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a b s t r a c t

For creep solids obeying the power law under tension proposed by Tabor, namely

� = bε̇m,

it has been established through dimensional analysis that for self-similar indenters the load F versus
indentation depth h can be expressed as

F(t) = bh2(t)

[
ḣ(t)
h(t)

]m

˘˛
elf-similar indenters where the dimensionless factor ˘˛ depends on material parameters such as m and the indenter geom-
etry. In this article, we show that by generalizing the Tabor power law to the general three dimensional
case on the basis of isotropy, this factor can be calculated so that indentation test can be used to deter-
mine the material parameters b and m appearing in the original power law. Hence indentation test can
replace tension test. This could be a distinct advantage for materials that come in the form of thin films,
coatings or otherwise available only in small amounts. To facilitate application values of this constant
are given in tabulated form for a range of material parameters.
. Introduction

The development of thin film technology, MEMS, nano-
echnology, etc., places ever greater demand on the measurement
f the mechanical properties of systems at micro to sub-micro
cales. To meet this demand the nano-indentation technology
as received considerable attention. Many of these small-scale
aterials, e.g. polymers, composites, biomaterials and food prod-

cts, are “soft”, or exhibit viscoelastic behavior such as creep.
n fact theoretical studies of liner viscoelastic bodies in con-
act became active since the mid 1950s by work of Lee [1],
adok [2], Lee and Radok [3], Hunter [4], Graham [5,6], Yang
7], and Ting [8,9]. In recent years, a number of authors have
xtended the early work to the analysis of indentation mea-

urements in viscoelastic solids using either conical or spherical
ndenters [10–15]. Cheng et al. [16–18] investigated indenta-
ion in linear viscoelastic solids. Specifically, they examined the
elationship between initial unloading slope, contact depth, and
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mechanical properties and investigated whether the commonly
used Oliver–Pharr method for determining the contact depth or
contact area is applicable to indentation in viscoelastic solids. Their
works help improve the understanding of indentation in linear vis-
coelastic solids and resolve questions raised in recent literature
about measuring viscoelastic properties from indentation exper-
iments.

This paper addresses the problem of indentation of the creep
solids by self-similar indenters. Aside from the spherical inden-
ter which is not self-similar, such commonly used indenters as
the conic, Vickers, Berkovich and Knoop indenters all belong
to this class. A widely used empirical creep law under uni-
directional tension proposed by Mulhearn and Tabor [19] in
1960 will be used as the basis for the present work. Based
on this law much analytical work has been done. An impor-
tant feature is that in many cases the creep problem can be
reduced to the solution of a static nonlinear elasticity problem.
The problem of indentation is one of such cases (Bower et al.

[20]).

In this paper Tabor’s creep law

� = bε̇m (1)
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here � and ε̇ are the stress and strain rate respectively and b and
are material constants, is cast in the following generalized form

ij = b

(1+˛)m

[(
ε̇ln+ ˛

1 − 2˛
ılnε̇kk

)(
ε̇lm + ˛

1 − 2˛
ılnε̇kk

)](m−1)/2

×
(

ε̇ij + ˛

1 − 2˛
ıijε̇kk

)
(2)

here �ij and ε̇ln indicate the tensors of stress and strain rate
espectively and the subscripts refer to Cartesian axes. In Eq. (2)
n additional dimensionless material constant ˛ is introduced to
ake into account of the lateral contraction of materials after the

anner of the Poison’s ratio in elasticity. Note that in both equa-
ions, only instantaneous strain rate appears. In this sense, such a

aterial actually behaves like a fluid rather than a solid in that the
onstitutive relation does not depend on the instantaneous strain.
ence it is convenient to express the strain rate tensor ε̇ij in Euler
oordinate system in terms the velocity components ui as follows,

˙ ij = 1
2

(ui,j + uj,i) (3)

We denote the depth of indentation and the rate of penetration
y h(t) and ḣ(t) respectively. For self-similar indenters, dimensional
nalysis [21] provides the following formulas for the indentation
orce F and the projected area Ac of the contact surface

F(t) = bh2(t)

[
ḣ(t)
h(t)

