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An eigenfunction expansion–variational method based on a unit cell is developed to deal with the steady-
state heat conduction problem of doubly-periodic fiber reinforced composites with interfacial thermal
contact resistance or coating. The numerical results show a rapid convergence of the present method.
The present solution provides a unified first-order approximation formula of the effective thermal con-
ductivity for different interfacial characteristics and fiber distributions. A comparison with the present
high-order results, available experimental data and micromechanical estimations demonstrates that
the first-order approximation formula is a good engineering closed-form formula. An engineering equiv-
alent parameter reflecting the overall influence of the thermal conductivities of the matrix and fibers and
the interfacial characteristic on the effective thermal conductivity, is found. The equivalent parameter can
greatly simplify the complicated relation of the effective thermal conductivity to the internal structure of
a composite.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Fiber reinforced composites have been used extensively in
many applications from aerospace craft to electric devices, and
their effective thermal conductivities have attracted a good deal
of attention. A lot of investigations (for example by Hasselman
and coworkers [1,2]) show that interfacial gaps exist, which are
formed mainly because of the mismatch in thermal expansion
coefficients of constituents during the cooling process of manufac-
ture. When the gap thickness is small compared to the mean free
path of the gas molecules in the gap, heat conduction is indepen-
dent of gap thickness. Under this circumstance, thermal contact
resistance may be quantified by a heat transfer coefficient, h. Be-
sides, it is sometimes desirable to coat the inclusion with a third
material to improve the performance of the inclusion in certain
physical properties [3]. For either reason, the interfacial character-
istics have an important influence on the macroscopic properties of
composites. The thermal performance design of a novel composite
requires a comprehensive understanding of the effect of the inter-
nal structure on the effective thermal conductivity.
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A lot of researches about the effect of interfacial characteristics
on effective thermal conductivities were conducted. Hasselman
and Johnson [4] presented a modification of the original theories
of Rayleigh and Maxwell considering an interfacial thermal con-
tact resistance, and found that the effective thermal conductivity
depends on the dispersion size due to the existence of an interfa-
cial thermal contact resistance. Benveniste and coworkers [5,6]
extended the generalized self-consistent method and the Mori–
Tanaka method to solve the problems of the interfacial thermal
contact resistance and coated fibers. Lee et al. [7] obtained the
effective thermal conductivity of composites with interfacial
contact conductance or multi-layer inclusions by using the gener-
alized self-consistent method. Böhm and Nogales [8] presented a
Mori–Tanaka scheme for modeling the overall thermal conduc-
tion behavior of composites containing reinforcements with
interfacial resistances and prescribed size distributions. The
Mori–Tanaka method and generalized self-consistent method
are two different micromechanics methods, and generally give
different results, but they and Hasselman’s method [4] give the
same formula of effective thermal conductivity for the circular-
section fiber reinforced composites discussed in the present pa-
per. Zou et al. [9] derived an analytical expression for transverse
thermal conductivities of fiber composites with thermal barrier
based on the electrical analogy technique and on the cylindrical
filament–square packing array unit cell model.

http://dx.doi.org/10.1016/j.compscitech.2010.06.018
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The above-mentioned works presented closed-form formulae
for effective thermal conductivities by treating the inclusion inter-
actions either approximately or in a statistical sense. Along another
lines, many works take periodic composite models to consider ex-
act inclusion interactions. The periodic composite models provide
useful limiting values of interacting inclusions from entirely disor-
der (random) to order. At the same time, the so-called composite
design is generally a design of periodically distributed unit cells
of a composite [10]. Gu and Liu [11] discussed the thermal conduc-
tivity of periodic composite media with contact resistance by
applying a generalized Rayleigh identity. Lu and Lin [12] studied
the effect of interfacial characteristics on the effective thermal con-
ductivity of two-dimensional periodic composites by using a
boundary collocation scheme. These two works are both based
on series expansion approaches of real functions, in which the
interfacial conditions between inclusions and the matrix are satis-
fied in advance, and then the periodicity conditions are used to
determine the remaining expansion coefficients. In contrast with
the finite element methods [13,14], the two works presented good
semi-analytical methods.

