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The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The
energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and
energy transition along the water depth were calculated on the basis of the computational results of velocity
and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum
around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed
or water surface. The energy borrowed from the local flow in the vegetated region could not provide for
spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated
region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy
borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that
there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence
source due to vegetation and energy transference due to vegetation, where the second effect was the
strongest one.

Crown Copyright © 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Vegetation in a channel may result in a higher water level during
flooding. In addition, it is beneficial to the river ecosystem because it
provides a proper habitat for aquatic animals. Therefore, the turbulent
structure of vegetated flow has always been of interest to hydrauli-
cians. Some researchers have regarded aquatic vegetation as parts of
roughness in the riverbed and studied the vegetative resistance acting
on the flow [4,6,9], but they usually did not describe how the
vegetation influenced the flow in detail. In recent years, more
researchers have been interested in the vertical distributions of the
stream-wise velocity [7,10] and Reynolds stress [2,5,14]. Ghisalberti
and Nepf [3] further studied the coherent structure of flow resulting
from submerged vegetation and pointed out [8] that the vertical
exchanges of mass, momentum and energy were dominated by two
scales of vortices: the shear-scale vortices generated and stem-scale
vortices (Fig. 1). However, the mechanism of energy exchange in a
flow with vegetation has not been studied yet. We attempt to
investigate this mechanism in the present paper.

Bakhmeteff and Allan [1] studied the vertical distribution of energy
and presented the process of energy loss and transition in an open-
channel flow. They gave the expressions of energy borrowing, energy
spending and energy transition, and built a balance relationship
+86 27 68772310.
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between the expressions. They pointed out that (1) at any point in the
flow, theenergy suppliedby localflow is always equal to the sumof local
energy loss and transition, (2) the energy dissipatesmostly in the region
near theflumebed, and thus this regionneeds excess energy transferred
from other regions, and (3) in the whole cross-section, the total energy
transition is zero and thus the total energy borrowed from the flow is
equal to the total energy spending. On the basis of their research, the
present paper analyzes how the energy supplied by theflowdistributes,
transports and dissipates in the flow with submerged vegetation, and
tries to build a balance relationship among the energy borrowing,
energy spending and energy transition. Three effects of vegetation
acting on the flow are then discussed—the restriction on flow,
turbulence due to vegetation, and energy transference.

2. Background

A two-dimensional steady uniform flow with submerged vegeta-
tion in a straight open channel is considered in this paper. In a control
volume (CV) of V=dx×1×dz in the flow, the spatially averaged x-
equation (Fig. 1) is [7,13]

dτ zð Þ
dz

= −γS + fcd zð Þ; ð1Þ

where z is the vertical coordinate and τ(z)=τxz(z)+τ′(z) is the shear
stress, which consists of Reynolds stress τxz(z) and viscosity stress
τ′(z). Although the latter is usually neglected [8,11], this paper
hts reserved.
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Fig. 1. The control volume in the flow with submerged vegetation. The conceptions of
the shear-scale and stem-scale vortices come from [8]. Notice that in this figure, the
shear stresses τ+dτ and τ are surface forces, and both γS and fcd are body forces per
unit volume [10]. dτ/dy in the control equation is also a body force per unit volume and
is given by ((τ+dτ)–τ)×dx×1/(dxdz×1).
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considers it when calculating the shear stress. γ is the specific
weight of water and S is the energy slope, which is equal to the
bed slope in the case of uniform flow. fcd(z) is the general drag
force due to vegetation, and is defined as

fcd zð Þ =
0 h b z≤H
1
2
ρCdau

2 zð Þ 0≤ z≤ h
;

8<
: ð2Þ

where Cd is the drag coefficient, u is the stream-wise velocity, H is the
water depth, and h is the plant height. This study will not strictly
distinguish flexible and rigid vegetation and generally uses h to
represent the height of rigid vegetation or the average height of flexible
vegetation. a is the vegetation density, which is defined by a=b/(LxLy),
where b is the front width of a single plant and Lx and Ly are the spaces
between plants along longitudinal and transverse directions [8,12].

Shimizu and Tsujimoto [11] used rigid cylinders with equal height
and diameter in a square pattern to simulate vegetation, and gave
results for the velocity and Reynolds stress of four runs. The present
paper uses the computational results of Run A71 in [11] to discuss the
energy balance in the open-channel flow with submerged vegetation.
The parameters of Run A71 were H=8.95 cm, h=4.6 cm, S=8.86‰,
b=0.15 cm, a length of the square space between plants of 2.0 cm,
a=0.0375 cm−1, a depth-averaged velocity U=33.05 cm/s, and a
drag coefficient Cd=1.0–1.5. As [11] neglected the viscosity stress and
did not give the value of water viscosity, the present paper arbitrarily
assumes the kinematic viscosity of flow is 1.0×10−2 cm2/s (i.e., the
temperature is 20 °C).