]m

˘˛(m, ˛, ϑ)

Ac(t) = h2(t)˘ˇ(m, ˛, ϑ)

(4)

here ˘˛(m, ˛, ϑ) and ˘ˇ(m, ˛, ϑ) are the functions of the expo-
ent m, the lateral contraction coefficient ˛ and ϑ representing
dimensionless characteristic number or a set of characteristic

umbers defining the geometry of the indenter. It follows that the
ardness is given by

≡ F

Ac
= b˘� (m, ˛, ϑ)

(
ḣ

h

)m

with ˘� (m, ˛, ϑ) = ˘˛(m, ˛, ϑ)
˘ˇ(m, ˛, ϑ)

(5)

In the following section, we show how these functions can be
alculated for given values of b, m and ˛. Then the problem of deter-
ining the three material constants, b, m and ˛ in Eq. (2) becomes

n inverse problem which is solved by curve fitting of the exper-
mental data through the knowledge of two of the three

∏
’s (the

ther follows from Eq. (4)). Note that so far the statement of the
roblem is not limited to small deformation or to small strain.

The standard Vickers indenter has an equilateral square base.
he standard Berkovich has a triangular base. For them ϑ may be
efined as the ratio of the base area to the square of the height of the
yramid, and its value is equal to 24.504 and 24.566 respectively. Li
t al. [22] demonstrated numerically that for elastic–plastic materi-
ls (1) these two types of indenters yield nearly identical load and
isplacement curves (F versus h); (2) the conic indenter defined
y identifying the parameter ϑ with the half apex angle equal to
0.3◦ produces nearly indistinguishable F ∼ h relations. Hence the
umerical part of the present study need only deal with the conic

ndenter.

. Formulation of the problem
In terms of Cartesian tensors, the stress tensor �ij satisfies the
ollowing equations of equilibrium when the Euler coordinate sys-
em is adopted

ij,j = 0 (6)
ngineering A 527 (2010) 5613–5618

Eqs. (2), (3) and (6) form the fundamental set of equations for
our problem. The stress �ij and velocity ui must satisfy the following
boundary conditions appropriate to the indentation problem. On
the surface A of the indenter in contact with the material being
tested the normal velocity must be continuous and the shear stress
is taken to be zero (no friction). On the free surface of the material
not in contact with the indenter the surface stress must be zero.
These two surfaces are delineated by the contour � . At infinity all
stress components vanish.

These conditions can be made explicit mathematically in the fol-
lowing way. Let us denote the direction of the penetration velocity
ḣ by the unit vector li and the unit normal vector and the two unit
tangential vectors of A by ni (directing toward the indenter) �i and
si respectively. Then for points inside � (points in contact with the
indenter), the following conditions must be satisfied,

(ui − ḣli)ni = 0
�ijni�j = 0
�ijnisj = 0

(7)

On the free surface (points outside � ) where the unit normal
vector is also denoted by ni, it is required that

�ijni = 0 (8)

At points away from the indenter

�ij → 0 (9)

In addition to the boundary conditions the initial conditions are

At t = 0
h(0) = 0
ui = 0 through out the specimen
�ij = 0 through out the specimen

(10)

so that the specimen is initially at rest, without displacement and
stress free.

Finally, F can be calculated from

F = −
∫

A

�ijnilj dS (11)

dS being an element of the contact surface A. The penetration depth
h(t) is obviously given by

h(t) =
∫ t

0

ḣ(�) d� (12)

The projected contact area Ac is given by

Ac = −
∫

A

nili dS (13)

3. Similarity and reduction to a non-linear elasticity
problem

Reduction of the creep problem in indentation to a nonlinear
elasticity problem has been discussed by Bower et al. (1993). For
self-similar indenters the problem can be further simplified by
observing that h and ḣ are the only measures of length and velocity
respectively. Thus by dimensional argument we can introduce the
dimensionless space coordinates �i and dimensionless “displace-
ment” vi by

xi = h�i

ui = ḣvi
(14)
In terms of this new independent coordinate system �i and vi,
we have

ε̇ij = 1
2

ḣ

h
(vi,j + vj,i) (15)



