A S5FAKIER

Computational Simulation of Flows in
Crystal Growth from Melts

B. C. Khoo D. Xu
(Centre for Computational Mechanics, National University of Singapore)
W. J. Ma®

(Institute of Mechanics, Chinese Academy of Sciences)

Abstract: The numerical simulations of Czochralski and Bridgman crystal growth are performed and pre-
sented in the paper. The second order upwind QUICK scheme with finite control volume method is employed
for the numerical calculations of melt flows in Czochralski crystal growth . It is found that the present calcu-
lation has much higher numerical accuracy and stability compared with other methods. The 3-dimensional
time-dependent numerical calculations of melt flows in horizontal Bridgman crystal growth with high gravity
by means of centrifuges shows that Coriolis force has stabilizing effect on the fluctuation of melt flows under
specific rotation direction and rotation rate. The 3-dimensional numerical solutions agree with the experi-

mental results, and are much more accurate than 2-dimensional numerical prediction .

Introduction

Crystal growth from melts is a major way to produce a variety of materials for the manufacture of electronic
and optical devices. During the process of growth, the flow of the melt plays a crucial role in determining the
crystal quality. In most cases of crystal growth from melts the melt is at very high temperature and remains
opaque, which makes it very difficult to observe the detailed structure of the associated flow field. With the
rapid advancement of computer technology, CFD (Computational Fluid Dynamics) has become an increasing
powerful and important tool for use to study the flow dynamics of the liquid phase and its influence on the crystal
growth. Computational simulation enables the crystal growers to visualize the flow patterns and seek the optimal
growth conditions with much resultant savings in terms of cost and time. In this article we present two exam-
ples of computational simulation of flows in crystal growth from melts performed at the Center for Computational
Mechanics, National University of Singapore. The simulations involve some basic aspects of CFD and major

configurations for crystal growth from melts.

Part I.Simulation of Steady Flows in Czochralski Crystal Growth

The Czochralski technique has been widely used to grow semiconductor and oxide crystals for decades, but
the success to produce large size and good quality crystal depends very much on the experience and skill of the
personnel involved. The modeling and understanding of heat and mass transfer have become an important issue
in the optimization of the Czochralski technique to grow more uniform and better quality crystals. Several com-

puter methods and models have been developed and are increasingly being used to simulate crystal growth in the
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. The combination of natural convection due to thermal gradients between the crystal and cru-

last decadel! ™3

cible and forced convection due to rotation of the crystal and the crucible makes the problems very complex in
terms of thermodynamics and hydrodynamics. With the increase of the heat conduction (Grashof number) "and
rotations of crystal or crucible (Reynolds number) as required in the Czochralski growth technique for the possi-
ble growth of a larger with less imperfection crystal, the convection term in the flow equations becomes much
more dominant. This makes the second order central difference scheme unsuitable due to enhanced numerical in-
stability. The motivation for the present study stems from the need to numerically simulate the flow in
Czochralski crystal growth at more extreme conditions with higher order accuracy and using limited computing
resources. In this respect, the Control Volume Method with the second order upwind QUICK scheme is used
to simulate the fluid flow. The Wheeler's benchmark problem!®! is taken as the test example in Czochralski

crystal growth.

Wheeler’s Benchmark Problem

h{®) is shown in Fig. 1. It consists essen-

The Wheeler's benchmark problem for Czochralski crystal growt
tially of a vertical cylindrical crucible of radius Rc filled with a melt to a height H and rotating with an angular
velocity Q0c. The melt is bounded above by a coaxial crystal of radius Rx< Rec rotating with angular velocity {x.
The problem is solved subjected to the following assumptions:

- The free surface of the melt is flat and free of shear stress;

+The crystal is isothermal with temperature Tx;

* The side wall of crucible is isothermal with temperature Tc;

+ The bottom of crucible is a perfect insulator;

* The temperature on the free surface of the melt assumes a linear distribution from Tx to Tc;

* The melt is an incompressible Newtonian Boussinesq fluid;

+The flow is axi-symmetric.

