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a b s t r a c t

An augmented immersed interface method (IIM) is proposed for simulating one-phase moving contact
line problems in which a liquid drop spreads or recoils on a solid substrate. While the present two-
dimensional mathematical model is a free boundary problem, in our new numerical method, the fluid
domain enclosed by the free boundary is embedded into a rectangular one so that the problem can be
solved by a regular Cartesian grid method. We introduce an augmented variable along the free boundary
so that the stress balancing boundary condition is satisfied. A hybrid time discretization is used in the
projection method for better stability. The resultant Helmholtz/Poisson equations with interfaces then
are solved by the IIM in an efficient way. Several numerical tests including an accuracy check, and the
spreading and recoiling processes of a liquid drop are presented in detail.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we propose an augmented immersed interface
method for free boundary problems with moving contact lines in
two space dimensions. This problem arises from the spreading of
liquid drop on a solid substrate. We wish to investigate the wetting
effects of the drop on the solid surface [9]. The contact line is
defined as the intersection of the fluid interface with the solid sur-
face. When the contact line is in its equilibrium state (not moving),
the contact angle, the angle between the fluid interface and the
solid boundary, is called the static contact angle that depends on
the surface tension coefficients between the different phases
(Laplace–Young relation). In the presence of moving contact lines,
it is well-known that the no-slip boundary condition at the moving
contact line will lead to a non-integrable force singularity [12,6].
Several different techniques including continuum hydrodynamical
or molecular dynamical treatments have been proposed to remove
such singularity, see for example, a recent review article by Qian
et al. [25]. In this paper, our intention is not to provide a new math-
ematical model or analysis, but is to develop an efficient numerical
ll rights reserved.
method for the mathematical model developed by Ren and Weinan
[26] for the moving contact line problem.

The one-phase free boundary problem is a simplified model for
a two-phase (liquid–gas) problem with neglecting the influence of
one phase (gas), see Fig. 1 for an illustration. In this paper, we par-
ticularly consider a liquid drop on a solid surface and study its wet-
ting behavior. As usual, the governing equations are described by
the incompressible Navier-Stokes equations in a time dependent
single fluid domain XðtÞ, together with the stress force balancing
conditions on the free surface CFðtÞ, and the slip boundary condi-
tions on the solid surface CSðtÞ, that is,

q
@u
@t
þ ðu � rÞu

� �
þrp ¼ lDuþ G; in XðtÞ; ð1:1Þ

r � u ¼ 0; in XðtÞ; ð1:2Þ
� pþ nT � lðruþruTÞ � n ¼ cj� pair; on CFðtÞ; ð1:3Þ
sT � lðruþruTÞ � n ¼ 0; on CFðtÞ; ð1:4Þ

v ¼ 0; bu ¼ l @u
@y
; on CSðtÞ: ð1:5Þ

Here, u ¼ ðu; vÞ is the fluid velocity, p the pressure, and G is the
external force that can include the gravity. The constants q and l
are the fluid density and viscosity, respectively.
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Fig. 1. A diagram of a one-phase flow with two moving contact lines X1ðtÞ and
X2ðtÞ, and two contact angles h1ðtÞ and h2ðtÞ. The circular portion represents the free
boundary CFðtÞ where the stress force balancing conditions are imposed. The
bottom line represents the solid boundary CSðtÞ where the Navier slip boundary
conditions are imposed.
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Eqs. (1.3) and (1.4) are the stress force balancing conditions on
the free boundary CFðtÞ, where c is the surface tension, j the cur-
vature of the free boundary (negative sign in Fig. 1), pair the pres-
sure outside of the drop, and n and s are the unit normal and
tangent vectors at the free boundary. The derivation for above
stress balance conditions can be found, for example, in [14]. In
additional to the stress force conditions, we should impose the
kinematic condition on the free boundary, that is, the normal
velocity of the fluid at the free boundary should be equal to the
normal velocity of the interface. In this paper, we shall use the level
set method [21] to evolve the motion of the free boundary so that
the kinematic boundary condition is imposed naturally. The detail
for the free boundary representation by level set should be dis-
cussed in later section.

Along the fluid–solid boundary CSðtÞ, as mentioned before, the
no-slip boundary condition at the moving contact lines leads to a
non-integrable force singularity. Therefore, we allow the solid
boundary to be partial slip and impose the Navier slip boundary
condition, Eq. (1.5). The first condition in (1.5) is the no penetration
boundary condition. The second condition is the slip with friction
indicating that the tangential velocity of the fluid is proportional
to their tangential stress. Here, as in [26], b is the friction coeffi-
cient. Both conditions in Eq. (1.5) can also be easily derived from
their general expression as shown in [8]. Notice that, in other liter-
ature such as in [8,23], one can define k ¼ l=b as the slip length
indicating the fictitious distance to the solid surface where the
fluid tangential velocity is extrapolated to be zero.