W.-M. Chen et al. / Materials Science and Engineering A 527 (2010) 5613–5618 5615

for fin

e

s

s

s

�

s

i
o
t
c

w

s

fi
s
t
t

Fig. 1. A typical mesh

Following this relation we may define a strain tensor eij by

ij = 1
2

(vi,j + vj,i) (16)

In accordance with the creep law Eq. (2) we can define a new
tress tensor sij by

ij = 1
(1 + ˛)m

[(
eln + ˛

1 − 2˛
ılnekk

)(
eln + ˛

1 − 2˛
ılnekk

)](m−1)/2

×
(

eij + ˛

1 − 2˛
ıijekk

)
(17)

o that

ij = b

(
ḣ

h

)m

sij (18)

Consequently the corresponding “equations of equilibrium” are

ij,j = 0 (19)

n terms of �i. Eqs. (16), (17) and (19) now form a complete set
f equations in nonlinear elasticity. They are to be solved under
he following boundary conditions, namely on the dimensionless
ontact surface A′ (A scaled by h2),

v3 = 1, v1 = v2 = 0 at the tip of the indenter
(vi − li)ni = 0
sijni�j = 0
sijnisj = 0

(20)

hile on the free surface

ijni = 0 (21)
Also, sij → 0 at points far away from the indenter. The initial con-
guration of the specimen is a semi-infinite plane and deformation,
train and stress field for this fictitious nonlinear elastic problem is
o be calculated for a penetration depth of unity. According to the
ransformation rule Eq. (14) the indenter moves with unit velocity.
ite element modeling.

But velocity is of no relevance in the solution of the static nonlin-
ear elastic problem because inertia forces do not play a role in the
present creep problem.

Another remark is called for. In the formulation of nonlinear
elasticity and in terms of the Euler coordinate system the expres-
sion for the strain tensor is

eij = 1
2

(vi,j + vj,i + vh,ivh,j) (22)

Comparing Eqs. (16) and (22) we conclude that in the reduction
of the creep problem to a nonlinear elasticity problem the nonlinear
terms in Eq. (22) may be neglected.

Making the same transformation in Eqs. (11) and (13) and refer-
ring to the definition of the nondimensional

∏
’s we obtain

˘˛(m, ˛, ϑ) = −
∫

A′
sijnilj dS′

˘ˇ(m, ˛, ϑ) = −
∫

A′
nili dS′

˘� (m, ˛, ϑ) =

∫
A′

sijnilj dS′

∫
A′

nili dS′

(23)

Hence the problem of the indentation of a creep material by
self-similar indenters is now reduced to the solution of the inden-
tation of a nonlinear elastic problem for an indentation depth of
unity. Clearly

∏
˛ can be identified with the load,

∏
ˇ with the

projected contact area and
∏

� with the hardness of the fictitious
elastic material.

Invoking self-similarity once more it can be easily shown that if
the tip displacement is 	 in stead of unity, then the corresponding∏

’s denoted by ˘s
˛, ˘s

ˇ
and ˘s

� are related to their values at 	 = 1

by

˘s
˛ = 	2˘˛

˘s
ˇ

= 	2˘ˇ

˘s
� = ˘�

(24)
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Fig. 3. The sketch of stress–strain by Eq. (17) (˛ = 0.300).

Table 1
The regression parameters, ar and br in ˘˛ = ar 	br , from curves in Fig. 5a.

m ar br Correlation
coefficient R2

0.1 70.319 ± 0.236 2.007 ± 0.010 0.9995
0.2 46.977 ± 0.145 1.981 ± 0.010 0.9997
0.3 32.768 ± 0.054 2.017 ± 0.006 0.9999

that our calculations agree well with dimensional analysis. Addi-
tionally, in later section the values of

∏
˛,

∏
ˇ and

∏
� are given

by smoothing the calculated curves, except points at very small
indentation depth, as lines in Fig. 4b.

Table 2∏
˛ (m = 0.1–1.0, ˛ = 0.100–0.499).