Mathematical Model

To Wheeler's problem, the non-dimensional governing equations (i. e. continuity, momentum and ener-
gy, equations) in the cylindrical coordinate system, can be written as;
19 (ru) 3w

T or E)z=0 (1)
ug—:+wg‘;’+u—r"=vzv—% (3)
ui—v:+w%—‘:=—%5+vzw+GrT (4)
wIlewil-door (5)
where V2=—1' ai (r 3%) ;—:2
The boundary conditions are given by
u=v=%—‘:=%’%=0 for r=0, 0<z§u;
u=w=0, v=Re, T=1 for r=1, 0<<z<{q;
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u=w=%—T=0, v=rRe, for 0<<r<C1, 2=0;
z
du_dv_ o p-(=B) <r<1, z=a;
az—az—w—O, T—(l_B) for B<<r<<1, z=q;
u=w=T=0, v=rRe, for 0<\r<B, z=a. 6)
Here the non-dimensional parameters are the aspect ratios
_H _R
““R. PR
the Reynolds numbers
2 ZQ
Rex = UQX, Rec=——RCU <

and the Prandtl and Grashof numbers

rT_T) R
Pr=—:-, Gr=gB ( c2 x) Re

v
where « is the coefficient of thermal conductivity and B, is the coefficient of volumetric expansion. In the present

study, the aspect ratios and the Prandtl number are fixed at:
a=1.0, B=0.4, Pr=0.05

Numerical Results and Discussion

The governing equations with their boundary conditions are numerically solved by using control volume
method and the second order upwind QUICK scheme. The present solver is validated by the Wheeler’ s bench-
mark problems. It is found that the present results agree very well with available data in the literature. Howev-
er, the present solver can simulate the flow with much higher Grashof number.

The grid independence of the results is examined before the main calculations are carried out. The case A3,
with Gr=Rec=0, Rex =1.0x10% is repeatedly calculated with 5 kinds of grids from coarse to fine. The
minimum and maximum values of stream function denoted by ;. and ., respectively, and maximum velocity
| Ul ey in the r-z plane are computed and compared for different grid sizes. From Table 1, a convergence to grid
independence is fairly obvious. These computed results in turn are fairy comparable to the results of [2], which
is listed in the last two columns in the Table 1. It may be said that for the most significant value of ,;, the pre-
sent solver has the same accuracy as the reference [2], which used the second, order central difference scheme
to simulate the convection terms of Navier-Stokes equations.

To further validate the present solver, the numerical results of case A1, A2, and D2 (refer to table 4 for
the meaning of case number) are compared with available data of [5] (See Table 2) which obtained the results
using spectral multidomain method. It can be deduced that both calculations agree very well with | U], and
min- There are, however, some differences between ¢, of present calculation and [5]’s calculation. Since the
absolute value of ¢, is very small, the difference can be considered to be negligible. Further comparison of
these cases computed using the central difference scheme [2] has also indicated some differences in the numerical
values of ¢y and ... This is shown below in Table 3. However, in all these comparisons, there is very little
difference in the stream function contours thereby indicating very similar flow features.

From the above, further computations pertaining to different flow conditions are carried out for the typical
grid size of 80 X 80. It may be noted that morn grid lines are intensively distributed near to the solid wall of the
crucible and the crystal to reflect the expected rapid change or much sharper gradient of flow field.

After validation of the present numerical solver, we calculated as many as 12 cases(classified under 4 groups)

with different parameter sets(reflecting the associated flow conditions imposed)listed in Table 3.
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Table 1 Grid Independence Test, Case A3, Gr=0, Rex=1.0%10*, Rec=0

Mesh U Poin Paax Pin Prnax
20%20 833.97 -3.1515x 10" 1.7456 x 10° -3.2661 % 10} 1.2563x 107!
40% 40 957.24 ~3.9474 x 10" 2.0885x 1073 -4.1317x 10! 1.1625x 107!
64 % 64 959.08 -4.0913%10! 5.7303% 1072 -4.0443x 10 1.9320x 107!
80 % 80 961.05 -4.1168 x 10" 1.0443% 107! - 4.2645x 10 1.4583% 107"
160 % 160 978.01 -4.2367 %10 1.3366x 107! -4.2513% 10* 1.5918x 107"
e -4.2419 % 10 1.6179%x 107!
# Present QUICK scheme; # * [2]'s central difference scheme.
Table 2 Some Results of Case Al, A2, D1 and D2
Case (Ul o P Pmax [ U max Ponax Pruan
Al 4.37 ~-2.17%x107" 4.06%107° 4.46 ~0.224 4.85x10°¢
A2 88.79 -4.99x10° 1.83x107° 89.76 ~5.074 7.89%x10°°
D1 190.41 -5.79%x107* 2.84 % 10 189.81 -1.19x107* 28.39
D2 190.12 -4.52x107* 2.84x 10 189.53 -1.20x107* 28.36