In additional to imposing the Navier slip boundary condition on
the solid wall to remove force singularity, the contact line dynam-
ics must also be prescribed. In the presence of contact angle hyster-
esis, one can prescribe the contact angle depending on the sign of
contact line speed [31,22,8,32]. In the above models, however, the
advancing and receding contact angles must be given. Recently,
Ren and Weinan derived an effective boundary condition at the
contact line from the force balance argument [26]. As mentioned
by the authors, the main driving force for the slip is the unbalanced
Young’s force which results from the deviation of the contact angle
from its static value. Therefore, in this work, we simply apply their
effective condition to the contact line directly. That is, at the mov-
ing contact lines x1ðtÞ and x2ðtÞ, we have

au ¼ cðcos h� � cos hÞ; ð1:6Þ

where a is the effective friction coefficient, h� the static (equilib-
rium) contact angle that depends on the surface tensions of the free
and solid boundaries, and h is the dynamic contact angle between
the moving free boundary and the solid boundary as shown in
Fig. 1.

While a two-phase model, in which the density and viscosity
are discontinuous across the interface, is more practical, a direct
discretization of the Navier-Stokes equations may be ill-condi-
tioned and difficult to solve. The condition number of the discrete
system is proportional to the jumps of the physical parameters.
Under certain circumstances, a one-phase model is adequate and
can be solved more efficiently than the two-phase model. More
discussions about the circumstances will be discussed later.

The solvability and stability of the problem under certain cir-
cumstances are discussed in [10,24,30,29] including simplified
one-dimensional numerical simulations. Most numerical simula-
tions are for the two-phase model. In [17], a volume of fluid
(VOF) method was developed. In [8], an Arbitrary Lagrangian
Eulerian (ALE) finite element method using a body fitted mesh
was studied. The Immersed Boundary (IB) method have been
proposed in [11,26], in which the boundary condition at the con-
tact lines are enforced through an external point force at those
lines. These point-sources are then distributed to the nearby grid
points via a discrete delta function. In [13], a simplified model
using the Laplace equation to obtain the contact angle is studied
and a level set method was developed for the numerical
simulations.

In this paper, we propose an augmented immersed interface
method for the one-phase free boundary problem based on Carte-
sian grids. Thus, there is almost no cost in the grid generation even
though the free boundary is moving. We first embed the domain
into a rectangular one with the solid surface being the bottom side
so that we can solve the problem on a rectangular domain using a
Cartesian grid. We then use a modified version of the projection
method [3,15,16] to solve the Navier-Stokes equations for the mo-
tion of the fluid. They key step is to use the jump in the normal
derivative of the velocity as an augmented variable so that we
can solve the fluid equations efficiently. We will explain our
numerical method in detail in the next section; followed by results
of numerical experiments and analysis. We draw some conclusions
in the last section.
2. The numerical method

Our numerical method for the fluid equations is based on the
projection method for solving the incompressible Navier-Stokes
equations. There are several versions of the projection method
for solving the incompressible Navier-Stokes equations, see for
example, [3,15,16] and many others. The projection method that
we used in our scheme is the one described in [5] which is based
on the pressure increment formulation of [3,15].

As mentioned before, instead of solving the fluid equations in an
irregular time dependent domain XðtÞ, we embed the fluid domain
of the droplet into a rectangular computational domain
R ¼ ½a; b� � ½c; d� which is sufficiently large to enclose the time
dependent droplet with the bottom side coinciding with the solid
surface. Since the computational domain is a regular rectangle in-
stead of an irregular one bounded by the free boundary, the gov-
erning equations now can be solved in a Cartesian grid. The
apparent advantage of using Cartesian grid is that there are several
fast direct solvers for fluid equations available in literature. Here,
the spatial spacings are chosen as hx ¼ ðb� aÞ=M and
hy ¼ ðd� cÞ=N, where M and N are the number of grid points used
in the x and y directions, respectively. For simplicity, we use a stan-
dard uniform mesh such that h ¼ hx ¼ hy.

