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Abstract An approximate theoretical expression for the
current induced by long internal solitary waves is presented
when the ocean is continuously or two-layer stratified. Partic-
ular attention is paid to characterizing velocity fields in terms
of magnitude, flow components, and their temporal evolu-
tion/spatial distribution. For the two-layer case, the effects
of the upper/lower layer depths and the relative layer density
difference upon the induced current are further studied. The
results show that the horizontal components are basically uni-
form in each layer with a shear at the interface. In contrast,
the vertical counterparts vary monotonically in the direction
of the water depth in each layer while they change sign across
the interface or when the wave peak passes through. In addi-
tion, though the vertical components are generally one order
of magnitude smaller than the horizontal ones, they can never
be neglected in predicting the heave response of floating plat-
forms in gravitationally neutral balance. Comparisons are
made between the partial theoretical results and the obser-
vational field data. Future research directions regarding the
internal wave induced flow field are also indicated.
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1 Introduction

Long internal solitary waves (LISW) of large amplitude now
have received increasing attention since they carry huge
momentum/energy and may pose a threat to offshore struc-
tures [1–3]. The US Navy has been investigating the motion
of the internal pycnocline in oceans because of several losses
of modern submarines [1]. In the north of the South China
Sea, strong current of about 2 m/s induced by a group of inter-
nal solitons has swung the tanker connected with drilling rig
about 110◦ in a few minutes [2]. An oceanographic program
was conducted to measure near-surface currents to warn the
drill-ship of large currents associated with approaching inter-
nal waves [4]. Other typical accident report includes Osborne
and Burch [5], who thought that drilling rigs have to with-
stand the internal wave force. So much potential threat to
oceanic structures like platforms and submarines described
above indicates that the internal wave is an important factor
in the process of drill operations and production in ocean
engineering. The major concern in practical engineering is
the possible loads exerted on compliant and floating offshore
platforms, which may excite motions of hulls and vibrations
of the connected equipment such as risers and cables [3].
This greatly promotes research interest in the behavior and
characteristics of internal solitary waves (ISW) [6,7].

It is well known that internal waves when passing through
a marine structure seem to play a role of current due to their
long period or large KC number. However, there is only a
dearth of studies concerning the wave induced current in con-
trast to the great deal of work on the internal wave itself.
Even though the wave induced fluid velocity in the horizon-
tal direction in two-layer case was derived from KdV theory,
there is no detailed property analysis available so far [1].
By Roxana [8], the horizontal velocity field in the two-layer
stratified ocean was constructed based on the conjugate state
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concept. Other typical work such as the fields of horizontal
velocity of large amplitude internal solitary waves based on
the Euler model for three water stratifications was given by
Brand and Rubino [6]. Moreover, few work paid attention to
the corresponding vertical components either theoretically
or numerically. Nevertheless, their associated currents have
profound implications in the design of ocean engineering to
guarantee the safety of offshore structures. For example, cur-
rent meters and thermistor chains were deployed in the prox-
imity of a drill-ship over the continental shelf off Baffin Island
to detect large currents associated with approaching internal
waves, which displayed the undesirable effect of deflecting
the dynamically positioned drill-ship [4]. As an additional
example, the interaction between strong current on the Nor-
wegian shelf slope and the pipelines of long spans along the
uneven sea floor nearby the gas field Ormen Lange excited
unexpected coupling vibration. The situation has promoted
the development of various methods for forecasting subsea
currents, loads and corresponding pipeline vibration [9].

Although the internal wave induced flow field is a crucial
environmental factor in exploring the mechanism of interac-
tion between internal waves and ocean platforms, the associ-
ated theory and modeling method in this regard are still not
well developed. For this reason, particular attention in this
paper is focused on this challenging issue, namely, the cur-
rents, induced by LISW with long wave length and period in
ocean engineering.