˛ m =0.10 m =0.20 m =0.30 m =0.40 m =0.50 m =1.00

0.100 68.162 45.986 31.119 20.973 14.518 2.089
Fig. 2. The mesh in the vicinity of the indenter.

These relations are useful because in the actual execution of the
umerical simulation, one has to first set up a grid which intro-
uces an artificial length scale causing a violation of self-similarity
t small indentation depth. The scale effect needs to be removed.
lso one calculates the

∏
’s by gradually increasing the indentation

epth in small steps up to 	.
∏

˛,
∏

ˇ and
∏

� as well as the power
f 	 can then be obtained by regression.

. The numerical scheme and results

.1. The numerical scheme

Finite-element calculations using ABAQUS were carried out to
btain the values of ˘s

˛, ˘s
ˇ

and ˘s
� . Instead of the nonlinear model

s prescribed by Eq. (17) a large strain elasto-plastic model satis-
ying Eq. (17) in loading is adopted, because no nonlinear elastic

odel is available in ABAQUS. To show that this substitution is valid
ur calculations were checked carefully against unloading and to
ur satisfaction no apparent unloading was found as long as ḣ(t)
oes not change sign.

In the finite-element model shown in Fig. 1, the indenter and the
onlinear elastic solid were modeled as bodies of revolution to take
dvantage of the axisymmetry of conical indentation. The indenter
as regarded as rigid with a half apex angle of 70.3◦. The semi-

nfinite elastic–plastic solid was modeled using 3200 axisymmetric
lements. In order to get accurate results close to the sharp tip of the
ndenter and for small indentation depth, a very fine mesh along the
urface of the solid was made. For a maximum indentation depth
qual to 1.0 the width of the elements along the contact surface is
aken to be 0.015 (see Fig. 2).

Frictionless boundary conditions were applied along the axis of
ymmetry and on the contact surface. The free surface is stressless.
he rest of the surface of the finite specimen is regarded as fixed.
or sufficiently large specimen the last boundary condition does
ot affect the calculation.

The specimen is modeled as an elastic–plastic solid whose mate-
ial property is given by the uniaxial stress–strain curve as required

y Eq. (17). The index m is taken to be 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0,
nd the lateral contraction coefficient ˛ is taken to be 0.100, 0.250,
.300, 0.450, 0.490 and 0.499. A group of typical stress–strain curves
or different values of m is shown in Fig. 3 where ˛ = 0.300. The
onlinear quasi-static calculation was carried out using ABAQUS
0.4 22.254 ± 0.031 1.999 ± 0.005 0.9999
0.5 15.389 ± 0.007 2.020 ± 0.002 1.0000
1.0 2.210 ± 0.001 2.047 ± 0.002 1.0000

by applying the indentation depth and then gradually increasing
depth step by step.

4.2. Numerical results

Typical results of indentation process by finite-element calcula-
tion, the load–displacement curves as plot of ˘s

˛ versus 	 and the
hardness–displacement curves as plot of ˘s

� versus 	, are shown
in Fig. 4 (where m ranges from 0.1 to 1.0 and ˛ = 0.300). Eq. (24)
indicates that both ˘s

˛ and ˘s
ˇ

should be proportional to 	2 and
˘s

� be independent of 	. The regression parameters, ar and br in
˘s

˛ = ar	br from the load–displacement curves in Fig. 4a, are given
in Table 1. From Table 1 a goodness of fit is seen on fact that the
values of correlation coefficient R are nearly 1.0. It is also seen that
the values of br are almost consistent to the theoretical value, 2.0,
required by dimensional analysis. Fig. 4b shows that except at very
small indentation depth (	 < 0.1) where mesh size introduces an
artificial size effect, ˘s

� is independent of 	. Above results indicate
0.250 69.123 46.016 31.481 21.466 14.908 2.125
0.300 70.203 47.165 32.668 22.258 15.343 2.196
0.450 71.517 48.407 33.551 22.819 15.815 2.334
0.490 72.995 49.213 33.811 23.399 16.180 2.426
0.499 73.577 50.054 34.390 23.636 16.405 2.514
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The values of the three
∏

’s for a rigid conic indenter with a half
pex angle 70.3◦ are given respectively in Tables 2–4 for material
arameters m ranging from 0.1 to 1.0 and ˛ from 0.100 to 0.499.
rom Tables 2–4, it is seen that the values of three

∏
’s drop as the

alues of index m increase, but almost remain constant (increase a
ew) as the values of ˛ increase.

