Reduction-Based Model Updating of a Scaled Offshore
Platform Structure

Hui Li' and Hua Ding?

Abstract: This paper attempts to develop a reduction-based model updating technique for jacket offshore platform structure. A reduced
model is used instead of the direct finite-element model of the real structure in order to circumvent such difficulties as huge degrees of
freedom and incomplete experimental data that are usually civil engineers’ trouble during the model updating. The whole process consists
of three steps: reduction of FE model, the first model updating to minimize the reduction error, and the second model updating to
minimize the modeling error of the reduced model and the real structure. According to the performance of jacket platforms, a local-rigidity
assumption is employed to obtain the reduced model. The technique is applied in a downscale model of a four-legged offshore platform
where its effectiveness is well proven. Furthermore, a comparison between the real structure and its numerical models in the following
model validation shows that the updated models have good approximation to the real structure. Besides, some difficulties in the field of

model updating are also discussed.
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Introduction

Developing reliable analytical models that can accurately describe
or predict the responses of actual structure is very important for
load identification problems or coupled-field analysis in structural
dynamics. Computer-aided modeling (CAM) and computer-aided
test (CAT) are developed to solve this problem but difficulty can
exist if either of them is used alone. The CAM, such as finite-
element (FE) analysis, now provides a very powerful modeling
tool. But FE model may deviate from the real structure because of
many artificial simplifications introduced in numerical simulation,
which may sometimes be unacceptable. CAT can provide some
characteristics of the real structure but it cannot predict the re-
sponse of the structure under arbitrary excitation. Model updating
provides a bridge between CAM and CAT and an efficient way to
assure that primitive FE model can be tuned to the actual struc-
ture. A remarkable number of methods for FE model updating
have been developed in the recent decades, which is discussed in
detail by Mottershead and Friswell (1993).

Among the early papers, Berman (1979), Berman and Nagy
(1983), Baruch (1984), and Zimmerman and Widengren (1990),
the focus was put on direct method, namely, directly adjusting
initial mass and stiffness matrices. But this kind of method may
change sparse matrices into full ones and causes the updated
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model to lose the physical connecting properties of its original FE
model, i.e., the way that structural design variables are mapped
into the elements of structural mass matrices and stiffness matri-
ces. Because of such inherent deficiency, the later studies turned
to adjust the structural parameters, e.g., density, modulus, flexural
rigidity, and so on. This approach usually keeps the original
physical connecting properties of the FE model and is known as
indirect updating method or parametric method. Because of this
advantage, many parametric methods have been proposed in re-
cent years. Element-by-element sensitivity method was developed
by Farhat and Hemez (1993). Inverse eigensensitivity methods
have been investigated by Collins et al. (1974) and Lin et al.
(1995). Imregun et al. (1995a,b) and Cha and Switkes (2002)
presented an updating method using frequency response function
(FRF). Modak et al. (2002) compared the updating results using
inverse eigensensitivity method and FRF method, respectively,
through numerical simulation. Gladwell and Ahmadian (1995)
and Ahmadian et al. (1997) studied new parameter selection strat-
egies for model updating. Jaishi and Ren (2005) tried using am-
bient vibration test results for model updating. Pandey and Barai
(1995), Atalla and Inman (1998), Levin and Lievin (1998b),
Levin et al. (2000), Lu and Tu (2004), and Chang et al. (2000,
2002) applied artificial neural network to model updating. Levin
and Lieven (1998) introduced simulated annealing and genetic
algorithms into model updating. During the recent 10 years, a
new kind of statistical methodology for model updating and dam-
age detection, which is mainly based on a Bayesian probabilistic
theory, has also been developed, such as Katafygiotis and Beck
(1998), Beck and Katafygiotis (1998), Katafygiotis and Yuen
(2001), Yuen and Katafygiotis (2002), Katafygiotis and Lam
(2002), and Lam et al. (2004). This approach has a distinct ad-
vantage over the previous methods in that it reasonably considers
the uncertainties arising from incomplete measurements, model-
ing error, and measurement noise.

There is, however, a great difficulty when the FE model up-
dating is applied to complicated dynamic systems with large num-
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ber of structural members. The huge mass and stiffness matrices
of such structures can make it time-consuming to solve the eigen-
value problem. On the other hand, the limitation of the incom-
plete measured data becomes more and more serious as the
number of degrees of freedom (DOFs) of a dynamic system in-
creases and even causes the updating work to plunge into the
trouble of ill-posed problem if the FE model is directly used.
Although modal expansion techniques can be taken as a choice to
fill up the spatially incomplete modal data, more other problems
may arise. Another way is to reduce the huge DOFs of the struc-
ture, known as model reduction. This seems more promising be-
cause generally only a few of the lowest modes are practically
useful for large-scale structures, which means most of the DOFs
are redundant.

The generalized model reduction methods can be classified
into three groups. The first group is the superposition method of
Ritz vectors, such as Wilson et al. (1982), Arnold et al. (1985),
and Leger and Wilson (1987), which constructs a group of Ritz
vectors and uses them as transformation matrix to reduce the
dimension of the model. The second group is what we call slave-
DOF-removing methods, in which coordinate transformation is
not needed. The oldest and widely used one of such methods may
be Guyan reduction (Guyan 1965) but this static reduction
method is applicable at a narrow frequency domain near zero. To
settle that shortcoming, Kuhar and Stahle (1974) and Paz (1989)
proposed dynamic condensation techniques that are valid at a
much wider frequency range. O’Callahan (1989) further devel-
oped another dynamic reduction method, improved reduced sys-
tem (IRS), which boosts the accuracy of results and enlarges the
valid domain of frequency. Friswell et al. (1995, 1998) developed
an iterated IRS and proved its convergence. Other researchers
presented similar techniques but with different iterative formulas,
such as Suarez and Singh (1992b), Qu and Fu (1998), Kim and
Kang (2001), Lin and Xia (2003), and Xia and Lin (2004). Be-
sides, some researchers also attempted to apply this iterative re-
duction approach to the damped structural systems. Rao (2002)
presented an iterative two-sided dynamic condensation technique
for unsymmetric structural systems. Qu and Selvam (2005) used
an accelerated iterative approach for the viscously damped vibra-
tion system. The third group is component modal synthesis meth-
ods which are developed from the modal analysis of complicated
structure in aerospace engineering. Two core steps of these meth-
ods are associated with substructures, namely, the modal analysis
and the assembling of the substructures. According to the type of
interfaces and substructure assembling, the methods are basically
divided as the fixed-interface modal synthesis method (Hurty
1965), the free-interface modal synthesis method (Hou 1969), and
the hybrid-interface modal synthesis method (Benfield and Hrude
1971). Later, many researchers improved the three kinds of modal
synthesis methods, such as Bampton and Craig (1968), Rubin
(1975), Hintz (1975), and Tsuei and Yee (1989). Suarez and Singh
(1992b) developed a new method to calculate the lower eigen-
properties of a general dynamic system divided into subsystems.
Setareh et al. (1992) used the approach to calculate the optimum
tuned mass-damper parameters.