2 KdV equations, modal functions and flow fields

We assume that the internal wave motion occurs in a two-
dimensional, inviscid and incompressible, density-stratified
fluid bounded above by a free surface and below by a rigid
wall. Suppose that the flow can be described in the coordinate
system (x, z)where x is directed horizontally and z vertically
(see Fig. 1), so that the horizontal and vertical velocity com-
ponents (u, v), the fluid density ρ as well as the pressure p in
Cartesian coordinate satisfy the continuity equation (1) and
Euler equations (2)–(4),
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where g is the gravity acceleration and t is the time coordi-
nate.

Fig. 1 Illustration of fluid coordinate system in which the upper bound-
ary extends to the free surface and the lower to the rigid wall. Right panel
stratification fluid. h is the undisturbed water depth; left panel two-layer
fluid. Let the density be a constant ρ1 in the upper layer of depth h1 and
ρ2 > ρ1 in the lower layer of depth h2. h1 + h2 = h

When the fluid is in the basic stable state, it has a density
ρ0(z) satisfying dρ0/dz < 0, a corresponding static pressure
field p0(z) such that dp0/dz + ρ0g = 0 and without flow in
x- and z-direction.

The formal derivation of the Sturm–Louiville equation
for modal functions can be done through the introduction of
a small parameter ε � 1, which characterizes the balance
between the nonlinear wave-steepening effect and the linear
wave dispersion to describe the long-wave approximation,
and is defined as ε = O(a/h) = O((h/L)2). Here a and
L are the wave amplitude and the wave length, respectively;
h is the undisturbed water depth. The detailed asymptotic
analysis required may be found in Ref. [10], hence we shall
only give a brief outline of the derivation.

Making the independent transformations for x, t , and z,
and seeking asymptotic expansions for dependent variables
u and v in Eqs. (1)–(4), respectively,

ξ = ε1/2(x − ct), τ = ε3/2t, z = z, (5)

u = εu1 + ε2u2, (6)

v = ε1/2(εv1 + ε2v2), (7)

where c denotes the linear long wave speed.
Finally, we obtain the required Sturm–Louiville equation

for v1

d

dz

(
ρ0

dv1

dz

)
− g

c2

dρ0

dz
v1 = 0, (8)

along with the boundary condition at the sea bottom

v1 = 0, at z = 0, (9)

as well as the combined kinematic and dynamic conditions
at the undisturbed sea surface,

dv1

dz
− g

c2 v1 = 0, at z = h. (10)

Equation (8), together with boundary conditions (9)
and (10), constitutes a differential system which defines an
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eigenvalue problem for the vertical velocity component v1

accurate to the first order.
Similarly, the Sturm–Liouville equation for the term of

the second order in ε can be obtained

d
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)
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dz
v2 = F(v1), (11)

v2 = 0, at z = 0, (12)

dv2

dz
− g

c2 v2 = G(v1), at z = h, (13)

where F(v1) and G(v1) are functions of v1.
The system (11)–(13) can be solved only when the com-

patibility condition is satisfied and thus, we derive the gov-
erning equation for the isopycnal displacement η, namely the
Korteweg-de Vries (KdV) equation

Aητ + Bηηξ + Eηξξξ = 0, (14)

where
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where ϕ is a modal function of z determined by solving
Eqs. (17)–(19).

Now we turn to the task of obtaining approximate expres-
sions of currents associated with approaching long inter-
nal waves. It is necessary in ocean engineering to take into
account vertical component effects, and in view of the free
surface kinematic condition (15) of order one in ε

v1 = −c
∂η

∂ξ
+ ε

∂η

∂τ
+ u

∂η

∂ξ
. (15)

Solutions of the vertical velocity component are then sought
in the following form

v1 = −cp
dη

dξ
ϕ, (16)

where cp is the nonlinear wave speed. The modal function
ϕ(z) can be determined from the following equations derived
by substituting Eq. (16) into Eqs. (8)–(10), i.e. Sturm–
Liouville eigenvalue problem for ϕ(z)

d

dz
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)
− g
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dz
ϕ = 0 (17)

ϕ = 0, at z = 0, (18)