As a common practice, from one time level to the next, we use a
splitting approach for the free boundary problem. In this approach,
we first fix the moving boundary (denoted by Ck

F below) and solve
the fluid equations on the irregular domain to get the velocity. We
then use the computed velocity to evolve the free boundary using
the level set method. We describe the numerical scheme from time
tk to tkþ1 below. At time step tk, given an approximation of the
velocity uk, the pressure pk, the free boundary position Ck

F , and
an initial guess of augmented variable qkþ1, we carry out the fol-
lowing steps:
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Step 1: Prediction step
q
u� �uk

Dt
¼

�rpk�qðu �ruÞkþ
1
2þl

2
ðDu� þDukÞþGkþ1

2; x2 ðX\ZRÞ

�rpk�qðu �ruÞkþlDu� þGk; x2 ðX\ZIÞ
l
2
ðDu� þDukÞ; x2 ðXc \ZRÞ

lDu�; x2 ðXc \ZIÞ

8>>>>>><
>>>>>>:

ð2:7Þ

½u��Ck
F
¼ 0;

@u�

@n

� �
Ck

F

¼qkþ1; ð2:8Þ

@u�

@n
¼0 at x¼ a;x¼ b; and y¼d; v� ¼ 0 and bu� ¼l@u�

@y
at y¼ c: ð2:9Þ
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Step 2: Projection step
D/kþ1 ¼ r � u
�

Dt
; x 2 R;

½/kþ1�Ck
F
¼ 0;

@/kþ1

@n

" #
Ck

F

¼ 0;
@/kþ1

@n

�����
@R

¼ 0;

8>>>><
>>>>:

ð2:10Þ

ukþ1 ¼ u� � Dtr/kþ1; x 2 R; ð2:11Þ
rpkþ1 ¼ rpk þr/kþ1; x 2 X ð2:12Þ
Step 3: Computing the residual of the boundary condition (1.3)
and (1.4).
Ekþ1
1 ¼�pkþ1þnT �lðrukþ1þrðukþ1ÞTÞ �n�ðcj�pairÞ; on Ck

F ð2:13Þ
Ekþ1

2 ¼ sT �lðrukþ1þrðukþ1ÞTÞ �n¼ 0; on Ck
F : ð2:14Þ

The first two steps consist of the traditional steps of the projec-
tion method for the Navier-Stokes solver. The augmented variable
qkþ1 defined only along the free boundary Ck

F is introduced in the
prediction step and should be determined suitably such that the
free boundary conditions (1.3) and (1.4) are satisfied at time level
tkþ1. If the boundary conditions are satisfied, that is, Ekþ1

1 ¼ 0 and
Ekþ1

2 ¼ 0, then we have computed the velocity ukþ1, otherwise, we
need to find better qkþ1 until the residual kEkþ1

1 k and kEkþ1
2 k are

smaller enough. This can be done iteratively, or by solving a linear
system of equations. This is explained in detail below and in Sec-
tion 2.3. Notice that, the normal vector n, the tangent vector s

and the curvature j are all evaluated using the free boundary posi-
tion at the time level tk.

In the algorithm above, X \ ZR and Xc \ ZR are regular grid
points inside and outside of the domain X, respectively, while
X \ ZI and Xc \ ZI are irregular grid points in the corresponding do-
mains. The classification of the regular or irregular grid points can
be found in Section 2.2. The non-linear term ðu � ruÞkþ

1
2 is approx-

imated by

ðu � ruÞkþ
1
2 ¼ 3

2
ðuk � rÞuk � 1

2
ðuk�1 � rÞuk�1; ð2:15Þ

at regular grid points. We use a first order discretization for
ðu � ruÞk at irregular grid points as well to avoid cross differentia-
tion for the explicit terms.

The pressure term in the prediction step is treated explicitly and
we are only interested in the solution in the domain X, so we do
not need to compute rp outside the domain. As we can see, the
resultant equation in the prediction step in X is an elliptic equa-
tion, so it is natural to embed the domain X into a computational
rectangular domain R by setting another elliptic equation (heat
equation here) in Xc ¼ R�X. In such way, we can discretize the
whole equations and form a linear system based on Cartesian grids.
Given the augmented variable q, we can see that in Step 1 and 2,
there involve solving elliptic interface problem with singular
sources on a Cartesian domain R with different boundary conditions.
The detail on how to solve those equations using immersed interface
method can be found in Section 2.4. To solve the unknown qkþ1, we
can choose q ¼ ei to get coefficient matrix for qkþ1, see Section 2.3.
In other words, to get the coefficient matrix, we need to run the algo-
rithm Nb times at one time level, where Nb is the dimension of Q kþ1,
the discrete approximation of qkþ1. Alternatively, we can use the
GMRES iterative method that only requires the matrix–vector mul-
tiplication. Each matrix–vector multiplication requires to solve the
Navier-Stokes equation once, and to interpolate the boundary condi-
tions once. More details will be followed later.