As viewed from model updating, there are still many limita-
tions for most of the reduction methods. First, the reduction pro-
cess is completed by coordinate transformation in most reduction
methods. The original physical coordinates may be transformed to
a certain kind of modal coordinates which have not obvious
physical meanings. Then the difficulty of transformation may
exist because the measured spatial data for model updating is
based on the physical coordinates. Second, the iterative algo-

Fig. 1. Scaled platform structure

rithms, widely used in the second group, may cause the reduced
model to lose some or total indispensable connecting properties of
its original FE model, which will be unacceptable for the follow-
ing parameter-based updating work. Finally, for most of the re-
duction methods, the reduced model will lack self-adjusting
ability if the condition in the initial FE modeling changes (e.g.,
some structural design variables are updated). It is, however, an
effective way for model validation after model updating.

It is difficult to develop a general reduction and updating
method for all complicated large-scale structures that can over-
come the limitations mentioned above but possible for jacket plat-
form structures. Most of jacket platform structures can be easily
divided into two kinds of components: the floors which have most
of structural mass and the connectors between two neighboring
floors (Figs. 1 and 3). This characteristic makes it convenient to
employ substructure-partitioning method for model reduction and
obtain a reduced analytical model easily for parametric updating
approach. This paper aims to develop a reduction-based paramet-
ric updating method for a scaled platform structure which assures
that the reduced model is self-adjustable. An emphasis of the
work in this paper is put on model reduction because we require
that the obtained reduced model should remain the connecting
property of the FE model, and the transformed coordinates should
still be able to have obvious physical meanings. Moreover, the
strategy of model updating is also employed to calibrate the re-
duced model even during the reduction process.

The following contents of the paper are organized into three
sections. The first section discusses the basic theory of a two-step
model reduction method. The following section mainly deals with
model updating using the obtained reduced model, where a
sensitivity-based parametric updating method is employed. Fi-
nally in the last section, an experimental application of a scaled
model of platform structure is shown to illustrate the effectiveness
of the proposed method.

Reduction of FE Model

The proposed method is a two-step procedure. The first step
implements the superposition method of Ritz vectors, in which a
local-rigidity assumption of floors is introduced to construct the
Ritz vectors and transformation matrix. It is different from other
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reduction methods in that the reduced model is allowed to have
some errors which are produced by the strict assumption. Then
the second step is to correct this error by introducing the principle
of model updating. It is convenient to keep the connecting prop-
erty of the reduced model to do so.

Some Preprocesses for FE Model

Because the platform structure has the following characteristics—
(1) most of structural mass is on the floors and (2) beam and plate
element types are widely used for the FE model—we can take
some constraints during the FE modeling. For example, we apply
lump mass mode for all elements and ignore the moment inertia
of all nodes to greatly reduce DOFs. On the other hand, we par-
tition the whole structure into two types of substructures: modal
substructures (horizontal floors and all connecting rods within
floors) and the connecting substructures between floors. Then we
can redistribute the mass of the connecting substructures into the
neighboring floors and apply Guyan reduction method to delete
those massless nodes. To do so, we retain the precision of the FE
model and make it convenient for the next proposed reduction
method.

Construct Ritz Vectors and Obtain the Reduced Model

In the reduction process, the local-rigidity assumption is intro-
duced as follows:
1. Modal substructures are regarded as rigid bodies and their
elastic deformation is ignored; and
2. The connecting substructures are still considered flexible.
The above assumptions can be regarded as an approximation
of the observations that are found during the modal analysis of the
FE model. With above assumptions, a group of Ritz vectors,
namely, a transformation matrix, can be constructed so that the
complicated FE model is simplified as a spatial cantilever beam
(Fig. 3) in which the transformed displacement vectors represent
the rigid-body movements of floors. According to the assump-
tions, the relationship between the rigid-body displacement vector
of the ith floor and the displacements of an arbitrary node on it
can be expressed as
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where the x-y plane is assumed parallel to floors; wuy;
=displacement vector of the jth node on the ith floor;
8,=rigid-body displacement vector of the ith floor; T';
=transformation matrix of the jth node; and d;‘j and diyj
=distances from the jth node to the mass center of the ith floor in
the x- and y-directions, respectively. Eq. (1) can be applied to all
nodes of the ith floor and even all floors. So we can get
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where the subscript “r”=number of floors; the subscript I;
=number of nodes in the ith floor; U=3n X1 (n is the number of
nodes) displacement vector of the FE model, A=6rX1 rigid-
body displacement vector of all floors; and I'=3n X 6r transfor-
mation matrix for the whole FE model. Using I', we can obtain
the reduced stiffness and mass matrices

K;=I'KI' @

My =I'"MI'

where K and M =stiffness and mass matrices of the FE model,
respectively, and the subscript R refers to the reduction. Because
the order of the reduced model is different from the FE model, it
is difficult to calculate the modal assurance criteria (MAC) when
directly using the ith mode shape of the FE model: ¢;. So we
introduce the equivalent reduced mode shapes of the FE model
which have the same order of the reduced model. Using Eq. (3)
and replacing U, A with ¢; and cpf, respectively, then multiplying
two sides of the equation with the pseudoinverse of I', we can get

¢ =I"T)'T g, (5)

where <pf‘=ith equivalent mode shapes.