Fig. 2 Peak current speed at the crest of the wave. The solid line is the
profile of the horizontal component in the direction of the wave prop-
agation calculated from Eq. (21) or (28) based on the nonlinear wave
speed cp; the dashed line indicates the Su’s result [10] based on the
linear wave speed c and calculated for the same case. The background
stratification is taken as σ = 0.002, h1 = 35 m, h2 = 315 m and the
wave amplitude is 45 m

dϕ

dz
− g

c2 ϕ = 0, at z = h. (19)

Applying continuity equation (1) to transformations equa-
tions (5)–(7), the wave induced fluid velocity component in
horizontal direction is obtained as

u1 = cpη
dϕ

dz
. (20)

Returning Eqs. (16) and (20) to the initial variables (u, v),
we have

u = εcpη
dϕ

dz
, (21)

v = −ε3/2cp
∂η

∂ξ
φ. (22)

A remarkable difference between the induced velocity
field system Eqs. (21)–(22) and the corresponding deriva-
tion in Ref. [10] is in their coefficient, i.e. the nonlinear wave
speed cp replaces the linear long wave speed c, and the struc-
ture of the wave induced fluid velocity profile in the horizon-
tal direction is consistent with those obtained previously by
Grue and Trulsen [1]. The expressions for the nonlinear wave
speed cp is the higher-order modification of c valid to O(ε),
and the specific magnitude of horizontal component in two-
layer fluid as an special case is illustrated in Fig. 2.

It is readily seen from Eqs. (21) and (22) that the veloc-
ity field is determined by the nonlinear wave speed cp, the
isopycnal displacement η and the modal function ϕ. Consid-
ering η can be obtained by KdV equation (14), the main point
becomes how to determine ϕ. In general, the boundary value
problem Eqs. (17)–(19) governing ϕ can be readily solved
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numerically. On the other hand, it is also very helpful to seek
some analytical solutions in certain special cases.

3 Two-layer stratified fluid model

A useful case in practical application is for a stratified ocean
with sharp pycnocline of small thickness. As a result, a sim-
plified two-layer model is roughly applicable for the study
of the kinematic and dynamic processes. Assume a two-
layer fluid of constant density ρ1 and basic depth h1 overly-
ing another fluid of constant density ρ2 and basic depth h2

(see Fig. 1), that is

ρ0(z) = ρ1 H(z − h2)+ ρ2 H(−z + h2),

where H(z) is the Heaviside function.
For the two-layer fluid, the KdV equation (14) can be sim-

plified as [11]

ητ + μηηξ + ληξξξ = 0, (23)

where the coefficients μ and λ turn out to be

μ = B

A
= 3

2
c

h1 − h2

h1h2
, λ = E

A
= c

6
h1h2 (24)

Evidently, Eq. (23) has the solitary wave solutions as follows

η = a · sech2β(ξ − V τ), (25)

where a denotes the wave amplitude, and V andβ are defined
by

V = 1

3
μa, β =

√
μa

12λ
. (26)

Note that the actual total speed i.e. the nonlinear wave speed
in two-layer fluid case is cp = c + εV . The characteristic
half wave width β−1 as a measurement of the solitary wave
length is proportional to |a|−1/2 and dependent on the coef-
ficients of the nonlinear and dispersion termsμ and λ, which
are further determined by the background stratification as
illustrated in Eq. (24).

According to Sturm–Liouville eigenvalue problem
Eqs. (17)–(19), the unique internal modal function in this
case is given by (see Fig. 3)

ϕ =
{ −z+(h1+h2)

h1
, h2 < z < h1 + h2,

z
h2
, 0 < z < h2,

(27)

and

c =
√

g′h1h2

h1 + h2
,

where g′ is the so-called reduced gravity and can be expressed
as g′ = gσ , and σ is the relative layer density difference
defined as σ = 2(ρ2 − ρ1)/(ρ2 + ρ1).

