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The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated
experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids
are modeled by the Carreau rheological model. An improved level set approach for computing the incom-
pressible two-phase flow with deformable free interface is used. The control volume formulation with
the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian
grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with
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large density (�1/�g up to 10 ) and high viscosity (�1/�g up to 10 ). The comparison of the experimental
measurements of terminal bubble shape and velocity with the computational results is satisfactory. It
is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and
the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and veloc-
ity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a

ant fl
e num
result of the rather stagn
investigations, such as th

. Introduction

In diverse gas–liquid systems the gas is frequently dispersed as
ubbles in the liquid by means of a sieve plate or a perforated plate
uch as in bubble column reactors, fermentation, mineral process-
ng, petrochemical processes. It is highly important to obtain the
nowledge of bubble behavior not only in a Newtonian continuous
hase but also in a non-Newtonian one, because the investigation
n bubble motion provides useful and essential information for
ealizing suitable process design and operation. It is well known
hat a large number of investigations concerning various aspects
f the bubble or drop motion in non-Newtonian fluids have been
eported theoretically and experimentally in the past. Many of
hem have been well summarized and reviewed by Chhabra [1,2]
nd Kulkarni and Joshi [3]. Nevertheless, in comparison to the study
f the bubble or drop motion in Newtonian fluids, various unan-
wered questions and problems still remain to be considered in
on-Newtonian fluid systems due to the inherently complex nature
f the non-Newtonian fluids. The above-mentioned studies are

ostly based on experiments.
Numerical analysis has become a powerful tool for comprehend-

ng and revealing the details of flow structure and mechanism,
ecause some essential physical information peculiar to non-

∗ Corresponding author. Tel.: +86 10 62554558; fax: +86 10 62561822.
E-mail addresses: chaoyang@home.ipe.ac.cn (C. Yang), zsmao@home.ipe.ac.cn
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ow behind the bubble. The numerical results provide the basis for further
erical simulation of viscoelastic fluids.

© 2010 Elsevier B.V. All rights reserved.

Newtonian fluids, such as the local effect of shear-thinning on
bubble motion and mass transfer, can be locally obtained and
evaluated by numerical techniques, but hard to be retrieved from
experiments. The knowledge of shear-rate and the resulting stress
distribution in aerated non-Newtonian liquids are important for
determining whether a bioreactor is suitable to handle shear-
sensitive biosystems [4]. In the recent literature, few attempts
have so far been made to analyze numerically the drop or bubble
behavior in non-Newtonian fluids. Kishore et al. [5] carried out the
numerical investigation to obtain the steady state drag coefficients
and flow patterns of a single Newtonian fluid sphere sediment-
ing in power-law liquids using a finite difference method based
SMAC implicit solver on a staggered grid and proposed a simple
correlation for the total drag coefficient, which can be used to pre-
dict the rate of sedimentation of fluid sphere in power-law liquids.
Tsamopoulos et al. [6] simulated the rise of a bubble in a Newtonian
or a viscoplastic fluid for a wide range of material parameters based
on the mixed finite element method coupled with a quasi-elliptic
mesh generation scheme in order to follow the large deformation
of the physical domain. Wagner et al. [7] developed a new lattice
Boltzmann method to simulate a bubble rising in a viscoelastic fluid
with constant viscosity. Pillapakkam and Singh [8] conducted a
numerical investigation of bubble and drop behavior in viscoelastic

flows with constant viscosity using the level set method. Ohta et al.
[9,10] explored both experimentally and numerically the motion
of a Newtonian, spherical and deformable drop rising in shear-
thinning fluids using the VOF method. Radl et al. [11,12] carried out
the numerical analysis on the motion of deformed bubbles in non-

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:chaoyang@home.ipe.ac.cn
mailto:zsmao@home.ipe.ac.cn
dx.doi.org/10.1016/j.jnnfm.2010.02.012
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Nomenclature

Notation
de volume equivalent bubble diameter, m
Eo Eotvos number (Eo = d2

e�lg/�)
g gravitational acceleration, m s−2

Mo Morton number (Mo = g�4
l /(�l�

3))
n parameter of the Carreau-Yasuda model
p pressure, Pa
r radial coordinate, m
R bubble radius, m
Re Newtonian Reynolds number (Re = �1Ude/�)
ReM non-Newtonian Reynolds number, defined by Eq.

(8)
t time, s
U bubble velocity, m s−1

UT bubble terminal velocity, m s−1

u, v velocity component in z and r directions, m s−1

uR velocity vector in moving reference frame, m s−1

z axial coordinate, m

Greek letters
ˇ parameter in Eq. (6)
�̇ shear-rate, s−1

ı Dirac delta function
� apparent viscosity, Pa s
�0 zero-shear rate viscosity, Pa s
�∞ infinite-shear rate viscosity, Pa s
� Gaussian curvature, 1/m
� parameter of Carreau model, s
� viscosity of Newtonian liquid, Pa s
� density, kg m−3

� surface tension, N m−1

	 virtual time

N shear stress, N m−1

� level set function

Subscript
d drop

N
m
o
c
u
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m

g
s
l
N
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t

2

a
a
t
fl

g gas phase
l liquid phase

ewtonian fluids and associated mass transfer using first principle
ethods. As the stability of numerical schemes depends strongly

n the ratio between liquid and gaseous phase densities and vis-
osities, the above investigations [7,8,11,12] represent the bubble
sing a Newtonian drop of low density. That is, the density and vis-
osity ratios of liquid over gas phase were up only to 10, which was
uch lower than that in real cases (�l/�g ∼ 103 and �l/�g ∼ 104).
In this study, the motion of a single bubble rising freely through

eneralized Newtonian fluids is computed numerically using a level
et method for tracking the bubble interface. The changes in the
ocal viscosity field around a bubble rising in shear-thinning non-
ewtonian fluids such as Carreau fluids are examined. Real density
nd viscosity ratios of gas and liquid are used to describe the shear-
hinning non-Newtonian two-phase flow systems.