* Present QUICK scheme;80%80;... « * {5]"s spectral multidomain method, 41 X 41

Some numerical results are briefly presented here. Interested reader may find detailed discussion in reference
[8]. Figure 2 gives the streamlines of case B2, which typifies the general characteristics observed in group B.
From the figure, it is fairly obvious that there are two vortices with opposite directions appeared in the upper left
corner just under the crystal and the lower right corner. With the increase of rotation speeds of the crystal and
crucible, the upper left vortex produced by the crystal rotation moves towards right corner, whereas the lower
right vortex induced by the crucible rotation moves to left and dominates the flow field. It is apparent that for
possible optimum crystal growth condition requiring only the presence of a single vortical region, both the crystal
and crucible cannot be made rotated at the same time

Figure 3 depicts the streamlines of case C2, typifying the calculations belonging to group C. In this group,
the crystal and crucible are at rest and the side wall Grashof number increases from 1.0 X 10° to0 1.0 X 107.
When Grashof number increases, the vortex gets enlarged and its highest velocity layer moves to the side wall of
the crucible. 1t should be noted that the centre of vortex seems not to change its position at all. Figure 4 shows
the contours of temperature for C2. It can be seen that when Grashof numer is increased, the contours are com-
pressed towards the centre of crucible, which means that the remaining region of crucible is dominated by the
high temperature. In the [2], it was found that when Grashof number reached 107, the periodical oscillation oc-
cured with numerical solution. However, in the present study no numerical oscillating is found for the Grashof
number up to 107,

The numerical results of reference [2], which were obtained using central difference scheme, are also listed
in the last two columns of Table 3. The comparison between the present results and [2]’ s results, except for
some [2]’s results for values of ¢nia in cases Al and Bl, shows that the present QUICK scheme can solve much
higher Grashof number problem with the accuracy as high as the central difference scheme for engineering appli-
cations. It should be noted that the present value of ¢, for case Al is almost the same as [5]’s listed in the

Table 2. Unfortunately, there is no available data for further comparison for case Bl1.

Part ]I .Simulation of Bulk Flows in Horizontal Bridgman Growth on a Centrifuge

One of the main problems in the melt growth techniques is the formation of a spatial type of micro-inhomo-
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geneities( Striation) which leads to grown semiconductor single crystals with the defects of non-uniformity. The

unsteady buoyancy-driven convection which is present in the melt has been considered to be the most important
cause of the melt temperature fluctuation, and ultimately resulting in formation of the doping striation [9].Re-
cent studies have brought to light the possibility of growing homogeneous crystals with the aid of a centrifuge.

Experiments have been performed using Bridgman method to grow crystals with improved qualities i_n high
gravity conditions by means of centrifuges [10 —15]. It has been suggested that the Coriolis force, rather than
“high gravity”, produced by the centrifuge rotation may have a stabilizing influence on unsteady buoyancy con-
vection flows, and leads to the improvement of the quality of growing crystals.

We present here the results of three-dimensional numerical modeling of bulk flows in horizontal Bridgman
growth on a centrifuge with various Grashof numbers in time-dependent flow regimes. The important effect of

Coriolis force on convection flows is taken into consideration.