In this paper, we use the backward Euler scheme near/on the
free boundary while use the Crank-Nicholson scheme away from
the boundary in the prediction step. The reason is for the stability
consideration. The scheme is at least second order accurate in
space and first order in time. When Dt � Oðhx; hyÞ, the scheme
seems to be still second order accurate since we can use one order
lower scheme along the boundary, see for example, [2,4,19]. The
stability reason is to avoid using the explicit Laplacian term Duk

for the moving boundary. Even if uk is second order accurate, the
approximation of the explicit term Duk may be inaccurate near/
on the boundary because the errors are often not smooth. Such a
treatment is very useful if the boundary is moving. The disadvan-
tage is that a fast Helmholtz solver based on FFT cannot be applied
directly. Here, we use the structured multi-grid solver DMGD9V
[7]. Note that, it is possible to use a second-order time-stepping
scheme such as the BDF scheme. The difficulty is the extra book-
keeping effort needed to deal with the irregular grid points in three
different time levels rather than the two levels.

Note that a fully implicit approach (backward Euler)

q
u� � uk

Dt
¼ �rpk � qðu � ruÞk þ lDu� þ Gkþ1; x 2 ðXÞ

lDu�; x 2 ðR nXÞ

(

ð2:16Þ

is simpler and may be appropriate if we are only interested in the
equilibrium solution. The method is first order in time and second
order in space and has better stability. Another advantage is that,
fast Helmholtz/Poisson solvers based FFT can be applied. This ap-
proach has also been tested and worked well.

2.1. The implementation of the contact line condition

As discussed in [26], on the solid boundary and away from the
contact line, the Navier slip boundary condition (1.5) is imposed.
However, on the solid boundary but at the contact line, the effective
condition Eq. (1.6) must be imposed. There are several ways to
implement the moving contact line condition (1.6) numerically.
The simplest approach is to enforce the condition smoothly by using

uðxÞ ¼ c
a
ðcos h� � cos hÞe�ðx�xiÞ2=w2

; ð2:17Þ

where xi is the position of the contact line on the solid boundary,
and w � OðhxÞ is the effective width of the transition region, see
[26]. In summary, we have Navier slip boundary condition at almost
all grid points along the solid boundary except for the two neigh-
boring grid points next to the contact line where the condition
(2.17) is imposed. Notice that, the above numerical boundary con-
dition is implemented for u� on the solid boundary in the projection
step in which the contact angle h and the contact line position xi are
both obtained explicitly (that is, from previous time step).

The second approach is to add an external point force
f idðx� xiÞdðyÞ at the contact line, say ðxi;0Þ, i ¼ 1;2, for a pre-deter-
mined force strength f i arising from the unbalanced Young’s force,
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Fig. 2. A snap shot of a free boundary and the level set function after the proposed
re-initialization process. The solid red line in the middle is the free boundary. We
can see that the level set function is a good approximation of the signed distance
function after the re-initialization. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

1 They are actually generalized Helmholtz equations Du� k2u ¼ f . For simplicity,
we simply call them the Helmholtz equations in this paper if there is no confusion.
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then use a discrete delta function to distribute the force term to the
nearby grid points of the contact lines as in the Peskin’s Immersed
Boundary method, see [11,26].

2.2. The level set representation and the orthogonal projections

We use the level set method [23,28] to evolve the free boundary
for convenience since some of the codes used for the results in [13]
can be handily applied. We believe that the front tracking method
would work equally well in two space dimensions. One difficulty is
to deal with the boundary condition of the free boundary at the
contact lines. In the level set method, the free boundary is repre-
sented by the zero level set of a two-dimensional Lipschitz contin-
uous function uðx; y; tÞ, for example, the signed distance function.
The level set function then is evolved according to the Hamilton–
Jacobi equation

ut þ u � ru ¼ 0: ð2:18Þ

In discretization, the level set function is defined at grid points.
One advantage of the level set representation is that we can clas-
sify grid points easily. In reference to the standard central five-
point stencil, a grid point xij ¼ ðxi; yjÞ is regular if umin

ij umax
ij > 0,

where

umax
ij ¼max ui�1;j;uij;uiþ1;j;ui;j�1;ui;jþ1

n o
; ð2:19Þ

umin
ij ¼ min ui�1;j;uij;uiþ1;j;ui;j�1;ui;jþ1

n o
: ð2:20Þ

Otherwise it is called an irregular grid point which means that
the free boundary cuts through the finite difference stencil.