. Mathematical models and simulation methods
The motion of a single bubble rising driven by buoyancy in
n immiscible quiescent liquid is considered with the following
ssumptions: (1) the fluids in both phases are incompressible; (2)
he two-phase flow is axisymmetric and laminar; (3) the two-phase
ow is isothermal. The computational domain is sketched in Fig. 1.
Fig. 1. Schematic diagram of solution domain for numerical simulation.

To prevent the rising bubble from escaping out of the computa-
tional domain, the computational domain extends upstream and
cuts short downstream the bubble with the same bubble velocity.

2.1. Governing equations

In the level set formulation, the transient motion of the bubble
can be expressed by the continuity and Navier–Stokes equations as
follows:

∇ · u = 0 (1)

�

(
∂u

∂t
+ u · ∇u

)
= −∇P + �g + ∇ · 
 + ��ı(�)n (2)

where u is the velocity vector, P the pressure, � the density, � is
surface tension, g is the gravity and � the stress tensor. For New-
tonian fluids the stress tensor is �=2�D, and the strain rate tensor
is

D = 1
2

(∇u + ∇uT) (3)

2.2. Constitutive equation for continuous phase

The stress tensor for a generalized non-Newtonian inelastic fluid
is expressed as


 = 2�(�̇)D (4)

where the apparent viscosity �(�̇) is dependent on the shear-

rate and the rate-of-strain is:

�̇ =
√

2D : D (5)

Once the local shear-rate is calculated at each nodal point in the
computational domain, the field of �̇ can be reconstructed.
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The constitutive equation of a purely viscous non-Newtonian
uid can be expressed by the Carreau-Yasuda shear-thinning model
13]:

(�̇) = �∞ + (�0 − �∞)[1 + (��̇)ˇ]
(n−1)/ˇ

(6)

here �0 and �∞ are the viscosities corresponding to the zero
hear-rate and the infinite-shear rate, respectively, � is the inelastic
ime constant, n is the power-law index, and ˇ is a dimensionless
arameter describing the transition region between the zero shear-
ate region and power-law region. In practice, ˇ is close to 2 and
∞ is small, and therefore Eq. (6) reduces to

(�̇) = �0
[
1 + (��̇)2](n−1)/2

(7)

Note that a Newtonian fluid can be recovered as a special case of
he present Carreau fluid by letting n = 1 and/or � = 0, and a power-
aw fluid can be obtained by assuming a large �.

Since the fluid viscosity varies as a function of shear-rate, the
rst problem in developing the drag curve is the definition of
eynolds number since it is related to both liquid viscosity and
ubble velocity. The ideal definition of the Reynolds number should
atisfy the following requirements [9]: (1) the shear-thinning effect
s reflected in the Reynolds number, and (2) the Reynolds number
or a shear-thinning fluid reduces to that for a Newtonian fluid if
he shear-thinning effect vanishes. ReM is thus defined by intro-
ucing 2UT/de (where UT and de are the terminal velocity and the
olume-equivalent diameter of a bubble or drop, respectively) as a
epresentative shear-rate in the system:

eM = �ldeUT

�0/[1 + (�(2UT/de))2]
(1−n)/2

= �ldeUT

C�0
(8)

ith

= 1[
1 + (�(2UT/de))2](1−n)/2

(9)

here C�0 means the effective viscosity of the system. If C = 1.0, the
ubble motion can be regarded as that in a Newtonian liquid.

.3. Level set approach for fluid flow

A smooth scalar function denoted as � is introduced into the
ormulation of a multiphase flow system to define and capture the
nterface between two fluids, which is identified as the zero level
et of the level set function � defined on the entire computational
omain. The function � is chosen as the signed algebraic distance to
he interface, being positive in the continuous fluid phase and neg-
tive in the bubble. The following Hamilton-Jacobi type evolution
quation [14] can be used to advance the level set function exactly
s the bubble moves:

∂�

∂t
+ ∇ · (u�) = ∂�

∂t
+ (u · ∇)� = 0 (10)

After introducing the level set formulation, the motion in two
eparate domains for two immiscible fluids may easily be formu-
ated as a single one.