Eq. (4) makes it possible to reduce the thousands of DOFs of
the FE model to only a few rigid-body DOFs of floors. It not only
spares computation time and resources in structural eigenproblem
analysis but also provides an optimized design plan for modal
experiment. Moreover, the parametric updating method can be
used for the reduced model because the original connecting prop-
erty of the FE model is remained during the reduction processes
since the original stiffness and mass matrices appear in the right
side of Eq. (4).

First Model Updating—Eliminate the Error Caused
by Reduction

The local-rigidity assumption makes the reduction process quite
simple and convenient but it also brings error. The error is admis-
sible because the elastic deformation within floors caused by
structural vibration cannot be completely ignored. Otherwise, it
means the stiffness of floors is infinite or additional constrain
must be applied to floors, both of which actually overvalue the
stiffness of the structure. As a result, the natural frequencies of the
reduced model always increase, which means that the reduced
model cannot be taken as an effective equivalence of the FE
model, not to mention applying it for experiment-based model
updating. On the other hand, the error should be in, somehow,
control. For example, it is no larger than FE-test discrepancy or
has at most the same level. Otherwise, it shows that the local-
rigidity assumption does not have a good approximation and the
reduction method cannot be applied here. The error should be
minimized before the reduced model can be used. However, be-
cause of its high efficiency in reduction, the local-rigidity as-
sumption is not selected to be updated in the following procedure
of correcting error. Then we should find another equivalent way.
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Select Updating Parameters—Submatrix Scaling
Factors

According to the aforementioned analysis, the error is mainly
caused by the overvaluation of stiffness of floors. Therefore, the
stiffness matrix of the reduced model will be updated to eliminate
such an error but the mass matrix will keep unchanged. A subma-
trix scaling technique used by Lim (1990) and Yun and Bahng
(2000) is applied in correcting error to avoid changing the local-
rigidity assumptions. Since the assumption is implemented by in-
troducing matrix I', and submatrix I'; constrains the node
displacements of the ith floor, we can use o;I; to replace I'; as a
way to reevaluate the validity of the constraint. Here «; is a posi-
tive number less than 1. We call o; as the submatrix scaling factor
(SSF) of the ith floor. When «; converges to 1, it implies the
local-rigidity assumption approaches to the reality for the ith
floor. So the transformation matrix I' can be modified as

0

Iy= 2 QY= E Q I (6)
i=1 i=1

where the subscript “U” means “updated.” Then the modified
reduced stiffness matrix Ky can be rewritten as

r r q q

Kp=T{KIy=23 > (o) (v/Ky) = 2 X &K, (7)

i=1 j=1 i=1 j=1

where K, ; Tepresents a force tensor imposed on the ith floor for a
unit dlsplacement tensor given on the jth floor and &;; suggests

what degree of approximation K,-j is from the real Value. There-
fore the stiffness matrix will be updated by adjusting the value of
o; while removing the disadvantage caused by introducing the
assumptions. As for the reduced mass matrix, Eq. (4) will still be
used.

Construct Error Function

The error caused by the assumption may be expressed using dif-
ferent data and in different ways. In our research, the error is
composed of two parts. One is natural frequency error between
the reduced model and the FE model, expressed as E; the other
is mode shape error between two models, expressed as E,,. Both
of the errors are constructed based on least-square (LS) principle.
Their dimensionless forms are expressed as

o} = o; 1 - MAC(¢7, ;)

Ewi = ! and E i =
o, B VINCO

(8a)

where w; and m?:ith natural frequency of the FE model and
reduced model, respectively. MAC(-) in Eq. (8a) is a function
calculating the MAC value, expressed by

[(e]) e
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Therefore, we obtain the error function as

MAC(¢}.¢;) = (8b)
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where W,,; and Wy, =ith weighting coefficients of frequency error
and MAC error, respectively, and represent the reliability for each

selected mode. Thus an unconstrained optimization problem, i.e.,
the work of first mode updating, is set up in which the error
between the FE and reduced model can be minimized by adjust-
ing o;(i=1,...,r).

Optimization Algorithm

In our research, the Gauss-Newton method, one of standard LSs
optimization algorithm, is adopted to minimize the error ex-
pressed by Eq. (9). The partial derivatives of the error function
with respect to «; can be expressed as

JEy,
E . +2W¢,E¢, —¥ (j=1,2,..))

J i=1 da ]
(10a)

where

9E,; 1 dor
— - ——t (10b)

da;  w; do;
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Here, the calculation of dor/da ; and R/ dot ; are presented with
Egs. (18) and (19) in Appendix L. Using Eq. (10a), the gradient
vector and the Hessian matrix of error function, including the
search direction, can be easily obtained. To improve the iteration
efficiency, the magnitude of the direction vector is controlled to

assure descent of error.

Model Updating (Experiment-Based)

The work of first model updating only resolves the problem
whether or not the reduced model can have the same performance
as the original FE model. Therefore, the reduced model has to be
further updated according to the experimental data so that it can
accurately describe or predict the responses of actual structures as
the measured data show. Furthermore, the second updating pro-
cess is to minimize the error between the reduced model and the
actual structure.

Error Function

Many types of experimental data can be used to build the error
function in the second model updating, such as natural frequency,
mode shape, antiresonance frequency, all kinds of response spec-
trum, FRF, and so on. We used natural frequencies and mode
shapes for the updating because they can be easily obtained from
experiments and are also suitable for the sensitivity analysis.
Similar to the first model updating, the error function here adopts
the form of Eq. (9) but w; and ¢F are changed to the measured
frequency mz.v[ and mode shape cp?/l, respectively. Because the
mode shapes directly measured are incomplete, <pf»vl are obtained
through a transformation different from Eq. (4), which is pre-
sented in Appendix II. Thus the error function is expressed as
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where g=number of experimental modes that are used and Ew,-,-

and Ed),«,«:ith experiment-based frequency error and MAC error,
respectively. N,,; and N, are the ith corresponding weighting co-

efficients for E,; and E‘bi, respectively.