From existing researches, it is seen that the effective thermal
conductivity of a composite is related to complicated microme-
chanical parameters, such as the thermal conductivities of constit-
uents, interfacial characteristics and distribution of inclusions.
Apparently, unified and convenient engineering closed-form for-
mulae of effective thermal conductivities considering the periodic
microstructures and different interfacial characteristics are highly
desirable for the design of composites.

First, the present work is devoted to develop an eigenfunction
expansion–variational method [15] in prediction of the transverse
thermal conductivity of fiber reinforced composites considering
interfacial characteristics, in which the eigenfunction expansion
approach is based on complex functions and the periodicity condi-
tions are dealt with by using a variational method. Then the
emphasis is laid on the development of the efficient and conve-
nient engineering closed-form formula as well as the extraction
of the engineering equivalent parameter, which can greatly sim-
plify the complicated relation of the effective thermal conductivity
to the internal structure of a composite.

2. Description of a unit cell and the generalized variational
functional

2.1. Basic equations

For the problem of steady-state heat conduction with no inter-
nal generation, the heat flux q, temperature field T and tempera-
ture gradient H satisfy the following three equations [16]:

Fourier’s law : q ¼ �k �H ð1aÞ
Temperature gradient : H ¼ rT ð1bÞ
Equilibrium equation : r � q ¼ 0 ð1cÞ

where k is the thermal conductivity tensor. For a transversely iso-
tropic material, the in-plane temperature field satisfies Laplace’s
equation [16]

@2T
@x2

1

þ @
2T
@x2

2

¼ 0 ð1dÞ
2.2. Description of a unit cell

A composite with a general doubly-periodic array of circular
cross-section fibers is shown in Fig. 1, where d1 and d2 denote
two fundamental periods. For the same periodic structure, differ-
ent unit cells can be selected, for example, the two unit cells in
Fig. 1b and c. From the doubly-periodic distribution of unit cells,
the boundaries of a unit cell can be divided into @Vþj and @V�j in
pairs, where j = 1, 2, 3 for Fig. 1b and j = 1, 2 for Fig. 1c. By a proper
translation pj, the boundary @V�j will coincide with the boundary
@Vþj , where p1 = d1 � d2, p2 = d1, p3 = d2 for Fig. 1b and p1 = d1,
p2 = d2 for Fig. 1c. For steady-state heat conduction, the tempera-
ture field T(x) is quasi-periodic and the heat flux field q(x) is peri-
odic, thus the corresponding temperatures T and boundary heat
flux q( = q � n) on @Vþj and @V�j satisfy the following periodic
boundary conditions:

Tjþ � Tj� ¼ hHi � pj

qjþ þ qj� ¼ 0

(
ð2Þ

where n denotes the unit normal vector on the boundaries, hHi de-
notes the average temperature gradient within a unit cell and is the
same for all unit cells.

2.3. Generalized variational functional for a unit cell

The energy functional for heat conduction can been defined as

P ¼
Z

V

1
2

q �HdV ð3Þ

where V is the volume of a unit cell. By using the Lagrangian mul-
tiplier method, the periodic boundary conditions (2) of a unit cell
can be incorporated in the functional (3):

P ¼
Z

V

1
2

q �HdV �
X

j

Z
@Vþ

j

qjþ � ðTjþ � Tj� � hHi � pjÞdS ð4Þ

The stationary condition of the functional (4) yields

X
j

Z
@Vþ

j

dqjþðTjþ � Tj�ÞdS�
X

j

Z
@Vþ

j

ðqjþ þ qj�ÞdTj�dS

¼
X

j

Z
@Vþj

dqjþhHi � pjdS ð5Þ

which will be used to develop an eigenfunction expansion–varia-
tional method based on a unit cell.