In discretization, the augmented variable is defined at the
orthogonal projection of the irregular grid points from the domain
Xþ, that is the outside of the fluid domain. Let be xij be such a grid
point, the orthogonal projection can be approximated by

x�ij ¼ xij þ aru; ð2:21Þ

where a is an approximate signed distance between xij and the free
boundary, which is obtained by solving the quadratic equation,

uðxÞ þ ðruðxÞ � pÞaþ 1
2
ðpT HeðuðxÞÞpÞa2 ¼ 0; ð2:22Þ

where p ¼ ru and

pT HeðuÞp ¼ u2
x uxx þ 2uxuyuxy þu2

y uyy; ð2:23Þ

in Cartesian coordinates. The partial derivatives ruðxÞ, the Hessian
matrix HeðuÞare computed at the grid point xij. The computed projec-
tions have third order of accuracy ifruðxÞ and HeðuÞ are computed
using the standard centered five-point finite difference formulas.

The contact angle between the interface and the x-axis can be
easily obtained from n ¼ ru=jruj. It is well-known that we
should keep the level set function as a good approximation to
the signed distance function through a re-initialization process. A
simple way is to solve the following Hamilton–Jacobi equation

u�t þ sgnðuÞ jruj � 1ð Þ ¼ 0: ð2:24Þ

through an artificial time �t, where sgnðuÞ is the sign function of u.
Both Eqs. (2.18) and (2.24) are solved by the third order WENO
scheme.

Note that since the free boundary cuts the bottom of the bound-
ary, a simple treatment of the boundary for the level set function as
used for closed interface cannot be used here. When we solve the
level set function (2.18), we apply the boundary condition v ¼ 0
and thus the level set equation on y ¼ c becomes a one-dimen-
sional Hamilton–Jacobi equation that is solved by the WENO
scheme. For the re-initialization process along y ¼ c, after we up-
dated the level set function for the interior points, we use the
WENO scheme again in the x-direction, and approximate the par-
tial derivative in y-direction using

@u
@y
ð:; 0Þ ¼

u:;2 �u:;1

hy
ð2:25Þ

in which u:;2 and u:;1 have already been updated as they are defined
at interior grid points. In Fig. 2, we show a contour plot of the level
set function after the proposed re-initialization process. The con-
tour lines have almost the same distance, or jruj � 1 as we desired.

2.3. The augmented method and the Schur complement system

Since it is sufficient to consider the solution from one time level
tk level to the next tkþ1, we will ignore the time index for conve-
nience if there is no confusion. Below we describe how to get the
linear system of equations for the augmented variable Q. Let U

be the vector whose components are Uij and Pij, the approximate
solution to the problem at one particular time step. Thus U’s
dimension is Oð3MNÞ, where M and N are the number of grid lines
in the x and y direction respectively. Let Q be the vector of the dis-
crete values of q at the orthogonal projections of the irregular grid
points from the Xþ side. Thus Q’s dimension is OðNÞ assuming
M � N. Then the discrete solution of (2.9)–(2.11) and (2.12) given
Q can be written as

AUþ BQ ¼ F1 ð2:26Þ

for some vector F1 and sparse matrices A and B. It requires solving
three Helmholtz1/Poisson equations with different source terms and
jump conditions to get U.

Once we know the solution U given Q, we can interpolate U and
P to get rU� and P� to approximate the one-phase boundary con-
ditions at those points where the discrete values Q are defined. We
denoterU� and P� as the limiting values ofrU and P from the X�

side. The interpolation scheme depends on U;Q linearly. There-
fore we can write

EUþ TQ � F2 ¼ 0; ð2:27Þ

where E and T are two sparse matrices, and F2 is a vector. We need
to choose such a vector Q that the free boundary conditions (1.3)
and (1.4) are satisfied along the free boundary @X. If we put the
two matrix–vector Eqs. (2.26) and (2.27) together we get

A B

E T

� �
U

Q

� �
¼

F1

F2

� �
: ð2:28Þ

Note that Q is defined only on a set of points fXlg on the free bound-
ary while U is defined at grid points. The Schur complement for Q is
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ðT � EA�1BÞQ ¼ F2 � EA�1F1 ¼ �F: ð2:29Þ

If we can solve the system above to get Q, then we can get U

easily. Because the dimension of Q is much smaller than that of
U, we expect to get a reasonably fast algorithm if we can solve
(2.29) efficiently. We refer the readers to [19] for other details of
an augmented immersed interface method.