Select Updating Parameters and Optimization
Algorithm

Compared with constructing error function, selecting suitable
structural updating parameters is more difficult and maybe the
most challenging work in the field of model updating. Erroneous
modeling, FE discretization, uncertain value of structural param-
eters, and noise-polluted measured data can invariably cause er-
rors. A selection strategy suggests how one thinks modeling error
happens and where it comes from. Moreover, different selection
strategies may cause quite different updated results. On many
occasions, erroneous modeling is the main contributor of the error
in the case of industrial and civil buildings, such as uncertain
boundary conditions and inaccurate modeling structural joints,
which have plagued designers and engineers for many years. On
such conditions, ideal assumptions must be abandoned and certain
equivalent structural parameters should be introduced to simulate
the actual structure during FE modeling. Generally speaking, it is
not practical to consider all types of errors compared with limited
experimental data. One preferable way is to set up a threshold to
single out a few largest errors and then select updating parameters
according to the selected errors. This method, also called error-
locating method, seeks the largest errors by comparing the differ-
ence for each element between the energy obtained from
computation and that from experimental results. However, the
incomplete experimental data may make the computation of en-
ergy difficult. As an alternative, the sensitivities of error function
with respect to the different structural parameters can be easily
calculated and compared with each other. Similar to error-locating
method, the maximum-sensitivity-based method is applied in our
research. All possible parameters are taken into account and their
respective sensitivities are calculated but a threshold will be set
up for comparison and only a small part of them having the larg-
est sensitivities will be singled out and adjusted during each up-
dating pace. The method not only satisfies the principle of the
minimum perturbation of parameters but makes the optimization
problem determinate at the same time. Based on this strategy, the
standard conjugate gradient method can be used to find a mini-
mum of the error function that has physical meanings.

Similar to Eq. (11), the derivative of the error function with
respect to structural updating parameters can be expressed as

q = q =
aJ _ GE, IE,;
—2 = N,E, +2 NyiEyi b (12a)
Ip; i ap; i Ip;
where
dE,; 1 dor
e s (12b)
dpj o Ip;

e} Jer
E | ()" ()"
IE¢i _ 9p; Pl (120)
dp;  MAC(eM e}

@) (@N'er
where p;=jth structural updating parameter. The calculation of
structural eigensensitivity with respect to p;(j=1,...,m) is given
in Appendix 1. Then Eq. (12a) can be used to obtain the gradient
of error function and the search direction. Similarly, the magni-
tude of the direction vector is controlled to assure descent of error
for each search pace.

Experimental Application

Main Feature of the Structure

An experimental example of a scaled structure of shear-type
jacket offshore platform (Figs. 1 and 3) is given to illustrate the
implementation of the aforementioned method. The structure is
1.92 m high and 1.04 m wide at the bottom, mainly made of steel,
and fixed to the ground through its four legs. It is a three-
dimensional (3D) beam-plate composite structure with four steel-
reinforced rubber vibration isolators placed between two steel
plates and is partitioned into five main structural parts. Some of
its initial structural design variables are listed in Table 1.

Computer-Aided Test

We carried out modal test analysis for the scaled structure. The
structure was excited by an automatic closed loop control-
feedback system and the input force is controlled by a sinusoidal
frequency-scanning signal. The frequency of signal is linearly
added from 3 to 30 Hz in about 7 min so that stable responses can
be obtained for every frequency point. Meanwhile, the amplitude
of signal is designed to remain constant. The acceleration FRFs
are automatically measured by the loop control-feedback system
based on the following equation:

a(w)

Hij(w) = %

(13)
where a,(w)=Fourier transformation of the acceleration response
signal in the time domain, measured from the ith DOF and
Fj(w)=Fourier transformation of the excitation force signal ap-
plied at the jth DOF. The small dots and arrows in Fig. 3 show the
positions of the accelerometers and their measuring directions.
Fig. 2 gives three examples of measured acceleration FRFs. Then
the modal data of the structure, such as the first five natural fre-
quencies, the corresponding modal damping ratios, and mode
shapes of the structure were identified from the experimental data.
Fig. 4 shows the five experimental natural frequencies and mode
shape values on the selected subsets of DOFs, where five corre-
sponding analytical modal parameters (reduced model) are also
given for comparison. Here the experimental mode shapes could
not be directly used for the reduced model before they were trans-
formed but Eq. (5) could not be used either because the experi-
mental mode shapes are usually incomplete for the FE model.
According to the displacement relationship given by the local-
rigidity assumption, we took another way to obtain equivalent
experimental mode shapes for the reduced model, as shown in
Appendix II. The identified natural frequencies and equivalent
mode shapes would be used for the following work of model
updating. Because the measured modal damping ratios are small
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Fig. 2. Acceleration FRFs obtained from three measuring points

(<0.04), it is reasonable and convenient to ignore the damping
ratios during the model reduction and updating processes and then
introduce them into the updated reduced model for dynamic
analysis.

Finite-Element Modeling and Model Reduction
(the First Step)

The FE modeling plan was finished in ANSYS software package,
in which every line segment of the solid model was meshed as a
single beam element (ANSYS modeling and meshing guide—
ANSYS release 7.1, May 2003; ANSYS Incorporated, unpub-
lished internal materials). The whole structure was discretized as
493 elements and 486 nodes. All elements were classified into
three types, i.e., 3D beam element for Part 1 and Part 5, shell
element for Part 2 and Part 3, and linear spring element for Part 4,
as shown in Table 1. Lump mass was used for all elements except
for the horizontal connectors and bracings between upper deck
and down deck which was regarded as massless because of small
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b |

Fig. 3. Distribution of accelerometers and the reduction of model
(3D cantilever beam)
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Fig. 4. Analytical and measured modal parameters for the reduced
model superscript "M”: measured; R: analytical

dimensions so the total structural mass was distributed to the six
floors. We used Guyan method to delete these massless nodes and
obtained the final FE model.