3. Mechanism of energy loss and transition

3.1. Energy borrowed from local flow

We define hf=E1−E2 as the head loss between two random
sections 1 and 2 in a uniform flow and Δl as the distance between the
two sections, where E1 is the total head at section 1while E2 is the one at
section 2. Therefore, the energy slope of theflow S=hf/Δl=(E1–E2)/Δl
represents the energy borrowing per unit weight liquid in the unit flow
path, and γS is the energy borrowing per unit volume liquid in the unit
flow path. The energy borrowing per unit volume of local flow during a
unit time interval is defined as the product of γS and local velocity u:

Wb = γSu: ð3Þ
From the controls of Eqs. (1) and (3), the energy borrowed from
the local flow is

Wb = −u
dτ
dz

+ ufcd: ð4Þ

3.2. Energy spending

The energy spending in the vegetated flow can be divided into the
spending to overcome flow resistance and the spending to overcome
the vegetation drag. Bakhmeteff and Allan [1] gave the former as

Wsw = τ
du
dz

: ð5Þ

The drag force of vegetation in the volume is defined as

Fv =
1
2
ρCdAu

2
; ð6Þ

where A is the front area of vegetation in the volume and equal to the
product of the plant number in the volume n, front width of a single
plant b and height of volumedz. During a timeperiod dt, theflowpasses
through the vegetationwith a route distance of udt, so thework doneby
the drag force in a unit volume during a unit time interval is defined as

Wsv =
0 h b z≤H

ρCdAu
2

2dxdz × 1 × dt
× udt =

1
2
ρCdau

3 0≤ z≤ h
;

8<
: ð7Þ

where A/V=a is the vegetation density [7]. From Eqs. (5) and (7), the
energy spending is

Ws = Wsw + Wsv = τ
du
dz

+ ufcd: ð8Þ

3.3. Energy transition

According to [1], (τdx×1)×u is the work done on the lower
surface of a CV during a unit time interval or the energy transferred
downward from the CV, and (τ+dτ)×dx×1×(u+du) is that on the
upper surface or the energy transferred downward to the CV;
therefore, the total energy transition downward from the CV is

τdx × 1ð Þu− τ + dτð Þdx × 1 × u + duð Þ = −dx × 1
× τdu + udτð Þ−dτdudx × 1:

ð9Þ

Neglecting quantities of high order of smallness dτdudx and
dividing Eq. (9) by the volume dx×1×dz gives

Wt = − d τuð Þ
dz

: ð10Þ

Eq. (10) is the energy transition in a unit volume during a unit time
interval and has the same form in flow with or without vegetation.

3.4. Discussion

Using the computational results of A71 [11], the energy supplied by
the local flow, the energy loss and energy transition are plotted in Fig. 2.
All the results are scaled with the averaged cross-sectional energy
borrowing W0=γSU, where U is the depth-averaged velocity. Fig. 2
indicates that the rule of energy spending and transition in the non-
vegetated region is similar to that for an ordinary open-channel flow.
The energy borrowed from local flow is always greater than the local
energy spending; therefore, surplus energy borrowing will accumulate



Fig. 2.Distributions of energy supplied by local flow, energy loss and energy transition. Using the computational velocity and Reynolds stress of A71 in [11], it is found that the results
obtained using Eqs. (3) and (4) do not strictly equal each other. The line represents the results of Eq. (3), and the round dots represent those of Eq. (4).
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in the non-vegetated region and then be transferred to the vegetated
region.

The energy distribution in the vegetated region behaves differently
from that in the non-vegetated region:

(1) Because the vegetation results in an additional energy spending,
the energy spending is discontinuous and jumps to amaximum at
the top of vegetation. Furthermore, the energy spending decreases
downwardwith decreasing velocity. The absolute values of energy
spending and transition are greater in the upper vegetated region,
which indicates that the vertical exchangeofmass andmomentum
in the region ismore intense. This conclusionwas also statedby [8].

(2) The value of energy transition is negative and the energy
spending is always greater than the energyborrowing. Therefore,
surplus energy is transited from the non-vegetated region to
cover the requirement for spending in the vegetated region.

(3) In thenear-bed region, theviscosity stress is themain shear stress
and leads to an increase in energy spending; however, the value
is much smaller than the energy loss at the top of the vegetation.