3. Eigenfunction expansions of complex potentials

3.1. Complex potential

From Eqs. (1a)–(1d), the temperature T, heat flux components
{q1, q2} and heat transfer rate U can be formulated by a complex
potential x(z):

q1 � iq2 ¼ �kx0ðzÞ ð6aÞ

T ¼ 1
2
½xðzÞ þxðzÞ� ð6bÞ

U ¼ �k
2i
½xðzÞ �xðzÞ�BA ð6cÞ

where z = x1 + ix2 is a complex variable, the over bar denotes the
complex conjugate, the prime denotes the derivative with respect
to z, ½��BA denotes the difference of the values of the bracketed func-
tion from point A to point B, and k is the thermal conductivity.

3.2. Eigenfunction expansions in the coating case

Now derive eigenfunction expansions of the complex potentials
in a unit cell and first consider the case of coating. Without loss of
generality, take the unit cell in Fig. 1b as an example, which is
shown in Fig. 2a where R and R1 are the internal and external radii
of the coating, respectively.
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Fig. 1. Doubly-periodic fiber reinforced composite and its two kinds of unit cells.
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Fig. 2. A unit cell with a fiber: (a) coating interface; (b) thermal contact resistance
interface.
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The complex potential xf(z) in the fiber region can be expanded
into a Taylor series, xc(z) in the coating region and xm(z) in the
matrix region can be expanded into Laurent series, respectively:

xfðzÞ ¼
X1
n¼1

Enz2n�1 ð7Þ

xcðzÞ ¼
X1
n¼1

Pnz�ð2n�1Þ þ
X1
n¼1

Q nz2n�1 ð8Þ

xmðzÞ ¼
X1
n¼1

Gnz�ð2n�1Þ þ
X1
n¼1

Fnz2n�1 ð9Þ

where En, Pn, Qn, Gn and Fn are complex coefficients. Due to the cen-
trosymmetry of the unit cell, only odd terms in Eqs. (7)–(9) remain.

The continuity conditions of the heat transfer rate U and tem-
perature T across the fiber-coating and coating-matrix interfaces
can be written as

Uf ¼ Uc; T f ¼ Tc at jzj ¼ R ð10Þ
Uc ¼ Um; Tc ¼ Tm at jzj ¼ R1 ð11Þ

where the subscripts f, c and m refer to the fiber, coating and ma-
trix, respectively. The interfacial conditions (Eqs. (10) and (11))
can provide four sets of equations with respect to five sets of
unknown complex coefficients En, Pn, Qn, Gn and Fn. Only a set of
independent unknown complex coefficients (choose Fn) remains.
It will be seen that the estimation of the effective conductivity re-
quires only xm(z). Substituting Eqs. (7)–(9) into Eqs. (6a)–(6c) and
then into Eqs. (10) and (11), one obtains the relation between Gn

and Fn:

Gn ¼
gcm þ gfcð1þ nÞ2�4n

1þ gcmgfcð1þ nÞ2�4n R4n�2
1 Fn ð12Þ

where

gfc ¼ ðkc � kf Þ=ðkc þ kfÞ; gcm ¼ ðkm � kcÞ=ðkm þ kcÞ;
n ¼ ðR1 � RÞ=R ð13Þ

and n is called as the relative thickness of the coating.

3.3. Eigenfunction expansions in the contact resistance case

A unit cell with a contact resistance at the fiber–matrix inter-
face is shown in Fig. 2b. The expansions of xf(z) and xm(z) are
the same as those in Eqs. (7) and (9), respectively. For the contact
resistance problem, the continuity condition of the heat transfer
rate U and the discontinuity condition of the temperature can be
written as

Uf ¼ Um; qf ¼ qm ¼ �hðT f � TmÞ at jzj ¼ R ð14Þ

where h is the thermal contact conductance on the interface. Substi-
tuting Eqs. (7) and (9) into Eqs. (6a)–(6c) and then into Eq. (14), one
obtains:

Gn ¼
gfm þ ð2n� 1Þbð1� gfmÞ
1þ ð2n� 1Þbð1� gfmÞ

R4n�2Fn ð15Þ

where

gfm ¼ ðkm � kfÞ=ðkm þ kf Þ; b ¼ km=ð2hRÞ ¼ 1=ð2BiÞ ð16Þ

and Bi is the Biot number. It is found from Eq. (15) that the com-
bined effect of the thermal contact conductance h and the fiber ra-
dius R is characterized by a composite parameter b.
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3.4. Unified expression of the eigenfunction expansions

It is seen that for the problems of coating and contact resistance,
Eqs. (12) and (15) can be cast into a unified expression:

Gn ¼ gnFn ð17Þ

where

gn ¼
gfmþð2n�1Þbð1�gfmÞ

1þð2n�1Þbð1�gfmÞ
R4n�2 contact resistance

gcmþgfcð1þnÞ2�4n

1þgcmgfcð1þnÞ2�4n R4n�2
1 coating

8<
: ð18Þ

So for the two cases of coating and contact resistance, the eigen-
function expansion of the complex potential in the matrix region
can be written as a unified expression:

xmðzÞ ¼
X1
n¼1

gnFnz�ð2n�1Þ þ
X1
n¼1

Fnz2n�1 ð19Þ

The eigenfunction expansion in Eq. (19) satisfies the equilib-
rium equations and the fiber–matrix interface conditions. The
remaining work is the determination of the set of independent un-
known coefficients Fn, which can be completed by using the sta-
tionary conditions (Eq. (5)).

4. Determination of the unknown coefficients in eigenfunction
expansions

Substituting Eq. (19) into Eqs. (6a)–(6c), and taking an appropri-
ate truncation of the expansions, the heat flux, temperature and
heat transfer rate can be expressed as follows

qi ¼
X2N

n¼1

XnqðnÞi ; T ¼
X2N

n¼1

XnTðnÞ; U ¼
X2N

n¼1

XnU
ðnÞ i ¼ 1;2 ð20Þ

where

Xn ¼
gn

�Fn 1 6 n 6 N

Fn�N N þ 1 6 n 6 2N

(
ð21Þ

the detailed expressions of qðnÞi , T(n) and U(n) can be obtained from
Eqs. (6a)–(6c) and (19).

The substitution of Eq. (20) into the Eq. (5)) yields the following
set of linear algebraic equations:

X2N

n¼1

AmnXn ¼ Bm m ¼ 1;2; . . . ;2N ð22aÞ

where

Amn ¼
X

j

Z
@Vþj

njþ �qjþ
ðmÞðT

jþ
ðnÞ � Tj�

ðnÞÞdS�
X

j

Z
@Vþj

nj� � ðqj�
ðnÞ �qjþ

ðnÞÞT
j�
ðmÞdS ð22bÞ

Bm ¼
X

j

Z
@Vþj

ðnjþ �qjþ
ðmÞÞðhHi �pjÞdS¼

X
j

½Ujþ
ðmÞhHi �pj� ð22cÞ

qjþ
ðmÞ, Tjþ

ðnÞ and Ujþ
ðmÞ denote the values of qðmÞi , T(n) and U(m) on @Vþj , and

the superscript ‘‘ j�” refers to @V�j .
After determining the unknown coefficients, the heat flux and

temperature fields are obtained from Eq. (20).

5. Effective thermal conductivities

The effective thermal conductivities ke
ij are determined with the

aid of the average field theory:

hqii ¼ �ke
ijhHji ð23Þ

where hqii is the average heat flux in the unit cell. Due to its
symmetry, the transverse thermal conductivity tensor has three
independent components: ke
11, ke

22, ke
12 ¼ ke

21. For a composite with
a square or hexagonal array of fibers ke

12 ¼ ke
21 ¼ 0, ke

11 ¼ ke
22 ¼ ke .