During the following model reduction, the local-rigidity as-
sumption was applied to the six floors and the structure was sim-
plified as a 3D cantilever beam, as shown in Fig. 3. Thus the
number of the total DOFs was reduced to only 36, namely, six
rigid-body DOFs for each floor. Then we got the 36 X 36 mass
and stiffness matrices at the first step of the reduction process. In
Table 2, we list the first five natural frequencies of the FE model,
reduced model, and test, respectively, and compare three kinds of
modal discrepancies: reduced FE, reduced test, and FE test. The
table shows relatively high reduced-FE MAC value and obviously
higher natural frequencies of the reduced model. The former in-
dicates a better correlation between the FE and reduced models. It
can be found that reduced-test modal error and reduced-FE modal
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error are obviously larger than FE-test modal error, especially for
the fourth and fifth modes. We can make certain that it is mainly
caused by the error introduced during the reduction process be-
cause the former two modal errors of the fourth and fifth modes
are nearly the same. Moreover, the reduced-test and FE-test MAC
values are also quite similar to each other. The local-rigidity as-
sumption makes the reduced model overstiff and its natural fre-
quencies higher than those of FE model. However, this effect is
not so obvious for the first three modes, where there is no large
discrepancy for these modal errors. The facts imply that there is
still something reasonable to apply the local-rigidity assumption
in the reduction of the structure. Since the reduction error is the
main cause, the first updating process is then needed to eliminate
it so that the modal errors can decrease and the reduced model
can be used.

Model Reduction (the Second Step)—Updating

We selected the first six modes, which is enough for the dynamic
analysis of the platform structure, as the object of correcting the
error of the reduced model. However, we have to admit that it is

quite difficult for the assignment of the weighting factors. There
is more art than science to do it. On many occasions, it depends
on a balance between the measurement accuracy and the engi-
neer’s experience and priority knowledge. The general principle
is that the former is more important than the latter and the lower
mode is more important than the higher one because of the in-
completeness of the measured mode shapes and the fact that ex-
perimental natural frequencies have higher precision than mode
shapes. However, the condition is a little different in the paper. In
Eq. (8a), the denominator w; in the frequency error E,; is increas-
ing with the subscript “i.” It means that for the same absolute
frequency error, the dimensionless E,; will not give the same
changing rate for the different subscript i. Let us consider rewrit-
ing Eq. (12a) as follows:

1 A oA 1
Jy = EE Wu)i(Ewi)z + EE W¢i(E¢i)2 (14)

i=1 i=1

where W,,=(w,/®;)*W,; and E,;=of-w;/®,. Then the afore-
mentioned principle can be applied under this new expression
form so we take the weight vectors as follows:

Wl ={(0)% (@)% 0.64(03)2, 0.64(w,)? 025(ws)>, 0.01(wg)?}={22.70, 28.569, 643.894, 137.969, 64.617, 5.265}

wyb=1{1, 1, 1, 1, 1, 1} (15aq)

where w,(i=1,2,...,6)=natural frequencies of the FE model. It
is equivalent that

(Wy={1, 1, 064, 064, 025 001}  (15b)

Besides, we also consider that an equal weighting factor of 22.7
for all frequency errors is used for updating. The result shows that
the finally updated natural frequencies do not change very much
but a better accuracy of the first four updated natural frequencies
is observed in the weighting factors in Eq. (15a) so we prefer to
use Eq. (15a) in the paper. Accordingly, six relevant SSFs, corre-
sponding to six floors, were selected as the parameters for the first
updating process and their initial values were set to 1.0. Then an
optimization problem was built. We solved this problem using
Gauss-Newton iterative algorithm. Eqgs. (18) and (19) were used
to calculate the eigensensitivities with respect to the SSFs and the
gradient of the error function.

Updating Results

Fig. 5 shows the procedure diagram of the first model updating,
where & was set to be equal to 0.001 as the criterion for conver-
gence. The optimization iteration was carried out for 12 paces
when the criterion was satisfied. Fig. 6 shows that the six SSFs
decrease to 1 after the iteration, which means the assumption in
the reduction process gives an overvaluation of the actual stiff-
ness of each floor. On the other hand, the fact that most of the
updated SSFs are larger than 0.9 indicates the reasonability of the
assumption. Fig. 7 compares the relative natural frequency error
of the reduced model, where a great decrease can be observed for
all six modes after the first updating. Fig. 8 shows the change of
six reduced-FE MAC values. There are some improvements for

the MAC values but not so obvious as for the frequency errors
because the initial MAC values are near to 1, thus the mode shape
contribution for the total error is small.

Second Model Updating (Experiment-Based)

Error Function

The first five measured natural frequencies and equivalent mode
shapes on the selected subsets of DOFs were used to build the

Begin
i=1

|

Initialize parameter
vector { @ ;}={1,..}

compute thei-th error i1
function value J, M {a}={a }+r{da} ‘

A
l Yes Yes No
Ji—Ji [
Tohss End max(-{Ac, }) < &
No
’J1>J|-1} e J‘r:r/Z %

lNo

Find {Ag,} by Gauss-
Newton method and select an
appropriate damping factor: r

Fig. 5. Procedure of the first model updating
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error function for the second model updating. Generally, there is
more art than science on how to select weights. Similar to the first
updating, the final updating results are not very sensitive to the
obvious change of weights. But this also means that there may be
quite a few suitable selections for an arbitrary accuracy. Then a
so-called optimized selection depends on a balance between the
measurement accuracy and the engineer’s experience and priority
knowledge. Here our strategy is to consider the measurement ac-
curacy and make the total final frequency errors minimized. The
values of the weighting factors mainly depend on the precision of
the different experimental data. In the paper, the weight vectors
were finally taken as follows:

{N,}={200, 200, 200, 200, 200}

{Ny}=14, 1, 1, 4, 1} (16)

Here we set the same weights for all frequency errors and they are
much higher compared with the MAC errors because all the mea-
sured natural frequencies have the similar precision and are much
more creditable than the measured mode shapes. Besides, the first
and fourth mode shapes are more creditable than others because
the excitation direction is consistent with their main vibration
directions so their weighting factors were taken higher.