4. Energy balance

Using the results of Section 3, this section analyzes the energy
balance at a point and in a cross-section, and thendiscusses the effects of
vegetation on flow.

4.1. Energy balance at a point

Considering Eqs. (4) and (8), Eq. (10) is rewritten as

Wt = −u
dτ
dz

−τ
du
dz

= −u
dτ
dz

+ ufcd

� �
− τ

du
dz

+ ufcd

� �
;

= Wb−Ws

ð11Þ
which is:

Wb = Ws + Wt: ð12Þ

The energy balance in Eq. (12) has the same form as that for flow
without vegetation, and the conclusion about the energy balance is
similar: the energy supplied by local flow is equal to the sum of local
energy loss and local energy transition at a random point in the case of
flow with vegetation (Fig. 2). Calculating the plane areas bounded by
energy curves and the z-axis, we find two interesting results: (1) the
total area bounded by the energy transition curve and the z-axis is
zero and (2) the total area bounded by the energy borrowing curve
and the z-axis equals that of the energy spending curve. The results
imply that in a whole cross-section, the energy borrowing balances
with energy spending. The next section illustrates the results in detail.

4.2. Energy balance in a cross-section

From Eq. (12), we can deduce the energy balance in a whole cross-
section. If we integrate the control Eq. (1) from H downward to z, then

τ = γ H−zð ÞS + ∫z
H fcddz

= γ H−zð ÞS−Fcd;
ð13Þ

where Fcd=∫z
h fcddz=∫z

h fcddz+∫h
H fcddz=∫z

H fcddz=−∫H
z fcddz is the

accumulated drag force due to vegetation from z to H. According to
Eq. (2), when z≥h, Fcd=0; and

Fcdð Þ′ = d
dz

−∫z
H fcddz

� �
= −fcd; ð14Þ

The two relationships will be used in Section 4.3.
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Combining Eqs. (4), (8), (10), (12) and (13) gives

−u
dτ
dz

+ ufcd = γ H−zð ÞS + ∫z
Hfcddz

h idu
dz

+ ufcd

� �

− d
dz

γ H−zð ÞSu + u∫z
Hfcddz

� �
:

ð15Þ

Integrating Eq. (15) from z to H gives

∫H
z u −dτ

dz
+ fcd

� �
dz = γS∫H

z H−zð Þdu
dz

dz + ∫H
z ∫

z
H f cddz

du
dz

dz + ∫H
z u fcddz

� 	

− ∫H
z d γ H−zð ÞSu + u∫z

H fcddz
h in o

:

ð16Þ

The left side of Eq. (16) is the energy borrowed from the local
flow from z to H. Using the control Eq. (1), the left side is rewritten
as γS∫z

Hudz. On the right side of Eq. (16), the first and second terms
are the total energy spending due to water viscosity from z to H, the
third term is the energy loss due to vegetation from z to H, and the
fourth and fifth terms are the total energy transition from z to H.
Using the definition of Fcd, the second term is written as

∫H
z ∫

z
H fcddz

du
dz

dz = ∫H
z ∫z

H fcddz
� �

du = −∫H
z Fcddu ð17Þ

and the fourth and fifth terms are written as

∫H
z d γ H−zð ÞSu + u∫z

Hfcddz
h i

= −γSu H−zð Þ−u ∫z
H fcddz

� �

= −γSu H−zð Þ + uFcd:
ð18Þ
Fig. 3. Accumulative values of the total energy, ener
Therefore, Eq. (16) gives

γS∫H
z udz = γS∫H

z H−zð Þdu−∫H
z Fcddu + ∫H

z ufcddz
h i

+ γSu H−zð Þ−uFcd½ �
ð19Þ

or

Wb�Hz = ðWsw�Hz + Wsv�Hz Þ + Wt�Hz = Ws�Hz + Wt�Hz : ð20Þ

The physical meanings of each term in Eqs. (19) and (20) are as
follows.

(1) γS∫z
Hudz=Wb]zH is the aggregate energy borrowing from z to

thewater surface. This term is the same as that for flowwithout
vegetation.

(2) γS∫z
H(H−z)du is the aggregate energy spending that ought to be

consumed in the flow without vegetation. In the vegetated
flow, the vegetation may restrict the flow turbulence and de-
crease the spending; therefore, the difference γS∫z

H(H−z)du−
∫z
HFcddu=Wsw]zH is the energy spending that is consumed by

water viscosity in vegetated flow.
(3) ∫z

Hufcddz=Wsv]zH is the aggregate energy spending due to the
interaction between flow and vegetation, which indicates that
the vegetation will make the flow more turbulent. The term
Ws]zH=Wsw]zH+Wsv]zH is the total energy spending from z to H
in the flow with vegetation.