From the present series solution, two products of practical
importance are obtained. One is that the first-order approximation
of the effective thermal conductivity can be written into a unified
formula for three cases of perfect interface, thermal contact resis-
tance interface and coating phase between fibers and the matrix,
and for the square and hexagonal arrays of fibers. In fact, taking
the series term number N = 1, one obtains

ke

km
¼ ðp� agkÞ2

2p2ð1þ gkÞ � ðpþ agkÞ2
ð24aÞ

where k is the fiber volume fraction in the cases of the perfect inter-
face and contact resistance interface, or a combined volume fraction
of fibers and coating in the case of coated fibers; g is a composite
parameter characterizing the constituent properties and interfacial
characteristics,

g ¼

ðkm�kf Þ
ðkmþkf Þ

Perfect interface
gfmþbð1�gfmÞ

1þbð1�gfmÞ
Contact resistance interface

gcmþgfcð1þnÞ�2

1þgcmgfcð1þnÞ�2 Coating

8>>><
>>>:

ð24bÞ

gfm, gfc, gcm, b and n are given in Eqs. (13) and (16), and a is related
to distribution of fibers:

a ¼
2 Square array
3
ffiffiffi
3
p

=2 Hexagonal array

�
ð24cÞ

It is seen that �1 6 g 6 1 for a composite. The numerical results
in the next section will show that Eq. (24a) is a good unified engi-
neering closed-form formula of the effective thermal conductivity.

It is interesting to note that in existing references, the problems
of perfect interface, contact resistance interface and coated fibers
were separately investigated by using the generalized self-consis-
tent method [5–7], and different formulae were presented. We find
that those unrelated formulae can also be cast into a unified
expression in terms of g:

ke

km
¼ 1� 2gk

1þ gk
ð25Þ

A comparison of Eq. (24a) with Eq. (25) shows that the present
first-order approximation formula of the effective conductivity can
reflect the effect of fiber distribution, so can be regarded as an
improvement of the generalized self-consistent formula.

The second product of the present work is to find an engineer-
ing equivalent parameter g (see Eq. (24b)), which can replace the
fiber and matrix thermal conductivities and the interfacial param-
eter with a good engineering accuracy. Such an engineering equiv-
alent parameter can greatly simplify the relation of the effective
thermal conductivity to the composite internal structure, which
is helpful to a comprehensive understanding of thermal properties
of composites as well as to design of novel composites

If g = 0, that is b = gfm/(�1 + gfm) for a contact resistance prob-
lem and n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gfc=gcm

p
� 1 for a coated fiber problem in Eq.

(24b), it is seen from Eq. (24a) that ke/km = 1, i.e., the effect of the
reinforcements is exactly balanced out by that of the interfaces
whose properties meeting some conditions, such that no effect of
reinforcement can be realized. Such critical interfacial characteris-
tics were also found by the existing researches [17,18] for spherical
particulate or cylindrical fiber reinforced composites, and are ver-
ified by the following high-order calculations (see Tables 1 and 2).
Two critical interfacial parameters

b0 ¼ gfm=ð�1þ gfmÞ; n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gfc=gcm

q
� 1 ð26Þ

are defined, which will be used in the following calculations.



Table 1
Variations of the dimensionless effective transverse thermal conductivity with the term number N of the eigenfunction expansion for the contact resistance problem of a square
array fibers, where kf/km = 1000, b0 = 0.4995, k = 0.7.

N ke/km

g = �0.998 g = �0.980 g = �0.818 g = 0 g = 0.818 g = 0.980 g = 0.998
b
b0
¼ 0 b

b0
¼ 0:009 b

b0
¼ 0:099 b

b0
¼ 1 b

b0
¼ 10:009 b

b0
¼ 100:1 b

b0
¼ 1001

1 7.0879 6.6479 4.1306 1 0.31460 0.24252 0.23537
3 7.2506 6.6764 3.9189 1 0.24946 0.15625 0.14667
5 7.3412 6.7286 3.9058 1 0.24239 0.14672 0.13686
7 7.3638 6.7425 3.9061 1 0.24171 0.14573 0.13584
9 7.3675 6.7445 3.9061 1 0.24161 0.14558 0.13568
11 7.3681 6.7448 3.9061 1 0.24159 0.14558 0.13565

Table 2
Variations of the dimensionless effective transverse thermal conductivity with the term number N of the eigenfunction expansion for a hexagonal array of coated fibers, where kf/
km = 1/10, kc/km = 100, n0 = 0.009, k = 0.8.