Select Parameters for Updating

Theoretically, all possible structural variables can be selected for
adjustment in the updating. It is however computationally costly,
even impossible, if too many variables are included. To limit the
number of the unknown variables to an acceptable level, the pa-
rameters are taken for updating with the following strategies.
First, all the material variables, e.g., density and modulus, do not
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Fig. 7. Change of relative frequency error (first updating)
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Fig. 8. Change of reduced-FE MAC (first updating)

vary for the same structural part or the same element type. Sec-
ond, some larger geometrical dimensions of the structure, such as
length and width, are not included since they are easy to measure
under the well-controlled experimental conditions. Last, because
the boundary and connection conditions can be simulated with
reasonable confidence in the laboratory environment, they are
also not chosen. Then, a total of nine parameters were selected for
updating, as shown in Table 3. To make the comparison among
different parameters convenient, we used dimensionless relative
difference to trace the change of these nine parameters in the
updating process. For the parameter p, the relative difference is
expressed as

Ap =L Ll 5 1009 (17)

Pref
where p, and p s=updated value and the original reference value
of p, respectively.

The conjugate gradient method was employed to solve this
optimization problem. Egs. (20) and (21) were used to calculate
the eigensensitivities with respect to the structural parameters and
the gradient of the error function. For each iteration pace, four
largest of the total nine derivatives were singled out and then their
corresponding parameters were adjusted. The basic principle of
the whole optimization procedure is similar to Fig. 4.

Updating Results

In updating process, the error function descended and converged
to a minimum essentially after 15 iterations. Fig. 9 shows the
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Fig. 9. Change of structural parameters (second updating)
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changes of the nine parameters. It can be observed that there is an
obvious and smooth change that happened on the translational
spring stiffness K,, K, and the mass density p,. On the other
hand, the parameter d, shows a great but abrupt fluctuation at the
beginning but it gradually settles at a lower level. The improve-
ments of the four parameters mainly contribute to the decrease of
the total error so we consider them as the main cause of modeling
error. Figs. 10 and 11 show the improvements of relative fre-
quency errors and MAC values after the updating. There are ob-
vious improvements for the first four modes in Fig. 10, except for
the fifth mode which even becomes a little worse. The facts sug-
gest that there are still some discrepancies between the analytical
model and real structure. One possible explanation is that the way
that the rubber isolator is simplified as linear spring in the FE
modeling may not be good for the higher mode.

Validation of the Reduced Model

Once the updating is finished, we obtained an updated reduced
model and a group of updated structural parameters. Using these
updated parameters for FE remodeling, we can get an updated FE
model. If the proposed method is reasonable, the updated FE
model and the updated reduced model should still have good
consistency with each other. Therefore, we made a comparison in
Table 4 for these two models. The table lists the first five natural
frequencies and MAC value before and after the second updating,
respectively. It can be seen from the table that the new MAC
value change very little relative to the old. A good consistence of
the first four natural frequencies still exists for the two updated
models and they have a better approximation to the test data.
However, there is a relative large error compared with the test
data for the fifth frequency, which we think may be caused by the
oversimplification of the vibration isolators during the initial FE

1
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1 2 3 4 5
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Fig. 11. Change of reduced-test MAC (second updating)

15

-

3 "W" I W’ Mf i »T
% ] i i",lg I |

5 10 15 20
time / (s)

Fig. 12. Response comparison between theoretical predication and
experimental data

modeling. The largest relative error is about 2.20% (Fig. 10), still
within acceptable precision. To further prove the effectiveness,
we draw in time domain the computed acceleration responses of
the original FE model, the updated FE model, and the updated
reduced model under the same measured force, respectively, and
compare them with the measured response at two measuring po-
sitions, No. 1 and No. 3 (Fig. 3). Fig. 12 shows an example of
damped harmonic response on No. 3 with respect to a sinusoidal
frequency-scanning force in y-direction, which is described in
Computer-Aided Test section. Because the total signal spans a
long range of time, only a period between 5 and 20 s is shown in
this window. Its frequency band ranges from about 4.45 to 5.35
Hz, including the first natural frequency. This figure clearly shows
that the time when the maximum response happens in the updated
analytical models (their response are nearly the same) is much
closer to that in the real structure, compared with the original FE
model. It indicates that the first natural frequency of the updated
models is more consistent with the facts than the original model.
Fig. 13 shows another example of damped free vibration under an
instantaneous impulse of x-direction. It is obvious that the accel-
eration response measured in position No. 1 contains two main
frequencies, the second and fifth natural frequencies. The compu-
tation results have a good consistence with the experiment, except
for the original FE model whose response obviously lags behind
others after 0.6 s.

Conclusions

The reduction-based model updating method provides an effec-
tive way that unites the reduction and updating of a platform
structure as one problem. When the reduced model is used for
model updating, the computation work can be highly decreased
and the difficulty, caused by the incomplete measured data, is
greatly mitigated.
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The reduction method used in the paper makes the reduced
model remain the same connecting property as the original FE
model, which brings the following updating work at least two
advantages. One is that the sensitivity-based parametric method
can still be employed without modification. The other is that the
method makes model validation possible in that the initial FE
model is also calibrated to the real structure at the same time as
the reduced model is updated.

Because the proposed reduction method is based on the local-
rigidity assumption, it is then restricted to some special structures.
The closer the real structure approaches to such assumptions, the
better the reduced model, otherwise, an oversimplified or even
ill-reduced model may be obtained.

Some difficulties that have not been well cracked in
experiment-based model updating were also encountered in the
paper, e.g., the selection of structural parameters, which makes an
engineer depend on his a priori experience other than the general
science. Moreover, a reasonable numerical simulation of real
structure is also a key point for a good result of model updating,
as shown in the unsatisfied updating result of the higher modes.
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Appendix I. Eigensensitivity Analysis of Reduced
Model

Eigensensitivity with respect to Submatrix Scaling
Factor

The eigensensitivity of the reduced model with respect to SSF can
be calculated using the formula of Fox and Kapoor (1968). Be-

cause only stiffness matrix has to be corrected for the reduced
model, the derivatives of ith eigenvalue and eigenvector with re-
spect to the jth SSF are simplified as

dof 1 o 0Kg p 1 RyT
— = — (¢} o, yK
7a, 2m?(q:,) P wm @) g Ky e
er <
=2 Bl (18)
Q=
q
IK
(@RI GR (@?)T(E OWTKY_,«)qDF o
B, = da 1 (i#1
(@)’ - (ml)2 (@)’ = (@])?
0 (i=1)