Fig. 3 Diagram of the internal modal function of two-layer system
defined by Eq. (27) for 35 m upper layer depth and 315 m lower depth

After substitution of Eqs. (25) and (27) into Eqs. (21) and
(22), the wave induced fluid velocity profile in two-layer case
looks like, i.e. for h2 < z < h1 + h2

u = εcpa · sech2β(ξ − V τ)

(
− 1

h1

)
,

v = −ε3/2cp[−2βa · sech2β(ξ − V τ) tanh β(ξ − V τ)]
×

(−z + h1 + h2

h1

)
, (28)

and for 0 < z < h2

u = εcpa · sech2β(ξ − V τ)

(
1

h2

)
,

v = −ε3/2cp[−2βa · sech2β(ξ − V τ) tanh β(ξ − V τ)]
×

(
z

h2

)
. (29)

Then, we can derive some important properties of the
induced flow velocity components in the two-layer stratified
ocean case based on Eqs. (28) and (29).

The first components of Eqs. (28) and (29) follow from the
fact that the induced horizontal flow velocity u in the direc-
tion of propagation has the same profile as η, the departure
of the interface from the mean position. Hence, the mag-
nitude of the horizontal component is pulselike when long
internal waves pass through. That is to say, the horizontal
current experiences a process that from small to maximum
and then to small, and the maximal current is achieved when
the wave peak arrives. At the same time the magnitudes of
the horizontal component in each layer are basically uniform
with a shear at the interface and inversely proportional to the
thickness of the corresponding layer, namely, the thinner the
layer, the larger the induced current, and the maximum mag-
nitude of the flow velocity component in the whole flow field
is completely determined by the thinner layer thickness.
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Since the first and second term in Eqs. (28) and (29) are
combined by continuity equation, respectively, thus the sec-
ond component of Eqs. (28) and (29) i.e. the vertical compo-
nents almost share the same analysis with the corresponding
first term. We can find the induced vertical flow velocity
component v has the form of ‘sech2 · tanh’-type profile and
displays two peaks, one is positive and another one is neg-
ative in the horizontal direction. As horizontal components
reach peaks at the wave crest or trough, the vertical coun-
terparts vanish. On the other hand, we note that the vertical
component varies linearly in the vertical direction in each
layer with a maximum at the interface.

In addition, we should mention the influence of pycnocline
strength in terms of the relative layer density difference. We
can see from Eqs. (28) and (29) that the velocity components
are proportional to the square root of the relative density dif-
ference and the total water depth. As you know, the former
quantity for internal waves is usually 0.003 compared to 1.0
for surface waves, and the velocity components can thus be
estimated around 0.05 of that for the corresponding compo-
nents for surface waves.

4 In-situ observations and model certification

In order to more specifically verify and qualitatively under-
stand the theoretical models (21) and (22) in continuous fluid,
or Eqs. (28) and (29) in two layer case, we compare theo-
retical predictions with in situ observations. For this study,
the measurements came from several current meters and
a thermistor chain nearby a drill-ship operating at the site
(62◦11′N, 62◦59′W) in Davis Strait on the Atlantic coast of
northern Canada by Cummins and Le Blond [4]. One of the
reasons for this program was to warn the drill-ship of large
currents associated with approaching internal waves. This
observation work is distinguished by detailed measurements
of hydrodynamics. The data collected by these instruments
revealed the presence of internal waves from the coast, past
the observation site, towards open water. The waves were
characterized by a pulselike increase in current speed to a
maximum and lasting from 10 to 15 min. The maximum flow
was observed at a depth of about 35–40 m and there was also
another flow which had the opposite direction. The relative
layer density difference σ for the observation site can be cal-
culated by using the profile of density anomaly (σt ) in Fig. 6a
in Ref. [4], i.e. the upper layer 25.9 and the lower 27.5 and
thus the magnitude of σ is about 2.0 × 10−3.

In this paper, based on the above observations, the param-
eters we will analyze are given in Table 1. h is the depth
of the bay; d is the pycnocline location depth i.e. the upper
layer depth h1; σ is the relative layer density difference;
T is the current lasting period and η is the maximum iso-
therm displacement at about 30–40 m depth.