Description of the Model

Horizontal Bridgman growth on a centrifuge is schematically depicted in figure 5. A horizontal cylindrical
furnace was hung on the end of the arm via a bearing with its axis perpendicular to the centrifuge arm and earth
gravity. An open-boat-shaped crucible containing a molten metal was positioned in the furnace. The crucible is
considered in this simulation as a rectangular parallelepiped with free surface on the top. The melt is heated by
furnace with a horizontal linear temperature gradient, so that the bulk thermal buoyant convection is generated
with the flow ascending at hot end and descending at cold end. Figure 6 shows the geometry of the problem. In
this study it is assumed that the flow is driven solely by thermal buoyancy force caused by the combined action of
horizontal temperature gradient and centrifugal accelerationg. The Marangoni convection is ignored. The cen-
trifugal and Coriolis acceleration effects are separately treated in terms of non-dimensional parameters Gr and Ta
(Grashof number and Taylor number), respectively.

The following non-dimensional continuity equation, Navier-Stokes equation with Bossinesq approximation

and the energy equation describe the melt flow in the crucible:

V- u=0 (7)
1 v/ | Tal
u t+(uV)u=vp+ Viu+e,T— =", X 8
Y ~A A S ®)
1
T, +(uV)T=———=V?T 9
“ Pr +/Gr ©)

The last two terms in equation(8)are the buoyancy force and Coriolis force, respectively. We use non-dimen-
sioning scale factors length H, time H?/(uv* v/Gr), velocity v+ +/Gr/H and pressure pv’Gr/H?, and the non-dimen-
sional temperature is defined as (T — T¢)/(Ty— Tc) . e, and e, refer to the unit vectors in directions of resultant
gravity g, and the rotation velocity vector of the centrifuge w, respectively. With the assur.nption of neglecting the
effect of earth gravity g., e, will be parallel to axis z, (see fig.5).

The non-dimensional parameters are Prandtl number Pr=v/k, Grashof number, Gr= gB(Ty — Te)H?/v? and
the Taylor number Ta, with| Ta| =4w?H*/v?. The Taylor number reflects the relative strength of Coriolis accel-
eration. Its sign is determined by the centrifuge rotation sense. The negative Ta corresponds to that situation of
e, is parallel to axis z. (i.e. the centrifuge rotation is in the same sense as the primary convection roll in the
melt) . The positive Ta corresponds to that e, is counter-parallel to axis z. (i.e. both centrifuge rotation and melt
convection roll are in the counter direction. )

The following boundary conditions are employed. The no slip condition is applied at all crucible walls. The

horizontal free surface is assumed flat and stress-free.
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u=0 at boat wall,

d

5‘—1 =0 at free surface.
n

The temperatures at two end-walls are fixed at T and Ty respectively. Both the sidewall and the free sur-

face are imposed with a fixed linear temperature profile.

Numerical Results and Discussion

The basic equations are solved in three-dimensional and time-dependent form by the finite volume method
with PISO algorithm(Pressure Implicit Solution by Spilt Operator method)[16]. The self-filter central differen-
tial scheme is employed for variables of velocity and temperature. Since the entire geometry is symmetrical with
respect to the central vertical plane, the calculation of the flow field will be undertaken within half domain. A
40x12x10 mush is used in this simulation. A

The calculation started from the initial conditions of a static flow field with the temperature T =0 every-
where. To seek the critical state of an oscillatory motion and optimal stabilizing conditions calculations should be
repeated for various values of Gr and Ta. In order to compare the existing work the physical parameters of molten
GaAs as used in semiconductor devices are adopted.

The time-dependent behavior of the melt flow can be described by the non-dimensionat total kinetic energy

E=2f(u+ v+ wda (10)
]
Here Q is the flow domain and U, V, W denote the velocity components. We first computed the non-rota-

tional cases(i.e. with Ta=0 and various Gr). The flow is steady at low Gr. With the increase of Gr, the flow
tends to oscillate periodically and the amplitudes increase progressively. At higher Gr it exhibits irregular oscilla-
tions, see figure 7. The evolution of the temperature at the central point of the melt is also shown in the figure.
One should note that the evolution trends of both E and T are similar. It is found from the calculation that the
critical value of Gr whether oscillation will occur is located between 3.7 % 10° and 5.5 X 10°. This reasonably a-
grees with the results of Dupont et al [17] and Oda et al [18].

