭偏术、CCD 摄像、计算机取样和图像处理技术相结合,通过测量 样品的反射光强变化实现对样品分析。测量结果以灰 度图的形式保存下来,其灰度值的变化反映了表面组 装配基分子的面密度变化。

脂膜的组装、溶液的输运、蛋白分子的反应以及清洗等操作均在微流道反应系统^[9]中完成。该系统包含 一个8 ×6 阵列排列的凹槽,每个凹槽两端开通孔,分 别作为液体进口和出口。将该阵列凹槽与硅片表面接 触,就会形成一个个空腔,即形成了有一进一出的微 流道。该方法可实现多种不同样品的同时检测,且所 需样品量较少,每个阵列单元仅需数微升样品。

2 实验结果与分析

2.1 磷脂囊泡的制备

在硅片表面修饰磷脂膜,可采用磷脂囊泡在硅片 表面发生吸附与融合的方法实现^[10],但需要制备尺寸 均匀的 SUVs。SUVs 的直径一般不超过 100nm,通 过将水浴超声至清后的囊泡溶液再挤压过 50nm 孔径 的聚碳酸酯膜来控制囊泡的尺寸。通过比较发现,将 水浴超声处理和挤压法结合起来制备磷脂囊泡,可以 更为快捷方便地得到尺寸均一的 SUVs。经激光粒度 仪分析,挤压过膜后的囊泡比聚碳酸酯膜的孔径略大, 可能是 PEG分子增加了囊泡的柔性,使其在溶液中伸 展有关。另外,PEG还有促使囊泡形成和稳定囊泡的 作用,在4 下保存数月后,溶液仍能保持澄清,分析 其粒径为 101.4nm ± 2.5nm。

2.2 磷脂膜对蛋白非特异性吸附的抑制及蛋白在膜 层表面的固定

利用微流道系统,在亲水性二氧化硅表面形成磷 脂双层膜,考察其对蛋白非特异性吸附的抑制情况,以 及对膜层功能化后共价固定蛋白的效果,结果如图 2 所示。图中 A1 为囊泡空白对照(含 5%(摩尔分数) DSPE PEGCOOH),B1 和 B4 分别为 HSA 配基及其 抗体在基底上吸附的空白阳性对照和基底的空白阴性 对照,而 A2,A4 和 B2 分别为含 0.5%,1.5%和 5% (摩尔分数,下同),DSPE PEGCOOH 的磷脂囊泡处 理后的表面对蛋白的非特异性吸附。

Fig. 2 Interactions of proteins and PEGylated phospholipid membranes

从图中可以看出,经过 PEG化磷脂膜修饰后的二 氧化硅表面,同原亲水性表面相比,蛋白吸附的灰度值 降低,并且随着 PEG 含量的增加,蛋白膜层灰度值逐 渐减小。当 PEG 含量达到 1.5%时,膜层与蛋白作用 后的灰度值即无明显增加。这些结果表明,PEG化的 磷脂膜层可以抑制蛋白分子的非特异性吸附,并且抑 制效果与 PEG含量相关。

膜层表面的羧基基团通过 NHS/ EDC 功能化,可 与蛋白分子的氨基形成酰胺键,从而将蛋白分子固定 在膜层表面,图 2中A3,A5和B3分别为硅片表面经 含0.5%,1.5%和5%DSPEPEGCOOH的磷脂囊泡 处理,羧基进行 NHS/ EDC 活化后,固定配基及其抗

体后的结果。

从图 2 中可以看出,膜层经过 N H S/ EDC 功能化 后,可以将蛋白分子固定到膜层表面并结合其抗体分 子,但膜层中 DSPE PEG COOH 的含量与固定蛋白 量不成正比。随 DSPE-PEG COOH 含量的增加,膜 层固定蛋白后的灰度反而有所下降,说明增加膜层中 可功能化羧基的含量,并未提高固定的蛋白量。这很 可能是由于在增加可功能化羧基含量的同时,膜层表 面的 PEG分子也同时在增加, PEG 为电中性分子,具 有较强的亲水性,其在磷脂膜表面形成的水化层一方 面阻碍蛋白分子的靠近,同时又掩蔽了 PEG末端功能 化的羧基,从而影响功能化羧基与蛋白的共价结合。 此外,在亲水硅片表面形成的磷脂双层膜,随着膜层中 PEG含量的增加,PEG分子将从"蘑菇相"转变为"刷 相",此时磷脂膜层结构相对更为稳定。对于 PEG2000,理论的相变摩尔浓度为 1.4 %^[11]。以上实 验结果表明,在 PEG 处于相变浓度时,膜层既能保持 对蛋白非特异性吸附的抑制,同时又能较好地固定蛋 白分子。因此,在用 PEG化的磷脂膜进行芯片表面修 饰时,PEG的含量可选择在其相变摩尔浓度附近。由 于通过功能化羧基固定蛋白分子,其影响因素除表面 的功能化羧基密度外,还与蛋白的浓度、分子量以及溶 液的 p H 值,离子强度等有关,在将来的实际应用过程 中,结合需要固定的蛋白分子,还应进行具体条件的选 择和优化。