Table 1 The geographical location parameters

Parameter h (m) d (m) σ (‰) T (min) η (m)

Data 350 30, 35, 40 2, 3, 4 10–15 33 ± 12

Results based on these parameters: the wave amplitude
a = 45 m, the relative layer density difference σ = 2 ‰, the
upper layer h1 = 35 m and lower layer h2 = 315 m are visu-
alized in Figs. 4, 5, 6. We notice from Fig. 4a that the flow pro-
file is characterized by a pulselike increase in current speed
to a maximum 0.44 m/s upwards at the interface in the upper
layer, and the flow velocity component in lower layer has
the opposite direction amounted almost to 0.05 m/s. At the
same time, we find from Fig. 4b that the vertical components
change sign across the interface or when the wave peak passes
through and similarly a positive pulselike amount to a maxi-
mum about 0.06 m/s, then decay sharply to another opposite
pulselike with the same magnitude. Evidently, compared to
the horizontal flow component (Fig. 4a), the vertical counter-
part (Fig. 4b) is about one magnitude of order smaller than the
horizontal one, which implies that the current induced by the
long internal wave directs almost horizontally. Nevertheless,
the most prominent feature of the vertical component is that it
changes sign in the direction of the wave propagation. Thus,
the fact that offshore structures can be exposed to an alterna-
tive vertical external loading environment when the internal
solitary wave trains pass through should be a potential threat
to structure fatigue. So the vertical velocity component often
being neglected need reconsider seriously in the prediction
of heave response of platform in gravitationally neutral bal-
ance. This further implies that an adequate physical model
must include the vertical flow component.

Let us look at the solitary wave length now. We find that
the so-called equivalent wavelength L for internal solitary
waves can be determined as

L = 4
(
β
√
ε
)−1

,

where the inverse of β defined by the second term of Eq. (26)
is called the half characteristic wave width. Therefore, the
wave length of internal solitary waves is proportional to dis-
persion and inversely proportional to nonlinearity. For the
in-situ observation site and the internal solitary wave we
selected, the magnitude of the equivalent wavelength L is
about 757.6 m (where the corresponding departure of the
interface is approximately reduced to 7% of the wave ampli-
tude), which happens to fall in the observational range 568–
852 m estimated by

L = cpT,

where T denotes the observational current lasting period
taken as 10 and 15 min from Ref. [4].
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Fig. 4 Velocity components due to internal solitary waves obtained by
Eqs. (28) and (29) for a horizontal calculated at the wave centre and
b vertical calculated at the pycnocline. For a two-layer model, approx-
imate theoretical flow velocity component profiles are plotted in the

propagation direction of the internal solitary wave. The background
stratification for calculation is the same as used in Fig. 3. The results
show some obvious different features between the horizontal and ver-
tical components in the flow velocity distribution

Fig. 5 Comparisons of
horizontal velocity profiles
calculated at the wave center in
the direction of wave
propagation. The comparison is
done for a three upper/lower
layer depths
h1 :h2 = 30 :320, 35 :315 and
40 :310(σ = 0.003) and b for
three relative layer density
differences σ = 0.002, 0.003
and 0.004 (h1 :h2 = 35 :315).
The symbol upper and lower
denotes the upper layer and
lower layer, respectively

Fig. 6 Comparisons of the
vertical velocity profile
calculated at the pycnocline
with σ = 0.003 in the direction
of wave propagation. The
comparison is done for a three
upper/lower layer depths
h1 :h2 = 30 :320, 35 :315 and
40 :310(σ = 0.003) and b for
three relative layer density
differences σ = 0.002, 0.003
and 0.004 (h1 :h2 = 35 :315)

We have further made detailed comparison between the
calculated results and the observational data to verify the
theoretical model, which is listed in Table 2 for illustra-
tion. Here, um is the peak current speed at the crest of the
wave, L is the equivalent wavelength which characterizes the
horizontal length-scales, and cp is the phase speed. Satisfac-
tory agreement between them confirms that the approximate

theoretical scheme used for computing the peak
current speed, the equivalent wavelength, and consequently
the induced currents, is accurate and reliable.