When the centrifuge is rotating, the Coriolis effect is taken into account. The results have dramatically
changed from the case of Ta= 0. Figure 8 shows the evolution of the temperature at the melt center and the total
kinetic energy of the melt for a given Grashof number, (Gr=9X10) and different Taylor numbers, (Ta=0, Ta
= —1x10* and Ta=1 X 10* respectively) . It is evidently seen that the oscillation of kinetic energy is totally sup-
pressed for the case of Ta= —1X10*. It is, however, not retarded for the case of Ta=1 % 10*. The temperature
indicates similar behavior. This implies that the Coriolis force has a sensible influence on the bulk flow in the
melt. The most important point is the sign of Ta, (i.e. the rotation direction of the centrifuge)which determines
the different actions of Coriolis accelerations upon the convective flows in melt even though the magnitudes of
Coriolis accelerations are the same. This result is coincident with the temperature measurement experiment[19],
(see figure.3 of reference[19]).

In addition the simulation results indicate that for a specific Gr the stabilizing effect of Coriolis force only oc-
cur at a particular range of Ta, even though Ta is negative. This has not been reported in the experiment of refer-
ence[19].

Figure 9 presents the perspective view of velocity vectors and isotherm distributions in various section planes
at time = 100 seconds for three cases of figure 4. Convective flow structures with somewhat different features can
be observed. Nevertheless as indicated by Dupont et al [20], there is no multicellular pattern found in all vertical

section planes which had been calculated for two-dimensional flows[20,21].
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Conclusions

A second order QUICK control volume code is developed to simulate the flows in Czochralski crystal
growth. As many as 12 cases are calculated to examine the effects of different parameters on the flow behaviour.
From the calculations, it can be concluded that the second order upwind QUICK scheme has much more numeri-
cal stability and can give very accurate numerical results. Although the present computation is carried out in a
rectangular physical region, the present control volume code can be easily adapted for use in the curvilinear coor-
dinate system because of its body-fitted nature.

Three-dimensional and time-dependent numerical simulation for the bulk flow in horizontal Bridgman crys-
tal growth on a centrifuge is carried out. The results show the importance of Coriolis force, which is produced due
to the centrifuge rotation, and acts to stabilize the oscillatory motion in the melt. The nature of influence depends
on the rotating rate and direction of the centrifuge. This verified the previous observation of model experiments.
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Tab 4 Some Results for Test Cases by QUICK Scheme and Centre Difference Scheme

Case | Gr Rex Rec 1 Ul ax P Ponax Pamin Prnax

Al 0 10? 0 4.3682 % 10° -2.1724%x107! 4.0630x10°° -2.3447 x 10! 1.5642%10°°
A2 0 10° 0 8.8789 x 10 -4.9939 x 10° 1.8260x10°° .| -5.3642x 10° 1.5257x10°*
A3 0 10* 0 9.6105 x 10° ~4.1168x 10! 1.0443x107! ~4.0443 x 10! 1.9320x 107",
Bl 0 10? -25.0 | 1.9957x10° —-4.4332x1072 1.1772x 10" -5.0203x 107! 1.1796 %107}
)73 ] 10° ~-250.0 | 6.5447x 10" -1.4777 x 10° 1.1480 % 10° -1.6835x 10° 1.2414 x 10°
B3 0 10° | —2500.0 | 8.2944 x10? —8.7250 x 10° 5.3881 x 10° -8.5415x10° 5.2708 x 10°
C1 10° 0 0 1.9041 x 10? -5.7979%x10°* 2.8409 x 10! -1.1936x107* 2.8437x 10
Cc2 10¢ 0 0 7.1058 x 10? -1.1995%x 107! 9.2508 x 10! -3.9699x 107! 9.2100x 10'
C3 107 0 0 2.6828 % 10° -2.2398 X 10° 1.8479 x 107 not available not available

D1 10° 10! 0 1.9041 x 10? -5.7850x10"* 2.8409 x 10! -4.7092%x1074 2.8420x 10!
D2 10° 10? 0 1.9012 x 10? -4.,5174%x 1074 2.8383 x 10! -4.7057x1074 2.8393 x 10
D3 10% 10° 0 1.6239x 102 -5.6765x107! 2.5169 X 10! -6.5631xX107! 2.4829x 10!

% Present QUICK scheme with 80X 80 grid * * [2]’s central difference scheme with 64 X 64 grid.
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