Since we know how to get the matrix–vector multiplication, we
can get the Schur complement matrix by taking Q ¼ ei, where ei is
the ith base vector. Then we can use the Gaussian elimination meth-
od to solve the Schur complement system. Or alternatively, we can
use the GMRES iterative method [27] to solve the Schur complement
system. The GMRES method only requires the matrix–vector multi-
plication. Since the free boundary is moving, the Schur complement
matrix is changing with time, in most of our tests, it is more efficient
to use the GMRES iterative method than that of forming the matrix,
then applying the LU decomposition, see Fig. 4b. In our tests, we do
not apply preconditioning techniques because we do not form the
matrix. It is still an interesting numerical issue on how to develop
efficient preconditioning techniques with only the knowledge of
the matrix–vector multiplication. More details about the augmented
method can be found in [19,21].

2.3.1. The least squares interpolation for the free boundary condition
One crucial step of the algorithm is to interpolate the free

boundary conditions (1.3) and (1.4) given an approximate solution
Uij and Pij. At an orthogonal projection x�ij corresponding to an
irregular grid point xij, we need to interpolate Uij to get @u�=@n
and @u�=@s. This is computed using a least squares interpolation,
for example,

@u�

@n
¼
Xns�1

k¼0

ckUiþik ;jþjk � Cij ð2:30Þ

where ik and jk are integers taken from 0;�1;�2; . . . ; ns is the num-
ber of neighboring grid points involved, often taken between
9 and 16;Cij is a correction term to offset the jump in the normal
derivative of u. The coefficients ck are chosen so that the interpola-
tion scheme is second order accurate. The linear system of equa-
tions ck is obtained by expanding uðxijÞ at x�ij and then matching
up to second order partial derivative terms. If uðxijÞ involved is from
outside of X, then it is replaced by the extended value

uðxijÞ ¼uþ þuþn nþuþg gþ 1
2 uþnn n

2þ2uþng ngþuþggg2
� �

þOðh3Þ

¼u� þu�n nþu�g gþ 1
2 u�nn n

2þ2u�ng ngþu�ggg2
� �

þ½un�nþ½ug�gþ 1
2 ½unn�n2þ2½ung�ngþ½ugg�g2
	 


þOðh3Þ

where ðn;gÞ is the local coordinate system in the normal and tan-
gential directions, and all the values are defined at x�ij. Since we
know the jump conditions ½u� and ½un� ¼ ½un�, we can obtain all other
jump conditions, see [19]. Note that we need to take ns P 6 to get a
consistent linear system. Thus the linear system of equations for the
coefficients ck is under-determined, which can be solved by the sin-
gular value decomposition (SVD).

2.4. Solving an elliptic interface problem with singular sources

Our proposed algorithm consists of solving two generalized
Helmholtz equations for the intermediate velocity u� in (2.7), and
one Poisson equation for the pressure increment /kþ1 in (2.10) with
a given jump condition in the normal derivative of the velocity. The
details for solving Helmholtz/Poisson equations with jump condi-
tions in the solution and its normal derivative (or the elliptic PDEs
with singular sources) can be found in [18–20]. Here, we just give a
brief sketch on how we solve such problems in an efficient and
accurate way.
Without loss of generality, we consider the following general-
ized Helmholtz equation

wxx þ wyy � kw ¼ f ; ðx; yÞ 2 R;

½w�@X ¼ 0;
@w
@n

� �
@X

¼ q:
ð2:31Þ

In our application, we have k ¼ 2=ðlDtÞ for the prediction step,
and k ¼ 0 for /kþ1 in (2.10). Since k is a constant, a fast Poisson sol-
ver can be used.

The finite difference discretization using the immersed inter-
face method can be simply written as

wiþ1;j þ wi�1;j � 2wi;j

h2
x

þ
wi;jþ1 þ wi;j�1 � 2wi;j

h2
y

� kwij ¼ f ðxi; yjÞ þ Cij;

ð2:32Þ

where the correction term Cij is zero at regular grid points where
the boundary @X does not cut through the standard centered 5-
point stencil. The correction term Cij at those irregular grid points
can be determined in a dimension by dimension fashion, see [20]
for the formula of Cij.