Large-amplitude internal solitary waves, that is, their
amplitudes and typical length scale of the vertical stratifi-
cation are of the same order, are often observed [12,13].
As an example, computations are also performed with the
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Table 2 Comparisons of the parameters of currents induced by internal
solitary waves between the theoretical and the observational results [4]

Parameter Theoretical Observational

Mean SD

η (m) 45 33 12

um (m s−1) 0.437 0.44 0.15

cp (m s−1) 0.95 1.09 0.11

L (m) 757.6 568–852

Fig. 7 Fields of currents associated with approaching internal waves
obtained from Eqs. (28) and (29). The arrows in the upper layer show
the current flow towards almost the direction of the wave propagation,
and the dots in the lower layer indicate the opposite direction. It is visi-
ble from the vectors that the flow velocity magnitude in the upper layer
is averagely larger than the counterpart in the lower layer

wave amplitude 100 m and the pycnocline 50 m in a water
depth of 350 m. We can obtain that the maximum flow veloc-
ity is about 1.7 m/s at the wave peak and the opposite direction
amounted to 0.3 m/s. For the vertical velocity component, the
double magnitude can reach about 0.5 m/s with an opposite
sign. It is believed that the offshore platforms would face seri-
ous challenges when the internal waves induce such strong
currents that pulselike impact forces are exerted on the off-
shore structures.

Figures 5 and 6 show the effects of horizontal and vertical
velocities for three mean upper and lower layer depthes and
three relative layer density differences. We can notice that
the thinner the layer, the bigger the induced currents, while
the induced currents increase with the relative layer density
difference.

More visually, Fig. 7 further shows that the flow vector
(u, v) is relatively uniform on the upper and lower side of
the interface, but exhibits strong shear nearby pycnocline
with the maximum magnitude at the interface.

5 Discussion and concluding remarks

In the foregoing paragraphs, we have derived a theoretical
expression for the velocity components and made a detailed
analysis of the flow fields in the two-layer stratified fluid
when a long internal solitary wave goes through. The theo-
retical results are well verified by in-situ field data acquired
by several current meters and thermistor chains. As a result,
we are able to come to the following conclusions:

The horizontal velocity components in the upper (lower)
layer are characterized by a pulselike increase (decrease)
to a positive maximum (negative minimum) in the direc-
tion of the wave propagation and independent of the water
depth. This indicates that the horizontal components are basi-
cally uniform within each layer with a shear at the interface.
In contrast, the vertical velocity counterpart depends linearly
on the water depth with a maximum at the interface. Tem-
porally, the vertical component profile is characterized by a
double pulselike process, i.e. it has a positive pulse increase
prior to the arrival of the wave peak, then decrease sharply to
become null at the wave peak, and then exhibits a negative
pulse, finally vanishes behind the approaching wave.

In the present article, we have provided a detailed analy-
sis of flow fields induced by LISW in a two-layered stratified
fluid. We note that the model is capable of providing a good
estimate of flow field for the cases with a very thin pycnocline
in-between the upper and lower layer, but fails to describe the
structure of the velocity field otherwise. Therefore, this study
would be made more complete by assessing the influence of
different density stratifications.

Moreover, increasing attention has recently been paid
to off-shore regions where the depth may reach as deep
as 3,000 m. The internal wave motion there is generally
beyond the range of the KdV theory. Hence, further studies
on the internal waves induced flow field should rely on the
Benjamin-Ono theory often applied to the ocean with a shal-
low lighter layer water over a deeper heavier layer.

In the end, we know that the responses of the floating
platform are of great concern in ocean engineering. With
this motivation in mind, we hope the mechanisms underlying
interactions between the internal solitary waves and the float-
ing structures could be revealed based on our understanding
on the current induced by LISW.
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