3 结论

(1) 通过椭偏光学成像系统检测,在亲水性二氧化 硅表面修饰 PEG化的磷脂膜,随着膜层中 PEG含量 的增加,可以逐渐增强表面对蛋白非特异性吸附的抑 制。

(2) 对磷脂膜表面的活性基团进行功能化后,可实现配基的固定及其抗体的结合。

(3) PEG化的磷脂膜,既能在其表面固定生物活 性分子,同时能抑制其他生物分子的非特异性吸附,有 望应用于蛋白芯片的表面修饰。

参考文献

[1] MATTHEW A C, DUDLEY H W. Kinetic analysis of antibody-

antigen interactions at a supported lipid monolayer[J]. Analytical Biochemistry, 1999, 276(12): 36 - 47.

- [2] CUPERS P A, CORSEL JW, JANSSEN M P, et al. The adsorption of prothrombin to phosphatidylserine multilayers quantitated by ellipsometry[J]. Journal of Biological Chemistry, 1983, 258 (4): 2426 2431.
- [3] CORESEL J W, WILLEMS G M, KOP J M, et al. The role of intrinsic binding rate and transport rate in the adsorption of prothrombin, albumin and fibrinogen to phospholipid bilayers [J]. Journal of Colloid Interface Science, 1986, 111(2): 544 - 554.
- [4] PHILLIPS K S, HAN J H, MARTINEZ M, et al. Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid bilayers[J]. Analytical Chemistry, 2006, 78(2): 596 - 603.
- [5] GLASMASTAR K, LARSSON C, HOOK F, et al. Protein adsorption on supported phospholipids bilayers [J]. Journal of Colloid and Interface Science, 2002, 246(1): 40 - 47.
- [6] ALBERTORIO F, DIAZ, A J, YANG T, et al. Fluid and airstable lipopolymer membranes for biosensor applications [J]. Langmuir, 2005, 21(16) 7476 - 7482.
- [7] HALPERIN G F, SCHILLIER A, SFERRAZZA M. Primary versus ternary adsorption of proteins onto PEG brushes [J]. Langmuir, 2007, 23(21): 10603 - 10617.
- [8] JIN G. Development of biosensor based on imaging ellipsometry
 [J]. Physica Statatic Solida(a), 2008, 205(4):810-816.
- [9] WANG Z H, MENG Y H, YING P Q, et al. A label-free protein microfluidic array for parallel immunoassays[J]. Electrophoresis, 2006, 27(20): 4078 4085.
- [10] EDWARD T C, PAUL S C. Solid supported lipid bilayers: From biophysical studies to sensor design [J]. Surface Science Reports, 2006, 61(10): 429 - 444.
- [11] DAVID N, DENNIS H K. PEG-covered lipid surfaces: bilayers and monolayers [J]. Colloids and Surfaces B: Biointerfaces, 2000(3 - 4), 18: 183 - 195.

基金项目:国家自然科学基金项目(20845003);中国科学院重要方向性 项目(KJCX2.YW.M02 and M04);中国博士后科学基金资助项目 收稿日期:2008-06-25;修订日期:2008-08-15

作者简介:张义浜(1980 → ,男,中国科学院苏州纳米技术与纳米仿生研究所 07级博士生,主要从事固体支撑磷脂膜及光学蛋白芯片表面改性研究,联系地址:江苏苏州工业园区高教区若水路 398 号苏州纳米所 A705(215125)。Email:ybzhang2007 @sinano.ac.cn