We use the structured multi-grid solver DMGD9V [7] to solve
the discrete system for u�. While using the fast Poisson solver from
[1] for /. This is because of the hybrid discretization for u� that
changes the coefficient in the Helmholtz equations for u�, and dif-
ferent boundary conditions for u at the bottom side.

3. Numerical experiments

In this section, we present some numerical results for the free
boundary problem with moving contact lines. All the computations
were performed at the North Carolina State University using either
notebook or desktop computers. Most simulations are done within
minutes to a couple of hours depending on the mesh, surface ten-
sion, the initial geometry, and the static contact angle. We use a le-
vel set method to evolve the free boundary for convenience since
some of the codes used for the results in [13] can be used. We be-
lieve that the front tracking method would work equally well in
two space dimensions. In most of simulations, we take the density
q ¼ 1, the viscosity l ¼ 2, and the surface tension c ¼ 0:5. The
other parameters are the slip coefficient b ¼ 2, the effective friction
coefficient a ¼ 0:5, and the smoothing length w ¼ h, unless stated
otherwise. The time step size is take as

Dtk ¼min
h
2
;

h

2Uk
max

( )
; ð3:33Þ

where h ¼maxfhx; hyg and Uk
max ¼maxijjUk

ijj unless specified
otherwise.

Example 1 (Validation of the method against an exact solution). As a
first numerical test for our scheme, we consider an example in a
stationary irregular domain in which the exact solution is known
analytically. This is an example without the effect of moving
contact lines which we simply use it as an accuracy check. The
analytic solution is

uðx; y; tÞ ¼
sinðtÞ

�
y
r
� 2y

�
; if r P 1=2

sinðtÞ r2 � 1
4

	 

y; otherwise;

8><
>: ð3:34Þ

vðx; y; tÞ ¼
sinðtÞ

�
� x

r
þ 2x

�
; if r P 1=2

� sinðtÞ r2 � 1
4

	 

x; otherwise;

8><
>: ð3:35Þ

pðx; y; tÞ ¼ sinðtÞ sin xþ sin yð Þ; ð3:36Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The domain of the interest is the domain

bounded by r 6 1=2 and y P 0. We extend the solution to the rect-



Table 1
A grid refinement analysis against the exact solution at a final time T ¼ 0:5:kEuk1 is
the sum of the maximal error in the velocity component u and v, order is the
approximated convergence order computed from the two consecutive errors, cond is
the condition number of the coefficient matrix for the unknown jump in the normal
derivative of the velocity at the first step.

M � N kEuk1 orderu kEpk1 orderp cond

32� 16 9:4533� 10�3 7:2203� 10�3 11.90

64� 32 2:2300� 10�3 2.0838 1:8997� 10�3 1.9278 27.42

128� 64 6:0532� 10�4 1.8813 6:0351� 10�4 1.6528 29.66

256� 128 9:7791� 10�5 2.6290 2:8304� 10�4 1.0923 190.0
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angular domain R ¼ ½�1; 1� � ½0; 1� so that we have a consistent
initial condition and a problem with the exact jump condition in
the normal derivative of the velocity. The source term G is derived
directly from the exact solution.

In Table 1, we show the grid refinement analysis to check the
order of the accuracy of our method. We use the exact non-homo-
geneous normal derivative boundary condition at @R. Since we are
interested in the computed solutions in the domain X, we set

kEuk1 ¼ max
rij61=2; yP0

jUk
ij�uðxi;yj;TÞj

n o
þ max

rij61=2; yP0
jVk

ij�vðxi;yj;TÞj
n o

kEpk1 ¼ max
rij61=2; yP0

jPk
ij�pðxi;yj;TÞj

n o

to be the error in the velocity at time T. The numbers order are the
approximated order of accuracy from the two consecutive errors for
the velocity. Second order accuracy is clearly seen for the velocity.
The pressure is at least first order accurate. The number cond is
the condition number of the coefficient matrix for the unknown
jump in the normal derivative of the velocity at the first step.