The curvature of free surface �(�) is expressed as

(�) = ∇ · n = ∇ ·
(

∇�∣∣∇�
∣∣
)

(11)

here n is the unit vector normal to the interface pointing towards
he continuous phase, and ıε(�) the regularized delta function

efined used in Eq. (2) is

ε(�) =
{

1
2ε

(1 + cos(��/ε)) if|�| < ε

0 otherwise
(12)
id Mech. 165 (2010) 555–567 557

where ε prescribes the finite “half thickness” of the interface. We
take ε = 1.5�z, where �z is the dimensionless uniform mesh size
near the interface. H�(�) is the regularized Heaviside function
expressed as

Hε(�) =
{

0 if � < −ε
(1/2)

(
1 + (�/ε) + sin(��/ε)/�

)
if |�| ≤ ε

1 if � > ε

(13)

for avoiding the sharp change in pressure and diffusion term at
the interface due to large density and/or viscosity ratios. Thus, the
density and viscosity of the two phases are written as

�(�) = �g + (�l − �g)Hε(�) (14)

�(�) = �g + (�l (�̇) − �g)Hε(�) (15)

The level set function � is advanced with the local liquid veloc-
ity at each time step. Maintaining � as a distance function is
essential for providing the interface with an invariant bubble vol-
ume, but � becomes gradually deviated from the distance function
(i.e.,|��| /= 1) after some iterations. This problem can be resolved
by adopting a reinitialization method proposed by Sussman et al.
[15] to keep the solution accurate and maintain mass conservation
of the bubble by solving the following problem to steady state in a
virtual time domain:

∂�

∂	
= sgn(�0)(1 − |∇�|) (16a)

�(z, 0) = �0(z) (16b)

where 	 is the virtual time for reinitialization, �0(z) is the level
set function at any computational instant, and sgn(�0) is the sign
function for enforcing �� = 1. Eq. (16) has the property of making �
remain unchanged at the interface, so the zero level set of �0 and
� is the same. Away from the interface � will converge to |��| = 1,
i.e., the actual distance function. In this paper, the area-preserving
reinitialization procedure by Yang and Mao [16] for � is coupled
with Eq. (16) to guarantee the mass conservation by solving a per-
turbed Hamilton-Jacobi equation proposed by Zhang et al. [17] to
pseudo-steady state in each time step. The improved reinitializa-
tion procedure can maintain the level set function as a distance
function and guarantee the bubble mass conservation.

2.4. Boundary conditions

The boundary conditions at the axis (AD) and wall (BC) are as
follows (refer to Fig. 1):

∂u

∂r
= v = 0 at r = 0

u = v = 0 at r = R

The bottom and top of the computational domains (DC and AB)
are subject to the following conditions:

∂u

∂z
= ∂v

∂z
= 0 at z = 0

∂u

∂z
= ∂v

∂z
= 0 at z = L

2.5. Computational system

The control volume formulation with the SIMPLEC algorithm

[18] incorporated is used to solve the governing equations and the
level set evolution equation. The power-law scheme is adopted
for the discretization of the governing equations in a staggered
non-uniform grid with more cells allocated densely near the inter-
face. In order to ensure variables more accurately interpolated and
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ig. 2. Effects of mesh size on the simulated bubble shape (de = 3.832 mm, n = 0.9,
= 0.207 s and �0 = 0.122 Pa s, ReM = 6.65).

esolved, a double fine grid is also applied. The detailed numerical
ethod and technique were described by Sussman et al. [15] and

ang and Mao [16]. In the initial set-up, a spherical bubble with
adius R is set in the middle of the z-axis and the computational
omain with H = 40R and L = 15R is wide enough to avoid the wall
ffect. Both the liquid and the bubble are assumed to be stationary
t the initial state.

In this simulation, the mesh sensitivity test was performed
y simulating the bubble rising under the same conditions
de = 3.832 mm, n = 0.9, � = 0.207 s, �0 = 0.122 Pa s and ReM = 6.65)
sing different sized background meshes to ensure the numeri-
al results independence of computational meshes. The effects of
esh size on predicted terminal bubble shapes are shown in Fig. 2.
onuniform grids (H × L) of 224 × 97 (grid 4), 252 × 107 (grid 3),
40 × 127 (grid 2), 380 × 147 (grid 1) (the last is referred to as the
ne one) were tested for the simulation. A grid with 340 × 127
odes is considered sufficient for spatial computational accuracy,
nd adopted for the subsequent simulations.
. Experimental

The experiments in this work were conducted under atmo-
pheric pressure. A schematic of the experimental apparatus is
hown in Fig. 3. To help visualizing the motion of gas bubbles, a

Fig. 3. Schematic diagram o
id Mech. 165 (2010) 555–567

Lucite column was constructed. It is square cross-sectioned (side
length 0.21 m) and 0.6 m high, and the column is thought large
enough so as to minimize the wall effect [1].

The general procedure for a series of experimental runs is as
follows: the viscous liquid that had been sufficiently exposed to
room temperature was put into the column. With the help of a
precision syringe pump (Harvard microprocessor multiple syringe
pump, USA) enabling accurate control of gas flow, air at room tem-
perature was introduced at a low rate and single bubbles were
formed at a stainless steel nozzle with a flat opening. The nozzle
was located at the center, 3 cm above the bottom. Various noz-
zles with different inner diameters were used to generate single
bubbles with desired sizes. Time interval between subsequent bub-
bles was sufficiently long (>100 s) to minimize the mutual influence
between successive bubbles. Since the single bubbles in the present
experiments were roughly spherical and axisymmetric, rising rec-
tilinearly, the images of rising bubbles were recorded using a single
high-speed CCD camera (LG CCD GC-145C-G, Korea) with the shut-
ter speed variable between 1/60 to 1/100,000 s. The instantaneous
positions of a bubble was read out from each frame of images with
the resolution of 752 × 582 pixels against a precision scale along the
column wall. The local velocity was calculated by a frame-to-frame
analysis of successive images using imaging software (Photoshop
8.0). We assumed that the velocity was terminal when it remained
constant (within 5%) in at least five consecutive frames.