N ke/km

g = �0.980 g = �0.939 g = �0.818 g = �0.519 g = 0 g = 0.519 g = 0.818
n
n0
¼ 1 n

n0
¼ 42:70 n

n0
¼ 11:55 n

n0
¼ 3:44 n

n0
¼ 1 n

n0
¼ 0:239 n

n0
¼ 0

1 8.8195 7.4131 4.9440 2.4463 1 0.41995 0.22540
3 8.7409 7.3554 4.9150 2.4390 1 0.41317 0.20147
5 9.0113 7.5343 4.9776 2.4456 1 0.41319 0.20225
7 9.0279 7.5453 4.9814 2.4460 1 0.41319 0.20207
9 9.0278 7.5452 4.9814 2.4460 1 0.41319 0.20207
11 9.0284 7.5456 4.9815 2.4460 1 0.41319 0.20207
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6. Numerical examples and discussions

6.1. Convergence analysis

Consider the contact resistance problem. Take the fiber-to-
matrix conductivity ratio kf/km = 1000, the critical contact resistance
parameter b0 = 0.4995, g ¼ �0:998; �0:980; �0:818; 0 (it is
noted that for a practical composite, �1 < g < 1). Then consider a
coated fiber problem. Take kf/km = 1/10, kc/km = 100, g ¼ �0:998;
�0:939; 0; �0:519; �0:818, the critical relative coating thickness
n0 = 0.009. The variations of the dimensionless effective transverse
thermal conductivity ke/km with the term number N of the eigen-
function expansion are listed in Table 1 for a square array (k ¼ 0:7)
and in Table 2 for a hexagonal array (k ¼ 0:8), respectively.

From Tables 1 and 2, a rapid convergence is observed. It is also
shown that the relative error of the first-order approximation for-
mula to the high-order numerical result is less than 5% as
�0.998 < g < 0 (corresponding to 1 < kf/km < 1000 in the case of
perfect interface), and k < 0:7 for a square array and k < 0:8 for a
hexagonal array. Further calculations show that the results of the
first-order approximation formula are still reasonable to some ex-
tent for extreme cases of g and k. Therefore, the present first-order
approximation expression can serve as a good engineering closed-
form formula.
6.2. Comparison with existing theoretical predictions and experimental
data

In this subsection, a comparison is made with generalized self-
consistent predictions and experimental data. Because of difficulty
in measuring, to our best knowledge, no experimental data about
the interfacial thermal contact resistance were reported. In the fol-
lowing comparison, the interfacial parameter b is conversely deter-
mined by experimental data.

Thornburg and Pears [19] conducted experiments on the trans-
verse thermal conductivity of glass reinforced plastics (kf/km = 4.4)
and graphite fiber reinforced plastics (kf/km = 666). A comparison
of the present first-order approximation formula with the general-
ized self-consistent method (GSCM) and the experimental data is
depicted in Fig. 3a and b, where EEVM = eigenfunction expan-
sion–variational method and term number N = 1.

It is seen that the present estimations of the effective thermal
conductivity are higher than those by the GSCM. The results for
the hexagonal array (HEX) very approach those by the GSCM and
the results for the square array (SQU) are larger than them. Such
a phenomenon is not surprising. The thermal conductivity of fibers
is much higher than that of the matrix. So the shorter the path of
heat flow through the matrix is, the higher the effective thermal
conductivity of the composite is. The adjacent fibers in a square ar-
ray are closer together than those in a hexagonal array for the same
fiber volume fraction, which results in more fluent heat flow be-
tween the higher conductivity phases (the fibers). For a square ar-
ray, when the fiber volume fraction k approaches 0.785, the fibers
are in contact with each other, which yields a fluent heat flow path.
For a hexagonal array, the fibers are not in contact with each other
until k = 0.907. Therefore, the effective thermal conductivity for the
square array is higher than that for the hexagonal array. The GSCM
is based on an imaginary idealized even distribution of fibers, and
the hexagonal array is the closest to the idealized even distribu-
tion. From Fig. 3a and b, it is also seen that the present results
are in reasonable agreement with the experimental data. Because
no experimental data about the interfacial thermal contact resis-
tance are available, in Fig. 3a the values of b is conversely deter-
mined by experimental data. In Fig. 3b, the experimental data of
the effective thermal conductivity are slightly larger than the the-
oretical estimations. Because of a lack of the interfacial character-
istic data, further experimental investigations are still highly
desirable.
6.3. A discussion on the engineering equivalent parameter g