(4) γSu(H−z) is the aggregate energy transition from z to H. But
the vegetation may enforce energy transmitted upward to the
top of the vegetation. Therefore, γSu(H−z)−uFcd=Wt]zH is the
total energy transition in the vegetated flow.

As shown above, the energy borrowed local flow between z and H
balances with the energy spending and energy transition between z
and H. To further discuss the balance relationships, all terms in
gy loss and energy transition in a cross-section.
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Eq. (20) are scaled with the total energy borrowing in the whole
cross-section Wb]0H and plotted as energy accumulative curves in
Fig. 3. In the figure, the energy transition accumulative curve reaches
its maximum value at the top of the vegetation, and then decreases to
zero at the flume bed. Therefore, the energy transition in a whole
cross-section is zero, and the energy spending accumulative curve
increases slowly in the non-vegetated region but sharply in the
vegetated region, and meets the energy borrowing accumulative
curve at the bed. Hence, the total energy spending is equal to the total
energy borrowing in the whole cross-section. These conclusions are
consistent with the results in Section 4.1. The second conclusion is
more obvious if the terms in Eq. (19) are calculated from the bed.
When z=0, u=0, γSu(H−z)=0, and uFcd=0, the total energy
transition in the whole cross-section is zero: Wt]0H=0; therefore,
Eq. (20) becomes

Wb�H0 = Ws�H0 : ð21Þ

Eq. (21) indicates that the total energy borrowing is equal to the
total energy spending in the whole-flow region of a uniform flow.

4.3. Discussion

Three impacts of vegetation acting on flow have been mentioned:
the turbulence restriction due to vegetation ∫z

HFcddu, the turbulence
source due to vegetation ∫z

Hufcddz, and the energy transference due to
vegetation uFcd. The first two terms are contradictions; the former
restricts flow turbulence while the latter increases turbulence. The
two terms are usually unbalanced, with the former being smaller than
the latter. We perform integration by parts on the first term with
Eq. (14):

∫H
z Fcddu = uFcd jHz −∫H

z u Fcdð Þ′dz
= −uFcd + ∫H

z ufcddz
ð22Þ

or

∫H
z ufcddz−∫H

z Fcddu = uFcd = u∫H
z fcddz≥0: ð23Þ

Eq. (23) indicates that the turbulence source is usually greater
than or equal to the turbulence restriction, which means that overall
vegetation increases turbulence. In particular, when z=0, u=0, and
uFcd=0, the transition term in a whole cross-section only redis-
tributes energy. On the basis of Eq. (23), ∫0

Hufcddz=∫0
HFcddu, the

turbulence due to vegetation is balanced by the turbulence restriction
of vegetation in the whole cross-section.

5. Conclusions

This paper gives the expressions of energy borrowed from local
flow (Eq. (4)), energy spending (Eq. (8)) and energy transition
(Eq. (10)) in an open-channel flow with submerged vegetation. On
this basis, the paper discusses the energy balance (Eqs. (12) and (20))
in the vegetated flow and analyzes the effects of vegetation on the
flow.

1. Energy spending is concentrated in the vegetated region, especially
just below the top of the vegetation. The exchanges of momentum
and energy in the upper vegetated region are more intensive than
those in the lower vegetated region.
2. Energy borrowed from local flow is greater than the energy
spending in the non-vegetated region; on the contrary, the energy
borrowing is smaller in the vegetated region. The redundant
energy accumulated in the non-vegetated region is transferred to
balance the energy spending in the vegetated region.

3. The energy borrowing is equal to the sum of local energy spending
and local energy transition at any point of vegetated flow. In the
region from z to H, the aggregate energy borrowing equals the sum
of aggregate energy spending and energy transition. In the whole-
flow region, the energy transition accumulation is zero and the
total energy borrowing is equal to the total energy loss. These
conclusions are similar to those made about flow without
vegetation.

4. The effects of vegetation on the flow include the restriction of
turbulence by vegetation, turbulence due to vegetation, and
transition. The turbulence due to vegetation is the main effect of
vegetation acting on the flow.

These conclusions describe how the energy in vegetated flow
distributes, transports and dissipates, and are helpful in illustrating
how vegetation influences flow. However, we do not strictly
distinguish the average height of flexible vegetation and that of
rigid vegetation, so the flexibility of vegetation cannot be considered
as an influencing factor in the study. This problem warrants further
study.
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