Eigensensitivity with respect to Structural
Parameters

Similar to Eq. (24), the eigensensitivities can be calculated using
the formula of Fox and Kapoor (1968) as

0(1) OI)KR
( R)T{ —(w R)2 ] ¢ (20)
&pj 2 R J p/
JK
R\TZ R R

R n
YL Bl | Bus -

&pj
oM
R\T R R .
2(%) 7, ¢, (i=1)

21)

where p;=jth structural parameter and JKg/dp; and dMg/dp;
=derivative matrices of the second reduced stiffness and mass
matrices with respect to the parameter p;. These matrices can be
expressed as

K K
—L-rl—r, (22)
r?pj {?pj
and
oM oM
—L-rT—r (23)
&pj &pj

Appendix Il. Obtain the Equivalent Experimental
Mode Shapes

Generally, experimental mode shapes do not directly describe the
rigid-body DOFs of floors so they need to be transformed to the
equivalent mode shapes before they can be used in the updating
process. According to the local-rigidity assumption, if there are at
least two different test points for x-, y-, and z-directions on the ith
floor, we can obtain the equivalent mode shape values by calcu-
lating the expectation of the measured data on this floor. For the
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kth mode and the ith floor, they are expressed as

w) [ Eed )
gdy E(4})
Mz E(dy))
{OF=0 e [ =3 E@L/d) ¢ (=1,....n)
e E(- bf/d}
];Vf@ ) E<ﬁl_%>
AN e )

(24)

where subscript k refers to the kth mode; {d}'};=kth equivalent
mode shape vector describing the six rigid-body DOFs of the ith
floor; &y, bz, and bi;=measured kth mode shape values of the
x-, y-, and z-directions for the jth test point on the ith floor; and d}‘
and d}=distances from the jth test point to the mass center of the
ith floor in the x- and y-directions, respectively. The denotation
E(-) means obtaining the expectation.

References

Ahmadian, H., Gladwell, G. M. L., and Ismail, F. (1997). “Parameter
selection strategies in finite element model updating.” ASME J. Vibr.
Acoust., 119, 37-45.

Arnold, R. R., Citerley, R. L., Chargin, M., and Galant, D. (1985). “Ap-
plication of Ritz vectors for dynamic analysis of large structures.”
Comput. Struct., 21(3), 461-467.

Atalla, M. J., and Inman, D. J. (1998). “On model updating using neural
networks.” Mech. Syst. Signal Process., 12(1), 135-161.

Bampton, M. C. C., and Craig, R. R., Jr. (1968). “Coupling of substruc-
tures for dynamic analyses.” AIAA J., 6(7), 1313-1319.

Baruch, A. (1984). “Methods of reference basis for identification of linear
dynamic structures.” AIAA J., 22, 561-563.

Beck, J. L., and Katafygiotis, L. S. (1998). “Updating models and their
uncertainties. Part I: Bayesian statistical framework.” J. Eng. Mech.,
124(4), 455-461.

Benfield, W. A., and Hrude, R. F. (1971). “Vibration analysis of structures
by component mode substitution.” AIAA J., 9(7), 1255-1261.

Berman, A. (1979). “Mass matrix correction using an incomplete set of
measured models.” AIAA J., 17, 1147-11748.

Berman, A., and Nagy, E. J. (1983). “Improvement of a large analytical
model using test data.” AIAA J., 21(8), 1168-1173.

Cha, P. D., and Switkes, J. R. (2002). “Enforcing structural connectivity
to update damped systems using frequency response.” AIAA J., 40(6),
1197-1203.

Chang, C. C., Chang, T. Y. P, and Xu, Y. G. (2000). “Adaptive neural
networks for model updating of structures.” Smart Mater. Struct., 9,
59-68.

Chang, C. C., Chang, T. Y. P, and Xu, Y. G. (2002). “Selection of training
samples for model updating using neural networks.” J. Sound Vib.,
249(5), 867-883.

Collins, J. D., Hart, G. C., Hasselman, T. K., and Kennedy, B. (1974).
“Statistical identification of structures.” AIAA J., 12, 185-190.

Farhat, C., and Hemez, F. M. (1993). “Updating finite element dynamic
models using an element-by-element sensitivity methodology.” AJAA
J., 31(9), 1702-1711.

Fox, R. L., and Kapoor, M. P. (1968). “Rates of change of eigenvalues
and eigenvectors.” AIAA J., 6(12), 2426-2429.

Friswell, M. L, Garvey, S. D., and Penny, J. E. T. (1995). “Model reduc-
tion using dynamic and iterated IRS techniques.” J. Sound Vib.,
186(2), 311-323.

Friswell, M. 1., Garvey, S. D., and Penny, J. E. T. (1998). “The conver-
gence of the iterated IRS method.” J. Sound Vib., 211(1), 123-132.

Gladwell, G. M. L., and Ahmadian, H. (1995). “Generic element matrices

suitable for finite element model updating.” Mech. Syst. Signal Pro-
cess., 9, 601-614.

Guyan, R. J. (1965). “Reduction of stiffness and mass matrices.” AIAA J.,
3(2), 380.

Hintz, R. M. (1975). “Analytical methods in component modal synthe-
sis.” AIAA J., 13(8), 1007-1016.

Hou, S. N. (1969). “Review of modal synthesis technique and a new
approach.” The Shock and Vibration Bulletin, 40(4), 25-39.

Hurty, W. C. (1965). “Dynamic analysis of structural systems using com-
ponent modes.” AIAA J., 3(4), 678-685.

Imregun, M., Sanliturk, K. Y., and Ewins, D. J. (1995a). “Finite element
model updating using frequency response function data—II: Case
study on a medium-size finite element model.” Mech. Syst. Signal
Process., 9(2), 203-213.

Imregun, M., Visser, W. J., and Ewins, D. J. (1995b). “Finite element
model updating using frequency response function data—I. Theory
and initial investigation.” Mech. Syst. Signal Process., 9(2), 187-202.

Jaishi, B., and Ren, W. X. (2005). “Structural finite element model up-
dating using ambient vibration test results.” J. Struct. Eng., 131(4),
617-628.