Sodium aqueous carboxymethyl cellulose (CMC) sodium salt,
sodium hydroxyl-ethyl cellulose (HEC) and xanthan gum (XG) solu-
tions were used as the ambient shear-thinning liquids (continuous
phase). Solutions were maintained at 21 ◦C during the experiments.
The liquid densities were measured using a balance hydrometer
and none were found to be significantly different from that of water
because the concentration of these polysaccharides is very low. The
surface tension of each mixture was measured with a tensiometer
by the du Nouy Ring method. The surface tension of the solution
did not change significantly as a function of polysaccharides con-
centration within the concentration ranges used in this study and
remained close to that of water (7.2 × 10−2 N m−1).

4. Results and discussion

4.1. Bubble shape and rising velocity in Newtonian fluids
In the past decades, many experimental studies were focused
on the motion of bubbles and drops. The main practical inter-
est is the determination of the fluid particle shape and terminal
velocity at steady state motion. The predicted bubble shapes and
terminal steady state conditions are compared with the experimen-

f experimental setup.
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Table 1
Comparison of bubble shapes and terminal Reynolds numbers observed in experiments [19] and the present predictions in Newtonian fluids.

Test case Experiment [19] Simulation

Test Observed bubble Predicted bubble Predicted Reynolds
conditions terminal shapes terminal shapes numbers

1 Mo = 848 Re = 2.47 Re = 2.35

2 Mo = 266 Re = 3.57 Re = 3.7

3 Mo = 41.1 Re = 7.16 Re = 7.05

4 Mo = 5.51 Re = 13.3 Re = 13.45

5 Mo = 1.31 Re = 20.4 Re = 20.72

Note: Eo = 116.

t
r
d
b

T
P

Table 3
Comparisons between experimental and numerical results for a single bubble rising
in Carreau shear-thinning liquids.

Liquid de (mm) UT,exp (cm s−1) UT,cal (cm s−1) ReM,exp ReM,cal Dev
* (%)

CMC1 4.19 21.5 20.87 121.27 116.29 2.9
CMC2 3.96 9.88 9.39 4.05 3.832 4.4
HEC1 2.84 11.88 11.6 10.19 9.91 2.4
Fig. 4. Viscosities as a function of shear rates for three test fluids (T = 21 ◦C).
al results reported by Bhaga and Weber [19]. Their experimental
esults were presented in the terms of Eotvos number (Eo =
2
e�lg/�), Morton number (Mo = g�4

l /(�l�
3)) and Reynolds num-

er (Re = �lUde/�). The comparison of steady-state cases in Table 1

able 2
arameters for Carreau model and physical properties of liquids.

Liquid �0 (Pa s) � (s) n �1 (kg m−3) � (mN m−1)

CMC1 0.0377 0.512 0.89 1000.0 72
CMC2 0.122 0.207 0.90 1000.0 72
HEC1 0.047 0.0624 0.79 1000.0 72
HEC2 0.315 0.260 0.68 1000.0 72
XG 0.115 0.984 0.49 1000.0 72
HEC2 3.11 5.25 4.74 1.041 0.91 9.7
XG 2.29 26.5 24.6 84.07 75.15 7.16

* Dev = |Ucal − Uexp|/Uexp × 100.

indicates good agreement between computational and experimen-
tal results. These simulations suggest that our method is effective
for investigating the motion of a bubble with very steep gradients in
density and viscosity across interface under the laminar flow con-
ditions using an Eulerian grid. The method provides the basis for
further investigation of non-Newtonian fluids. The physical prop-
erties of air are �g = 1.2 kg m−3 and �g = 1.8 × 10−5 Pa s.

4.2. Bubble rising in shear-thinning non-Newtonian fluids
Fig. 4 shows the representative apparent viscosity vs. shear-rate
data for some test fluids measured using a Brookfield Viscometer
(DV-III) at ambient experimental temperature. The Carreau model

Table 4
Carreau model parameters and numerical results of bubbles with de = 1 cm.

System �0 (Pa s) � (s) n UT (cm s−1) 2�UT/de ReM

1 0.5 – 1.0 11.2 – 2.24
2 0.5 1.00 0.8 16.5 33.0 6.65
3 0.5 1.00 0.5 22.7 45.4 30.69
4 0.5 1.00 0.4 23.9 47.8 48.8
5 0.1 1.00 0.8 25.3 50.6 55.5
6 0.5 1.00 0.3 25.6 51.2 80.85
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q. (7) is fitted to the experimental data, which is represented in
ig. 4 by full lines. The other solutions studied are not plotted for

etter visualization. All the solutions exhibited a shear-thinning
ehaviour. The parameter values of the Carreau model and other
hysical properties under test conditions are listed in Table 2.

