MATERIALS COMMUNICATIONS

The purpose of this Materials Communications section is to provide accelerated publication of important new results in the
fields regularly covered by Journal of Materials Research. Materials Communications cannot exceed four printed pages in
length, including space allowed for title, figures, tables, references, and an abstract limited to about 100 words.

Theoretical analysis of the relationships between hardness, elastic
modulus, and the work of indentation for work-hardening materials

Rong Yang

State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy
of Sciences, Beijing 100190, China; and Graduate University of Chinese Academy of Sciences,

Beijing 100049, China
Taihua Zhang”

State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy

of Sciences, Beijing 100190, China
Yihui Feng

State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy
of Sciences, Beijing 100190, China; and Graduate University of Chinese Academy of Sciences,

Beijing 100049, China

(Received 17 May 2010; accepted 11 August 2010)

In our previous paper, the expanding cavity model (ECM) and Lamé solution were used to
obtain an analytical expression for the scale ratio between hardness (H) to reduced modulus
(E;) and unloading work (W) to total work (W;) of indentation for elastic-perfectly plastic
materials. In this paper, the more general work-hardening (linear and power-law) materials
are studied. Our previous conclusions that this ratio depends mainly on the conical angle of
indenter, holds not only for elastic perfectly-plastic materials, but also for work-hardening
materials. These results were also verified by numerical simulations.

Over the past two decades, instrumented indentation
has gradually evolved into a conventional testing method
for measuring mechanical properties of materials at
small-scale and in the process has advanced our under-
standing of mechanical behavior of materials.' The most
frequently used analytic method, developed by Oliver
and Pharr,2 i1s based on the solutions of elastic contact;
thus its estimation of contact area has been found to be
incapable of accounting for pileup behavior of material.
Another method based on dimensional analysis and finite
element calculations, proposed by Cheng and Cheng’
in 1998, uses an approximate linear relation of (H/E,)/
(Wo/Wy) to overcome the dependence on the uncertain
contact area. Recently, many questions have been raised
in regard to this scale ratio relation. Alkorta et al.* and
Malzbender’ indicated that this method can incur signif-
icant error for soft materials, while Chen and Bull® found
that when H/E, is larger than 0.1, significant deviation
occurs in this relation. In our previous paper,’ analytical
approaches were adopted to uncover the physical nature
of this scale ratio, and it was found that for elastic per-
fectly-plastic case, the scale ratio has the form [2(1 — v)
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cot o]/3, where v is Poisson’s ratio and o is the half-
included angle of the conical indenter; in the linear elas-
tic regime, this ratio reduces to the form (cot ao)/2.

In this paper, the same approach is taken with certain
relaxed constraints to investigate work-hardened mate-
rials. The leading order of the derived scale ratio (H/E,)/
(WW) is found to be identical to that derived in our
previous paper’ for both linear-hardening and power-law
hardened materials. Again, this ratio mainly depends on
the half-included angle of conical indenter and slightly
on Poisson’s ratio.

In deriving the scale ratio, we consider a three-dimen-
sional, rigid, conical indenter of half-included angle o,
indenting normally into the surface of a homogeneous
work-hardening solid. A general stress—strain relation
for the material can be written as

5 — Et, fore <Y/E (1)

-\ f(E), fore >Y/E
where G and € are the equivalent stress and strain, respec-
tively, E is the elastic modulus, and Y is the yield stress.

The function f(€) is the constitutive equation of material,
which for linear-hardening materials takes the form,

1) = Y+Ep(§—§> : (2)

while for power-law hardening material, it can be written as
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_ En
f(g) = yn—1

where Ep is the tangent modulus and » is the work-
hardening exponent.

The problem is simplified by adopting the assumptions
given by Johnson’s ECM® as shown in Fig. 1: (i) the
displacement field produced by the indenter is approxi-
mately spherically symmetric; (ii) the material beneath
the indenter can be divided into a core region (r < a),
a plastic region (a < r < ¢) and an elastic region (r > ¢);
(ii1) the material of core region is assumed to be incom-
pressible; and (iv) the geometrical similarity of this prob-
lem leads to a/c = da/dc during penetration. To obtain
a better approximation of the total work, Johnson’s
assumption of an incompressible fluid is replaced by
one of an incompressible solid for the core region. Mean-
while, the state of the material of core region is consid-
ered uniform with the same value as that at » = a, 1.€., on
the inner boundary of the plastic region.

By solving this problem, the seven equations that gov-
ern the plastic region can be integrated to give two equa-
tions, the equivalent strain equation and the constitutive
equation, which can be expressed as:

s M) Oobare

M =KE (3)

(&) = 3E I

6=/ . (5)

These expressions greatly simplify the problem. Given
any specific stress—strain relation, the equivalent strain
and stress can be obtained from Eq. (4). Moreover, taken
together with volume conservation of the core region and
geometrical similarity of this problem leads to

1
gl,_, = Feote (6)
and the relative volumetric size of plastic region as
c 3E 4(1 —2v)
R BASACAS 7
@ (1T-8v)Y [g}ru 35 Ol )
————
| L
| core plas_tlc elastlc
| region region

FIG. 1. Stress field of expanding cavity model for conical indentation.