The influence of ˛, not appearing in the original problem (Eq.
1)) but as an additional material constant introduced to take into
ccount of the lateral contraction of materials after the manner of
he Poison’s ratio in elasticity, on calculation results is also observed
ere. The selected results, influences of ˛ on values of

∏
� and br are∏
hown in Fig. 5. Plot of � against ˛ with m = 0.1–1.0 (Fig. 5a) shows
hat the value of

∏
� is nearly independent of values of ˛ except as

approaching 0.5 and m ≤ 0.1. This implies that the calculation
esults are not very sensitive to values of ˛.

able 3
ˇ (m = 0.1–1.0, ˛ = 0.100–0.499).

˛ m = 0.10 m = 0.20 m = 0.30 m = 0.40 m = 0.50 m = 1.00

0.100 26.749 24.505 20.984 19.981 16.513 11.176
0.250 26.749 24.505 20.984 19.981 16.513 11.284
0.300 27.132 24.837 20.998 19.678 16.513 11.472
0.450 27.518 25.242 20.984 20.313 16.513 11.683
0.490 27.518 25.242 21.324 20.647 17.119 12.089
0.499 27.518 25.242 21.324 20.647 17.119 12.089
Fig. 5. The influence of lateral contraction coefficient ˛ on values of
∏

� and br .

Plot of br obtained by regression from calculated results is shown
in Fig. 5b. It is seen that for all values of ˛ the regression values of br,
among a range of 1.98–2.05, are almost consistent to the theoretical
value, 2.0. This fact serves as an effective control over the accuracy
and a justification of the numerical simulation.

5. Concluding remarks

In this paper the power law creep under unidirectional tension
by Tabor [19] is formally generalized to the three dimensional case.
In order to do this an additional material constant ˛ is introduced

to keep track of the effect of lateral contraction. The indentation of
such materials using self-similar indenters (conic or pyramidal) is
reduced to the indentation of a nonlinear elastic material through
dimensional analysis.

Table 4∏
� (m = 0.1–1.0, ˛ = 0.100–0.499).

˛ M = 0.10 m = 0.20 m = 0.30 m = 0.40 m = 0.50 m = 1.00

0.100 2.548 1.877 1.483 1.050 0.879 0.187
0.250 2.584 1.878 1.500 1.074 0.903 0.188
0.300 2.587 1.899 1.556 1.131 0.929 0.191
0.450 2.599 1.918 1.599 1.123 0.958 0.200
0.490 2.653 1.950 1.586 1.133 0.945 0.201
0.499 2.674 1.983 1.613 1.145 0.958 0.208
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The finite element method based on ABAQUS is applied to the
umerical simulation of the indentation by conic indenters. The
ethod is shown to yield sufficiently accurate results. Our results

how.
The numerical values of

∏
˛,

∏
ˇ and

∏
� tabulated in Tables 2–4

an be put back to Eqs. (4) and (5) to yield the values of the load
(t), the projected contact area Ac(t) and the hardness H(t) at the
iven values of h(t).

Although
∏

� has been calculated here only for the conic inden-
er with a half apex angle 70.3◦, it can be applied equally well
o the standard Berkovich and Vickers indenters, as these inden-
ers have been shown to yield the same loading versus penetration
epth relations by Li et al. [22] for work hardening elastic–plastic
aterials.
Using the results presented here the modern indentation tech-

ology may be employed to determine the material constants b, m
nd ˛ describing the creep property of the class of materials obey-
ng the power law of creep. Because it has been demonstrated [21]
hat programmed hardness test can yield the value of b

∏
� and m.

ith a good estimation of ˛ we know then the value of
∏

� from
hich the value of b then follows. Modern indentation test has the

dvantage over conventional tensile test in that the former can be
asily applied to specimens in the form of thin films, coatings or
nly available in very small sizes.
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