In this study, the terminal rising velocity of air bubbles in 5 non-
ewtonian liquids with shear-thinning property are determined

ig. 5. Viscosity distribution and shape of a bubble rising in solution. (a) System 1: Ne
eM = 6.65, �0 = 0.5 Pa s. (c) System 3: Carreau shear-thinning fluid, ReM = 30.69, �0 = 0.5 Pa
arreau shear-thinning fluid, ReM = 55.5, �0 = 0.1 Pa s. (f) System 6: Carreau shear-thinning
id Mech. 165 (2010) 555–567

and these bubbles are simulated using the present numerical pro-
gram. Table 3 shows the numerical and experimental results for a

single bubble rising freely in pure shear-thinning non-Newtonian
solutions. The calculated terminal velocities are in close agreement
with the present experimental values with the relative deviation
below 10%. The satisfactory agreement indicates the validity of
numerical procedure for the numerical simulation of a single bub-

wtonian fluid, ReM = 2.24, �0 = 0.5 Pa s. (b) System 2: Carreau shear-thinning fluid,
s. (d) System 4: Carreau shear-thinning fluid, ReM = 48.8, �0 = 0.5 Pa s. (e) System 5:
fluid, ReM = 80.85, �0 = 0.5 Pa s.



ian Flu

b
t
b
m
o

F
R
(

L. Zhang et al. / J. Non-Newton

le rise in a shear-thinning non-Newtonian continuous phase. In

hese shear-thinning solutions the apparent viscosity around the
ubble decreases due to the shear, so the bubble can rise more and
ore easily. It is interesting to note that the zero-shear viscosity

f CMC2 and XG is roughly equal (Table 2), but UT of the bubble in

ig. 6. Shear rate distribution and shape of a bubble rising in solution. (a) System 1: Newt
eM = 6.65, 2UT/de = 33.0 s−1. (c) System 3: Carreau shear-thinning fluid, ReM = 30.69, 2UT/d
e) System 5: Carreau shear-thinning fluid, ReM = 55.5, 2UT/de = 50.6 s−1. (f) System6: Carr
id Mech. 165 (2010) 555–567 561

XG is much larger than that in CMC2, since XG has stronger shear-

thinning property and the liquid around the bubble thus becomes
less viscous. Hence, understanding the viscosity distribution over
the whole domain is important to elucidate the bubble behaviors
in shear-thinning non-Newtonian liquids.

onian fluid, ReM = 2.24, 2UT/de = 22.4 s−1. (b) System 2: Carreau shear-thinning fluid,
e = 45.4 s−1. (d) System 4: Carreau shear-thinning fluid, ReM = 48.8, 2UT/de = 47.8 s−1.
eau shear-thinning fluid, ReM = 80.85, 2UT/de = 51.2 s−1.
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.3. Viscosity distribution around a bubble

It is difficult to explore the distribution of viscosity by experi-
ental techniques. However, the local viscosity change around the

ubble can be derived in detail from the numerical results. In this
tudy, the shear-thinning liquids whose properties are shown in
able 4 are tested in order to elucidate the shear-thinning effect on
ubble rising. The numerical results are also listed in Table 4. The
as-related physical properties of the systems are �g = 1.2 kg m−3,
g = 1.8 × 10−5 Pa s and � = 7.2 × 10−2 N m−1.

Fig. 5 shows the viscosity distribution (non-dimensionalized by
0) around a bubble for systems 1 through 6. The colorbar shown at
he right of the figures depicts the range of reduced apparent viscos-
ty around the bubble. The real shape of the bubbles is also displayed
n Fig. 5. System 1 corresponds to the bubble rising in Newto-
ian fluid with the same zero shear-rate viscosity and the viscosity
round the bubble is constant. As for systems 2 through 6, the vis-
osity around the bubble varies in correspondence to the bubble
hape and the shear-thinning property of the liquid, and the degree
f the decrease in viscosity is the largest in close vicinity to the bub-

le. The change in viscosity becomes gradually drastic from system
to system 6, showing that a confined region with high viscosity

xists in the wake of these bubbles and it becomes finally detached
rom the bubble rear surface. As seen in Table 4, it is obvious that
T (or ReM) increases gradually due to the stronger shear-thinning

ig. 7. Velocity field around a rising bubble in solution in a fixed frame. (a) System 1: New
eM = 6.65, UT = 16.5 cm s−1. (c) System 3: Carreau shear-thinning fluid, ReM = 30.69, UT = 2
id Mech. 165 (2010) 555–567

effect. The bubble can rise faster due to the large extent of decrease
in viscosity around the bubble. Obviously, the bubble shape in the
shear-thinning non-Newtonian fluid differs much from that in the
Newtonian case. As the shear-thinning effect becomes intensive
gradually, the bubble takes the more oblate shape, with the front
surface flatter than the rear part.

As the apparent viscosity of the shear-thinning fluids decreases
due to the increased shear-rate �̇ ,

�̇ =
[

2

(
∂u

∂z

)2

+ 2

(
∂v
∂r

)2

+
(

∂v
∂z

+ ∂u

∂r

)2

+ 2
( v

r

)2
]1/2

(17)

its distribution, which can be calculated from the predicted velocity
field u, sheds light for understanding the local apparent viscosity.
As shown in Fig. 6, the shear rate distribution around a bubble in the
Newtonian (Fig. 6a) and non-Newtonian (Fig. 6b) liquids is similar
when the shear-thinning effect is weak and the Reynolds num-
ber is small. However, a larger area of higher local shear rate at
the bubble nose in Fig. 6b can be observed in the shear-thinning

liquid than that in Fig. 6a, as a joint effect of shear-thinning prop-
erty and a larger ReM in Fig. 6b. As demonstrated in Fig. 6c–f,
a region of much lower shear-rate is at the rear of the bubble,
which corresponds to a much higher viscosity region in the wake
of the bubble. In these strong shear-thinning cases, the topology