If the material of elastic and plastic regions is incom-
pressible, in which v = 0.5, Eq. (4) leads to

I A
FTES ®)

which is consistent with the solutions given by Gao
et al.>'" For more general materials, the results are as
discussed next.

Beginning with linear-hardening materials, the equiv-
alent strain and stress can be solved by inserting Eq. (2)
into Eq. (4), yielding

s (7-8vyyy &
~4(1 —2v)Ep + 3E73
9)
4(1 —2v)(E - Ep)Y c c? c
[4(1—2V)Ep +3EJE— '3 7 7
. Ep(7—-8v)Y ¢
O =

4(1 —2v)Ep + 3E1?

3(E — Ep)Y —p c3+D
41 —2v)Ep+3E~ 'p T

(10)

here notations of Cy, C,, Dy, and D, are taken to repre-
sent the coefficients in equations. If the material is
incompressible, the components of displacement, strain,
and stress for the plastic region reduce, respectively,
to the simplified forms

Y &3
=—— 11
“ToE2 (11)
Y3
Sr:—Er—3 s (12)
Y &3
89 S(P 2Er3 ) ( )
2EpY 3 ZEPY_'_Z(E—EP)Y1 r 2Y
o, = — —_— n-——
' 3E ¥ 3E E c 3 7
(14)
o= 7EPYC3 EPY
07 P T3 3T 3E

(15)
2E—Ep)Y r Y
E ¢ 3
The relative volumetric size of the plastic region is de-

termined as

c 7Ecotoc
a3y

(16)
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The total work is then given as

nY%a?
E

i

2(E—EP)ECOt0(1nC+2EP Ecoto”
E £)4 a 3E £)4 ’

(17)

and the hardness as

Ep 3(E—Ep)

2Y [cota
H=— -
{ E+ E

C
ol— =73 |3y Br ma+@

(18)

"1 the unloading work is express-

By the Lamé solution,
ible as

n(l+v) , 5 3m
ALY & P el
26 Y T

Thus the scale ratio can be obtained as

W, = H*a® . (19)

H/E,
W /W,

1
R ot (20)

If the material is compressible, the components of dis-
placement, strain, and stress for the plastic region can be
solved and written, respectively, as

C;Cz + = Czrln +C3r , (21)

& = — C'C +3C21H +C3+3Cz : (22)
Cic* 3 r

€9 = &g = 2,3 +2C21nE+C3 , (23)

cr——gi—% 2Dzlnf—§ . (24)

GQ—GQ—%§+%+2DQIHE—§ ) (25)

where Cq, C», D, and D, are the same as above in
Egs. (9) and (10), while an additional coefficient is
deduced by using the displacement consistency condition
at elastic-plastic boundary (r = ¢), which is given as

(1 —2v)[8(1 + v)Ep — 15E]

5 = " 6E@(1 — 2v)Ep + 3E]

Y . (26)

The relative volumetric size of plastic region is deter-
mined from

¢ Ecoto +4(1 —2v) [3(E—Ep) Epcota
a  (7T-8v)Y  3(7—8v) E Y

(27)
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The total work is given as

2nD3c® 27:D1D2631 ¢
n_

~ 28
‘ 3Epd3 Ep a ’ ( )
the hardness as
2D
H~ T‘C— + 2D21n— , (29)
and the unloading work can be expressed as
n(1+v) 53
=——Ha .
Wy 2E a (30)

Thus, the scale ratio can then be evaluated yielding the
result
H/E. _2(1—v)
Wo/W, 3
For power-law hardening materials, we find by in-
serting Eq. (3) into Eq. (4) that the equivalent strain in
the plastic region can be solved from
: +4(1 —2v) E" o _ (7-8v)y e’
3y 3E 13
If the material is incompressible, the expressions for
components of displacement and strain are the same as

these in Egs. (11) to (13); meanwhile the stress compo-
nents are

coto . (31)

(32)

2Y [1c™ 1
L= . 33
° 3 [nr*” } (33)
2V [/1 3\ 1
GQZGQZ—?{(;—E)E—FI—Z} . (34)

The total work can be deduced as

Wt -

n+1
nY?a® | 2 (Ecota N 2(n— 1) Ecota
E 3n\ 3Y 3n Y

n+1
cot o Ecota
3(n+1)\ 3Y

with hardness becoming

2Y [1 [Ecota\" 1
=—|- 1——| . (36
“ 3 [n ( 3y ) * n} (36)
The unloading work has the same form as in Eq. (19),
while the scale ratio is the same as Eq. (20). If the material
is compressible, there is no explicit solution for Eq. (32),
except when n = 2 and 5 (n = V4 is also solvable, but the

expressions are too complex to interpret). By solving this
problem implicitly, the stress components are given as