Example 2 (Drop spreading and recoiling). We started with the
same example that was used in [26]. The initial drop is a semi-
circle centered at the origin with radius r ¼ 0:5, and l ¼ 2. Thus
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Fig. 3. (a) A drop spreads along the contact line with h� ¼ p=4. The initial free boundary
recoils along the contact line with h� ¼ 3p=4 with t ¼ 0:9586. The initial free boundary is
legend, the reader is referred to the web version of this article.)
the initial contact angle between the boundary and the x-axis is
p=2. The surface tension is taken as c ¼ 0:5. In Fig. 3a, we show the
initial droplet and its shape at t ¼ 3:9060. The static contact angle
is h� ¼ p=4 so the drop would spread as we can see from the
simulation. The simulation was computed using a 128 by 64 grid.
We use homogeneous Neumann boundary condition on @R except
for the bottom side where we use the Navier BC for u and v ¼ 0.
We set u ¼ 0;v ¼ 0, and p ¼ 0, initially. We keep the boundary
fixed and solve the problem to get consistent initial data before
letting the free boundary to move. The condition number of the
Schur complement matrix is well under 200. In Fig. 3b, we show a
recoiling case by plotting the initial free boundary, r ¼ 0:4 and
y P 0, and its shape at t ¼ 0:9586 without the gravity force. The
static angle now is h� ¼ 3p=4. In this case, the drop contracts at the
solid surface. Also for this case, the condition number of the Schur
complement matrix is larger than that of the spreading case.

In Fig. 4a, we show the time evolution of the contact angle and
the contact line speed in the spreading case which the static con-
tact angle is p=4. The contact angle and line speed do not decrease
exactly in a monotonic way to the equilibrium state due the inter-
action of the fluid and the surface tension.

In Fig. 4b, we show the number of iterations of the GMRES iter-
ation at each time level for the spreading case. The mesh size is 128
by 64. The size of the Schur complement system is about 178 by
178 for the augmented variable. The convergence tolerance is
10�5. The number of iterations of the GMRES fluctuates but seldom
exceeds its full dimensions. It is faster than that when we form the
matrix of the Schur complement and then use the LU decomposi-
tion to solve the system of equations. However, while the condition
number is small to modest, the number of iterations of the GMRES
is not close to a constant and can be quite large if the tolerance is
very small. This is because the matrix is far from a normal matrix
ðAAT ¼ AT AÞ. It is a challenging problem to develop an efficient lin-
ear solver for the Schur complement system of equations knowing
only the matrix–vector multiplications.
0 0.2 0.4 0.6 0.8 1

t=0
t=3.9060

0 0.2 0.4 0.6 0.8 1

is r ¼ 0:5 above the x-axis. The red-line plot is the initial free boundary. (b) A drop
r ¼ 0:4 above the x-axis. (For interpretation of the references to colour in this figure
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Fig. 4. (a) A history of the contact angle and the contact line speed as functions of time. (b) The number of GMRES iterations for the Schur complement system whose size is
about 178 by 178 for a 128 by 64 grid.
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Fig. 5. A drop with perturbation spreads along the contact line.
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Example 3 (A perturbed surface). In Fig. 5a, we show the free
boundary at t ¼ 0, and at a time t ¼ 10. The initial boundary was a
perturbed semi-circle r ¼ 0:5þ 0:05 sinð8hÞ;0 6 h 6 p. In this case,
the surface tension smooths the free boundary while the contact
line is moving. The static contact angle is h� ¼ p=4.

Example 4 (The effect of the gravity). In Fig. 6, we show the numer-
ical experimental results of the simulation with and without grav-
ity. The initial free boundary is the half circle r ¼ 0:4 and y P 0
centered at the origin. Thus, the initial angle h ¼ p=2. We assume
that the static angle is h� ¼ p=4. Without the gravity, the motion
is slower, see the plot of the green line . With the gravity, the
motion is faster and flatter, see the plot of the blue line.
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Fig. 6. A comparison of drop spreadin
Example 5. This example is adapted from [17]. The initial free
boundary is r ¼ 0:3 and y P 0 centered at (0, 0.2). The initial angle
h > p=2. We assume again that the static angle is h� ¼ p=4. Fig. 7
shows some snap shots of the free boundary at different time.
The GMRES method does take more number of iterations.
4. Conclusions

In this paper, we propose an augmented immersed interface
method for solving one-phase free boundary problems with
moving contact lines. The one-phase model is a simplification of
two-phase model under some assumptions. The one-phase model
0.2 0.4 0.6 0.8 1

t=0
t=3.4493, with g
t=6.4191, no g

g with and without the gravity.
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Fig. 7. Snap shots of the free boundary in which the initial angle h > p=2.
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is valid if, the boundary conditions at the contact lines are nearly
consistent. The method can track the interactions of the fluid equa-
tions and the moving contact lines. By introducing the augmented
variable along the boundary, we can solve the problem in a rectan-
gular domain. We use a hybrid time discretization with backward
Euler at irregular grid points and Crank-Nicholson at regular grid
points for the prediction step to have better stability. The linear
system of equations is well-conditioned too.
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