tonian fluid, ReM = 2.24, UT = 11.2 cm s−1. (b) System 2: Carreau shear-thinning fluid,
2.7 cm s−1.
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the Carreau-Yasuda model Eq. (6) and the VOF (Volume-of-Fluid)
method. In this work the level set method for tracking the interface
is used to simulate the motion of a drop in shear-thinning non-
Newtonian liquids and the predictions are compared with results
of Ohta et al. [10]. The values of the Carreau-Yasuda model and
L. Zhang et al. / J. Non-Newton

f shear rate distribution resembles its counterpart viscosity dis-
ribution in Fig. 5. As the shear-thinning effect becoming stronger
n Fig. 6e and f, the low shear region even becomes isolated amid
he wake, detached from the bubble rear. It indicates clearly that
here exists a higher shear-rate region in front of the bubble and a
treaming toroidal one at the outer region in the wake, where the
iscosity is subject to drastic decrease correspondingly. In Fig. 6,
he shear rate has been non-dimensionalized with the respec-
ive maximum value of �̇ in the flow field to show the pattern of
ariation.

Although the viscosity of shear-thinning fluids is not directly
elated to the liquid velocity field, it provides the relevant infor-
ation for understanding the distribution of the apparent local

iscosity. The flow field in the fixed reference frame around a bub-
le is shown in Fig. 7. The velocity distribution around the bubble
ising in the Newtonian fluid is classical: the rising bubble pushes
he liquid upwards in front of it and the liquid flows back into the
ubble wake, and a toroidal vortex is formed on the side of the bub-
le with approximate fore-aft symmetry (Fig. 7a). The flow is quite
imilar in the non-Newtonian cases despite its shear-thinning fea-
ure, but the vortex appears with increased shear-thinning effect
nd is pushed farther behind the equatorial plane (Fig. 7b and c).
he flow field shows significant velocity gradient in front of the
ubble, which corresponds well to the high shear-rate region at
he front. These velocity fields are similar to the flow visualization
ith the help of a 3D PIV (Particle Image Velocimetry) system by

unfschilling and Li [20].
It is also interesting to view and analyze the flow field in the

eference coordinate system moving with the bubble. The relative
elocity in the liquid domain is given by

R(z) = u(z) − iUbubble (18)

ith the rectilinear bubble rising velocity calculated as the average
ver the whole bubble surface ˝:

bubble =
∫

�=0
ud˝∫

�=0
d˝

(19)

The integration is carried out along the bubble surface which
orresponds to the zero set of the level set function. The procedure
f numerical solution has been presented previously by Wang et
l. in detail [21]. The field of relative velocity around the bubble is
resented in Fig. 8 as velocity vector maps.

The flow pattern around the nose of the bubbles is similar for
he 2 cases, and the magnitude of velocity gradient varies moder-
tely. The more significant difference appears in the bubble wake.
t is obvious that the wake region is enlarged as the value of ReM
ncreased gradually from Fig. 8a (ReM = 30.69) to Fig. 8b (ReM = 48.8).
owever, it is difficult to discern if there is a circulating vortex in

he wake or not.
It is easier to observe and analyze the flow structure by

he streamline maps for the 5 non-Newtonian cases in Table 4.
he stream function is dimensionless, based on far upstream
elocity normalized to unity using UT and the coordinates non-
imensionalized with de. These streamline maps are presented in
ig. 9 together with that for the bubble with the same value of Re in a
ewtonian liquid, in an attempt to distinguish between the effect of

hear-thinning property and that of increase of ReM. The simulated
ubble in the Newtonian liquid has the same bubble diameter de,
erminal velocity UT and liquid density �1 as that in shear-thinning
on-Newtonian liquid. However, the liquid viscosity is smaller than

he zero shear-rate viscosity of the shear-thinning liquid, so as to

ake Re = ReM. There is no circulation in the wake in Fig. 9b(top) for
he shear-thinning non-Newtonian liquid because of a high viscos-
ty region attached closely in the bubble wake (Fig. 5c). It is easily
bserved that a circulating vortex appears in Fig. 9c(top), which is
id Mech. 165 (2010) 555–567 563

difficult to recognize in Fig. 8b. When there is a circulating vortex
in the wake, a secondary vortex appears inside the bubbles, despite
the fact that the bubble becomes flatter as ReM increases gradually.
Only with its presence, the vortices in the wake and in the bub-
ble become compatible with the main convective flow passing the
bubble. For systems 4, 5 and 6, the wake length increases progres-
sively as ReM increases, and roughly matches the length of the low
viscosity region in the wake in Fig. 5d through 5f.

Also noticed is the fact that at the same value of the Reynolds
number, the aspect ratio (the maximum axial dimension/the max-
imum lateral dimension) of the bubble in non-Newtonian liquid
is visibly smaller than that in Newtonian liquid, due to the shear
thinning effect.

4.4. Comparison with reported results

Ohta et al. [10] investigated the Newtonian drop (silicone oil)
flow in a shear-thinning fluid (sodium acrylate polymer, SAP) with
Fig. 8. Velocity field around a bubble rising in Carreau shear-thinning in a refer-
ence frame moving with the bubble. (a) System 3: Carreau shear-thinning fluid,
ReM = 30.69. (b) System 4: Carreau shear-thinning fluid, ReM = 48.8.
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Fig. 9. Streamline around a bubble rising in Carreau shear-thinning or Newtonian fluid in a reference frame moving with the bubble. (a) System 2: Carreau shear-thinning fluid,
ReM = 6.65 (top); Newtonian fluid, Re = 6.65 (� = 0.248Pa s) (bottom). (b) System 3: Carreau shear-thinning fluid, ReM = 30.69 (top); Newtonian fluid, Re = 30.69 (� = 0.076Pa s)
(bottom). (c) System 4: Carreau shear-thinning fluid, ReM = 48.8 (top); Newtonian fluid, Re = 48.8 (� = 0.05 Pa s) (bottom). (d) System 5: Carreau shear-thinning fluid, ReM = 55.5
(top); Newtonian fluid, Re = 55.5 (� = 0.046 Pa s) (bottom). (e) System 6: Carreau shear-thinning fluid, ReM = 80.85 (top); Newtonian fluid, Re = 80.85 (� = 0.032 Pa s) (bottom).
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Fig. 9. (Continued ).