2
—0 37
25 (37

(n—1)cota
6(n+1) '

(35)

H= 70/‘|r:

o X —
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2—3n .
3n

Op = Cp ~ — (38)

The relative size of plastic region is determined as

c Ecotar  4(1 —2v) <Ecot oc)” C9)

a (7-8)Y 7—8v

- 3y

the total work as

W KT i 2 1ot "
~———a O —Ta
T4l 3 37 1+n \ 3

n+1
2 4 [cota
=—naK|—— 40
2an(=e) " w

and the hardness becomes

2 2 rcoton”
Hw3n03_3nK( 3 ) (41)
The unloading work is in the same form of Eq. (30), and
thus the ratio remains the same as Eq. (31).

The results for work-hardening materials can reduce to
those for elastic-perfectly plastic case. Linear-hardening
material becomes elastic-perfectly plastic when Ep ap-

proaches zero, which leads to

Meanwhile, taking n = 0, the power-law hardening
results reduce as well to those for elastic-perfectly plastic
material. After noting that

1
lirr(l)—(y"—l)zlny fory>0 . (44)
x—0X

We specifically find

S 2 i <cotoc>”+1 ZCotun 3y
~ llm —Tta ~ a n-—
CTS03n 3 3 a ’
(45)
2 tory
Hzlim—K(CO “) ~2rinS . (46)
n—03n 3 a

Thus these results obtained under various limiting process-
es are consistent with those published previously.”

The scale ratio for both linear and power-law harden-
ing presented in this paper can be expressed equivalently
as [2(1 — v) cot a]/3, and it is apparent that this ratio is
independent of work hardening. Indeed, this ratio mainly
depends on the half-included angle of conical indenter
and slightly on Poisson’s ratio.

Extensive finite element method (FEM) calculations
are performed using ABAQUS' to verify our analytical
results given in this paper. Situations involving different
conical angles, o = 42.3°, 50°, 60°, 70.3°, and 80° were

c . : _ _
W, ~ 2rnC,Y’ln— | (42)  studied, with 2.5 x 107* < Y/E < 2.5 x 10~ for most
a cases except for oo = 70.3° where we extended the upper
¢ range to Y/E < 1 x 10~". The FEM results are presented
H~2YIn— . (43) 7= . . ; :
a in Figs. 2 to 4, in which H/E, is normalized by cot o.
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FIG. 2. Analytical result (solid curve) and FEM results of the scale relation for various conical angles when v = 0.3, the stress—strain relations are:
(a) elastic-perfectly plastic, (b) linear hardening, and (c, d) power-law hardening.
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FIG. 3. Analytical result (solid curve) and FEM results of the scale relation for various conical angles when v = 0.2, the stress—strain relations are:
(a) elastic-perfectly plastic, (b) linear hardening, and (c, d) power-law hardening.
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FIG. 4. Analytical result (solid curve) and FEM results of the scale relation for various conical angles when v = 0.4, the stress—strain relations are:
(a) elastic-perfectly plastic, (b) linear hardening, and (c, d) power-law hardening.

The analytical form of the scale ratio [2(1 — V) cot a]/3
agrees with these FEM results. The normalized relation in
these figures is found to be independent of conical angle;
meanwhile, deviations still exist for different values of

Poisson’s ratio and elastic-
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perfectly plastic materials.

By the assumptions of ECM, the validity range of ana-
Iytic expressions derived in this paper are as follows:
(i) The half-included angle of indenter should be 45° <
o < 90°. The lower limit of indenter angle stands for the
minimum angle for ensuring all material within the radius
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a is in the core region. However, the FEM results on o =
42.3° shows that ECM still works for that angle. (ii) Plas-
ticity should predominate in the deformation of the sample
material, which has limited our expression for metals.
Even so, the FEM results shows that our analytic expres-
sion still holds for materials with larger W, /W, ratio
according to Figs. 3(b) and 3(c), etc. Beside those limits
mentioned previously, there are other aspects that should
be focused on in our model, such as the effect of sink-in
and pileup to the contact radius and the nonlinear relation
of ratio (H/E,)/(W,/W,) addressed in the work of Alkorta
et al.* and Chen and Bull,6 as well as the effect of relative
modulus between indenter and sample material toward the
scale ratio that Ma and Ong'? took into account.

In summary, the results derived in this paper were
based on more general stress—strain relations than our
previous paper.7 The scale ratio of (H/E,)/(W,/W,) for
work-hardening materials was found to depend mainly
on the geometry of indenter and thus hints at a more
fundamental role in this energy approach to indentation
for more general materials. Improvements are still
needed in the theoretical analysis of determining the
effects of Poisson’s ratio but left for future work.
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