From the first-order approximation formula (Eqs. (24a)–(24c)),
an engineering equivalent parameter g is found and the parameter
can reflect the overall influence of the thermal conductivities of the
matrix and fibers, and the interfacial characteristic on the effective
thermal conductivity of a composite. For high-order numerical
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Fig. 3. A comparison of the first-order approximation formula with the generalized self-consistent method and the experimental data: (a) fiber glass reinforced plastics
(kf/km = 4.4); (b) graphite fiber reinforced plastics (kf/km = 666).
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Fig. 4. The dimensionless effective thermal conductivity ke/km versus dimension-
less fiber conductivity kf/km for different values of g in the case of contact resistance
and a square array of fibers, where k ¼ 0:7.
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results, does such an equivalence relation remain unchanged? To
answer this problem, in the case of contact resistance, the dimen-
sionless effective thermal conductivity ke/km versus the dimen-
sionless fiber conductivity kf/km for different values of g is
depicted in Fig. 4, where kf/km > (1 � g)/(1 + g) to ensure b > 0;
and in the case of coated fibers, the dimensionless effective ther-
mal conductivity ke/km versus the dimensionless fiber conductivity
kf/km for different values of g is depicted in Fig. 5a for the relative
coating thickness n = 0.1 and in Fig. 5b for n = 0.01, respectively.

From Figs. 4 and 5, it is seen that for a fixed g and various com-
binations of the matrix and fibers conductivities and interfacial
characteristic parameter, the dimensionless effective thermal con-
ductivity ke/km approximately remains unchanged. The fact indi-
cates that g can indeed reflect a combined effect of the matrix
and fiber conductivities and interfacial characteristic parameter
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Fig. 5. The dimensionless effective thermal conductivity ke/km versus dimensionless fiber
array of coated fibers k ¼ 0:7: (a) relative coating thickness n = 0.1; (b) n = 0.01.
on ke/km with a good engineering accuracy and can greatly simplify
the relation of ke/km to the internal structure of a composite.
7. Conclusions

For a unit cell of doubly-periodic fiber reinforced composites
considering the interfacial characteristics, an eigenfunction expan-
sion of the complex potential is derived, and the expansion satis-
fies the governing equations of the steady-state heat conduction
and different interfacial characteristics. Then using a generalized
variational functional which absorbs the quasi-periodicity of the
temperature field and the periodicity of the heat flux fields by
the Lagrangian multiplier method, an eigenfunction expansion–
variational method based on a unit cell is developed. A conver-
gence analysis and a comparison with available experimental data
and micromechanical estimations are made.

An engineering equivalent parameter g is found and the param-
eter can reflect the overall influence of the thermal conductivities
of the matrix and fibers and the interfacial characteristics on the
effective thermal conductivity of the composite with a good engi-
neering accuracy. The equivalent parameter greatly simplifies the
complicated relation of the effective thermal conductivity to the
internal structure of a composite.

By using the equivalent parameter g, the present solutions pro-
vide a unified first-order approximation formula of the effective
thermal conductivity for different interfacial characteristics (per-
fect and thermal resistance interfaces and coating) and for the
square and hexagonal arrays of fibers. A comparison with high-or-
der numerical solutions shows that the unified first-order approx-
imation formula possesses good engineering accuracy and can
serve as a good engineering closed-form formula.
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conductivity kf/km for different values of g, in the case of coated fibers and a square
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