Katafygiotis, L. S., and Beck, J. L. (1998). “Updating models and their
uncertainties. Part II: Model identifiability.” J. Eng. Mech., 124(4),
463-467.

Katafygiotis, L. S., and Lam, H. F. (2002). “Tangential-projection algo-
rithm for manifold representation in unidentifiable model updating
problems.” Earthquake Eng. Struct. Dyn., 31, 791-812.

Katafygiotis, L. S., and Yuen, K. V. (2001). “Bayesian spectral density
approach for modal updating using ambient data.” Earthquake Eng.
Struct. Dyn., 30(8), 1103-1123.

Kim, K. O., and Kang, M. K. (2001). “Convergence acceleration of itera-
tive modal reduction methods.” AIAA J., 39(1), 134-140.

Kuhar, D. G., and Stahle, C. V. (1974). “A dynamic transformation
method for modal synthesis.” AIAA J., 12(5).

Lam, H. F, Katafygiotis, L. S., and Mickleborough, N. C. (2004). “Ap-
plication of a statistical model updating approach on phase I of the
IASC-ASCE structural health monitoring benchmark study.” J. Eng.
Mech., 130(1), 34-48.

Leger, P, and Wilson, E. L. (1987). “Generation of load dependent Ritz
transformation vectors in structural dynamics.” Eng. Comput., 4(4),
309-318.

Levin, R. I, and Lieven, N. A.J. (1998a). “Dynamic finite element model
updating using simulated annealing and genetic algorithms.” Mech.
Syst. Signal Process., 12(1), 91-120.

Levin, R. I, and Lievin, N A J. (1998b). “Dynamical finite element model
updating using neural networks.” J. Sound Vib., 210, 593—-607.

Levin, R. I, Lievin, N. A. J., and Lowenburg, M. H. (2000). “Measuring
and improving neural network generalization for model updating.” J.
Sound Vib., 238(3), 401-424.

Lim, T. W. (1990). “Submatrix approach to stiffness matrix correction
using modal test data.” AIAA J., 28(6), 1123—1130.

Lin, R., and Xia, Y. (2003). “A new eigensolution of structures via dy-
namic condensation.” J. Sound Vib., 266, 93—-106.

Lin, R. M., Lim, M. K., and Du, H. (1995). “Improved inverse eigensen-
sitivity method for structural analytical model updating.” ASME J.
Vibr. Acoust., 117, 192—-198.

Lu, Y., and Tu, Z. G. (2004). “A two-level neural network approach for
dynamic FE model updating including damping.” J. Sound Vib., 275,
931-952.

Modak, S. V., Kundra, T. K., and Nakra, B. C. (2002). “Comparative
study of model updating methods using simulated experimental data.”
Comput. Struct., 80, 437-447.

Mottershead, J. E., and Friswell, M. 1. (1993). “Model updating in struc-
tural dynamics: A survey.” J. Sound Vib., 167(2), 347-375.

O’Callahan, J. C. (1989). “A procedure for an improved reduced system
(IRS) model.” Proc., 7th Int. Modal Analysis Conf., Society for Ex-
periemntal Mechanics, Las Vegas, 17-21.

Pandey, P. C., and Barai, S. V. (1995). “Multilayer perceptron in damage
detection of bridge structures.” Comput. Struct., 54(4), 597-608.

Paz, M. (1989). “Modified dynamic condensation method.” J. Struct.

JOURNAL OF ENGINEERING MECHANICS © ASCE / FEBRUARY 2010/ 141

Downloaded 28 Mar 2011 to 159.226.231.70. Redistribution subject to ASCE license or copyright. Visihttp://www.ascelibrary.org



Eng., 115(1), 234-238.

Qu, H. A., and Selvam, P. (2005). “Model order reduction of viscously
damped vibration systems using accelerated iterative dynamic con-
densation.” J. Appl. Mech., 72(5), 761-771.

Qu, Z. Q., and Fu, Z. F. (1998). “New structural dynamic condensation
method for finite element models.” AIAA J., 36(7), 1320-1324.

Rao, G. V. (2002). “Dynamic condensation and synthesis of unsymmetric
structural systems.” J. Appl. Mech., 69(5), 610-616.

Rubin, S. (1975). “Improved component-mode representation for struc-
tural dynamic analysis.” AIAA J., 13(8), 995-1006.

Setareh, M., Hanson, R. D., and Peek, R. (1992). “Using component
mode synthesis and static shapes for tuning TMDs.” J. Struct. Eng.,
118(3), 763-782.

Suarez, L. E., and Singh, M. P. (1992a). “Modal synthesis method for
general dynamic systems.” J. Eng. Mech., 118(7), 1488—1503.

Suarez, L. E., and Singh, M. P. (1992b). “Dynamic condensation method
for structural eigenvalue analysis.” AIAA J., 30(4), 1046-1054.

Tsuei, Y. G., and Yee, E. K. L. (1989). “Direct component modal synthe-
sis technique for system dynamic analysis.” AIAA J., 27(8), 1083—
1088.

Wilson, E. L., Yuan, M. W., and Dickens, J. M. (1982). “Dynamic analy-
sis by direct superposition of Ritz vectors.” Earthquake Eng. Struct.
Dyn., 10, 813-821.

Xia, Y., and Lin, R. (2004). “Improvement on the iterated IRS method for
structural eigensolutions.” J. Sound Vib., 270, 713-727.

Yuen, K. V., and Katafygiotis, L. S. (2002). “Bayesian modal updating
using complete input and incomplete response noisy measurements.”
J. Eng. Mech., 128(3), 340-350.

Yun, C. B., and Bahng, E. Y. (2000). “Substructural identification using
neural networks.” Comput. Struct., 77, 41-52.

Zimmerman, D. C., and Widengren, M. (1990). “Correcting finite ele-
ment models using a symmetric eigenstructure assignment technique.”
AIAA J., 28(9), 1670-1676.

142 / JOURNAL OF ENGINEERING MECHANICS © ASCE / FEBRUARY 2010

Downloaded 28 Mar 2011 to 159.226.231.70. Redistribution subject to ASCE license or copyright. Visihttp://www.ascelibrary.org