Table 5
Carreau-Yasuda model parameters of shear-thinning liquids [10].

o
a

t
s
s
r
t

Table 7
Comparison of the predicted results with those in ref. [10] for a drop rising in
Carreau-Yasuda shear-thinning solution of SAP.

Case de (mm) Eo UT (cm s−1) ReM (level set) ReM (VOF) Re (exp)

1 10.7 2.4 11.6 229 227 224

2 5.9 0.6 5.5 90 92 86

VOF and the present level set method agree well qualitatively with
each other.

Table 7 compares the results obtained from ref. [10] based on the
VOF method and from this simulation using the level set method
under a number of experimental test conditions. It can be found

T
E

Liquid �0 (Pa s) � (s) n (−) ˇ (−)

SAP1 0.05 0.89 0.25 2.5
SAP2 0.026 1.44 0.4 4.0

ther physical properties under test conditions are listed in Table 5
nd Table 6 separately.

Figs. 10–12 compare the predicted viscosity distributions with
hose in ref. [10] for a drop rising in a SAP (sodium acrylate polymer)

olution. In Figs. 10 and 11, the red area corresponds to the zero
hear-rate viscosity, and the blue area denotes the low viscosity
egion around a drop (silicone oil with a constant value). In Fig. 12,
he dark-green area corresponds to the zero shear-rate viscosity

able 6
xperimental cases and their physical properties [10].

Case (continuous-dispersed) �0 (Pa s) �1 (kg m−3)

1 (SAP1-silicone oil 5) 0.05 1000.4
2 (SAP2-silicone oil 10) 0.026 1001.4
3 (SAP2-silicone oil 50) 0.026 1001.4
11.6 2.1 11.62 330 341 335

3 9.8 1.0 6.6 147 150 140

(0.0260 Pa s), and the red area is the viscosity of the drop with a
constant value. As a common trend in the viscosity distribution, the
decreasing of viscosity at the front of a drop radiates from the drop,
and the viscosity behind the drop decreases along the downstream
flow. It can be verified that the computed viscosity distributions by
Fig. 10. Comparison of the viscosity distribution and shape of a drop rising in
Carreau-Yasuda shear-thinning solution (case 1, de = 10.7 mm, viscosity in unit of
Pa s). (a) VOF [10] and (b) level set method.

�d (kg m−3) �d (Pa s) � (mN m−1)

925.7 0.006 34.7
945.0 0.012 34.7
971.0 0.062 29.5
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Fig. 11. Comparison of the viscosity distribution and shape of a drop rising in
Carreau-Yasuda shear-thinning solution (case 2, de = 11.6 mm, viscosity in unit of
Pa s). (a) VOF[10] and (b) Level set method.
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Fig. 12. Comparison of the viscosity distribution and shape of a drop rising in
Carreau-Yasuda shear-thinning solution (case 3, de = 9.8 mm, viscosity in unit of
rom Table 7 that ReM values based on the level set method are
onsistent with those obtained by Ohta et al.

Scrutinizing the VOF results in Figs. 10–12, some flow struc-
ures of minor scale are observed around the drop surface. It is
ome kind of so-called “parasite flows” [22], probably arising from
naccurate account for the interfacial force. However, neat flow
tructure is obtained from our simulation without any interfacial
isturbance. In our method, the “parasitic” surface flow is sup-
ressed by adopting a double fine grid for simulating the motion
f drops and bubbles and advancing the deformable interface for
ach time step starting from the interface instead of the boundary
f the computational domain [16].

. Concluding remarks

In this study, the motion of a bubble rising freely through
hear-thinning fluids represented by the Carreau model has been
xperimentally and computationally investigated. An improved
evel set method is used to simulate the motion of deformable
as bubbles on a staggered Eulerian grid. The numerical method
s proved robust and effective for simulating the rise of single air

ubbles through a few shear-thinning solutions with the Reynolds
umber up to 340. The comparison of simulation of shear-thinning

iquids with the present and literature data shows satisfactory
greements for bubble terminal shapes and Reynolds numbers in a
ide flow regime.
Pa s). (a) VOF [10] and (b) Level set method.

For shear-thinning non-Newtonian liquids, the model param-
eter n, the power law index, has considerable influence on the
bubble rise motion. The viscosity around the bubble decreases con-
siderably as n becomes small, and as a result, the bubble can rise
easily through the shear-thinning liquid and the Re has a larger
value than that for Newtonian liquids with the same zero shear-rate
viscosity.

The flow structure around a bubble becomes deviated qualita-
tively from that typical in Newtonian fluids as the shear-thinning
property becomes more significant. Behind the bubble a region
of wake with high viscosity is observed, leading to the formation
of two separated zones in the vortex-shedding regime that may
influence the transport of dissolved gas in the wake.

The current computational scheme is expected to provide a
sound basis for further investigation on the bubble motion in vis-
coelastic fluids and the gas-liquid mass transfer in non-Newtonian
liquids.

Acknowledgements

The financial support from the National Natural Science
Foundation of China (20990224, 20676134), 973 Program

(2010CB630904), the National Project of Scientific and Techni-
cal Supporting Program (2008BAF33B03) and the 863 Key Project
(2007AA060904) is gratefully acknowledged.



ian Flu

R

[

[

[

[

[

[

[

[

[

[

[

[21] J.F. Wang, P. Lu, Z.-H. Wang, C. Yang, Z.-S. Mao, Numerical simulation of
unsteady mass transfer by the level set method, Chem. Eng. Sci. 63 (2008)
L. Zhang et al. / J. Non-Newton

eferences

[1] R.P. Chhabra, Bubbles, Drops, and Particles in Non-Newtonian Fluids, CRC Press,
Boca Raton, FL, 1993.

[2] R.P. Chhabra, Bubbles, Drops, and Particles in Non-Newtonian Fluids, second
ed., CRC Press, Boca Raton, FL, 2006.

[3] A.A. Kulkarni, J.B. Joshi, Bubble formation and bubble rise velocity in gas-liquid
system: A review, Ind. Eng. Chem. Res. 44 (2005) 5873–5931.

[4] W.A. Al-Masry, Effect of scale-up on average shear rates for aerated non-
Newtonian liquids in external loop airlift reactors (Communication to the
editor), Biotechnol. Bioeng. 62 (1999) 494–498.

[5] N. Kishorea, R.P. Chhabra, V. Eswaranb, Drag on a single fluid sphere translating
in power-law liquids at moderate Reynolds numbers, Chem. Eng. Sci. 62 (2007)
2422–2434.

[6] J. Tsamopoulos, Y. Dimakopoulos, N. Chatzidai, G. Karapetsas, M. Pavlidis,
Steady bubble rise and deformation in Newtonian and viscoplastic fluids and
conditions for bubble entrapment, J. Fluid Mech. 601 (2008) 123–164.

[7] A.J. Wagner, L. Giraud, C.E. Scott, Simulation of a cusped bubble rising in a
viscoelastic fluid with a new numerical method, Comput. Phys. Commun. 129
(2000) 227–232.

[8] S.B. Pillapakkam, P. Singh, A level set method for computing solutions to vis-
coelastic two-phase flow, J. Comput. Phys. 174 (2001) 552–578.

[9] M. Ohta, E. Iwasaki, E. Obata, Y. Yoshida, A numerical study of the motion of
a spherical drop rising in shear-thinning fluid system, J. Non-Newtonian Fluid

Mech. 113 (2003) 95–111.

10] M. Ohta, E. Iwasaki, E. Obata, Y. Yoshida, Dynamics processes in a deformed
drop rising through shear-thinning fluids, J. Non-Newtonian Fluid Mech. 132
(2005) 100–107.

11] S. Radl, G. Tryggvason, J. Khinast, Flow and mass transfer of fully resolved
bubbles in non-Newtonian fluids, AIChE J. 53 (2007) 1861–1878.

[

id Mech. 165 (2010) 555–567 567

12] S. Radl, J. Khinast, Prediction of mass transfer coefficients in non-Newtonian fer-
mentation media using first-principles methods, Biotechnol. Bioeng. 97 (2007)
1329–1334.

13] J.P. Hsu, L.H. Yeh, S.-J. Yeh, Electrophoresis of a rigid sphere in a Carreau fluid
normal to a large charged disk, J. Phys. Chem. B 111 (2007) 12351–12361.

14] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988)
12–49.

15] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions
to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146–159.

16] C. Yang, Z.-S. Mao, An improved level set approach to the simulation of drop
and bubble motion, Chin. J. Chem. Eng. 10 (2002) 263–272.

17] H. Zhang, L.L. Zheng, V. Prasad, T.Y. Hou, A curvilinear level set formulation
for highly deformable free surface problems with application to solidification,
Numer. Heat Transfer Part B 34 (1998) 1–20.

18] J.P. van Doormaal, G.D. Raithby, Enhancements of the SIMPLE method for pre-
diction incompressible fluid flows, Numer. Heat Transfer 7 (1984) 147–163.

19] D. Bhaga, M.E. Weber, Bubbles in viscous liquid: shapes, wakes and velocities,
J, Fluid Mech. 105 (1981) 61–85.

20] D. Funfschilling, H.Z. Li, Effects of the injection period on the rise velocity and
shape of a bubble in a non-Newtonian fluid, Chem. Eng. Res. Des. 84 (2006)
875–883.
3141–3151.
22] J.F. Wang, C. Yang, Z.-S. Mao, Simple weighted integration method for calculat-

ing surface tension for suppression of parasitic flow in the level set approach,
Chin. J. Chem. Eng. 14 (2006) 740–746.


	Numerical simulation of a bubble rising in shear-thinning fluids
	Introduction
	Mathematical models and simulation methods
	Governing equations
	Constitutive equation for continuous phase
	Level set approach for fluid flow
	Boundary conditions
	Computational system

	Experimental
	Results and discussion
	Bubble shape and rising velocity in Newtonian fluids
	Bubble rising in shear-thinning non-Newtonian fluids
	Viscosity distribution around a bubble
	Comparison with reported results

	Concluding remarks
	Acknowledgements
	References


