
N
o

R
K

a

A
R
R
A

K
P
I
N
P

1

f
T
f
[
t
r
o
u

s

i
a
s
t
s
b
u
g
m

0
d

J. Non-Newtonian Fluid Mech. 165 (2010) 1228–1240

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journa l homepage: www.e lsev ier .com/ locate / jnnfm

on-modal instabilities of two-dimensional disturbances in plane Couette flow
f a power-law fluid

ong Liu, Qiusheng Liu ∗

ey Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

r t i c l e i n f o

rticle history:
eceived 6 August 2009
eceived in revised form 5 June 2010
ccepted 9 June 2010

a b s t r a c t

Instabilities of fluid flows have traditionally been investigated by normal mode analysis, i.e. by linearizing
the equations of flow and testing for unstable eigenvalues of the linearized problem. However, the results
of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In this
paper we study the instabilities of two-dimensional Couette flow of a polymeric fluid in the framework of
eywords:
ower-law fluid
nstabilities
on-normal mode

non-modal stability theory rather than normal mode analysis. A power-law model is used to describe the
polymeric liquid. We focus on the response to external excitations and initial conditions by examining
the pseudospectra structures and the transient energy growths. For both Newtonian and non-Newtonian
flows, the results show that there can be a rather large transient growth even though the linear operator
of Couette flow has no unstable eigenvalue. The effects of non-Newtonian viscosity on the transient

n this
mplit
seudospectra behaviors are examined i
increases/decreases the a

. Introduction

Polymeric liquids associated with shear flows are commonly
ound in industrial applications as well as in natural processes.
hese structurally complex polymeric liquids have behaviors dif-
erent from that of Newton fluids because of non-Newtonian effects
1]. The instabilities of flow play important roles in many indus-
rial processes, because the growth of disturbances of flow may
esult in more complicated flow patterns. Non-Newtonian effects
n the instability characteristics of polymeric liquids are of partic-
lar interest for technology importance.

The equation governing the first order disturbances for a fluid
ystem is in the form of a linear dynamical system:

du
dt

= −iLu, (1)

n which u(t) is the state function representing the system at time t
nd L is the linear operator. In hydrodynamic stability problems, for
uch a system there are two distinct regions in the evolution of dis-
urbances [2,3]. The first is the asymptotic long time region, and the
econd is the transient region. In mathematical sense, instability

ehaviors in the the first region are determined by the eigenval-
es of the linear operator L. In the second region, the transient
rowth may be quite substantial, such that the nonlinear region
ay be reached before the growth of eigenvalue mode. Hence, the

∗ Corresponding author.
E-mail addresses: liurong@imech.ac.cn (R. Liu), liu@imech.ac.cn (Q. Liu).

377-0257/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2010.06.007
study. The results show that the “shear-thinning/shear-thickening” effect
ude of responses to external excitations and initial conditions.

© 2010 Elsevier B.V. All rights reserved.

eigenvalues of the system are insufficient to predict to instability
behavior of the transient region.

Until now, the eigenvalue analysis is the principal tool in
determining the stability characteristics of a fluid system. In this
approach the non-linear equations are linearized about the basic
solution, and the stability is then determined by examining the
eigenvalues of linear operator L. If there is an eigenvalue with
positive imarginary part, then the corresponding eigenvector
exponentially increases with time, and the flow is linearly unsta-
ble. The eigenvalue analysis [4] has successfully predicted the
instability behaviors for some fluid systems, such as Rayleigh
convection and Taylor Couette flow. However, for other instability
problems, particularly the instabilities in shear flows, this approach
fails to match most experimental results. For example, eigenvalue
analysis shows that plane Couette flow and pipe Poiseuille flow
are always stable to small disturbances for all Reynolds numbers.
However, experimental studies show that Couette flow becomes
unstable at Reynolds number Re = 360 and pipe Poiseuille flow at
Re = 2000. Such discrepancies lead to reexamination of the results
of traditional eigenvalue analysis and a novel way, i.e. non-normal
stability theory, of describing stability of fluids. The non-normal
mode analysis is based on the fact that even if all of the eigenvalues
of a linear operator are distinct and lies inside the stable plane,
inputs to the system may be amplified by a rather large factor if the

operator L is non-normal, i.e. LL∗ /= L∗L. Here * denotes the Hermit
transpose. The elements of non-normal stability theory can be
referred in the books by Trefethen and Embree [5], and by Schmid
and Henningson [6]. We should note that the non-normal analysis
is only valid locally and the non-normal growth mechanism does
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ot predict global features of transition to turbulence which is
ssentially a non-linear process. Waleffe [7,8] has made important
orks on transition in shear flows from the viewpoint of non-

inearity. It is argued that transition is a part of the self-sustaining
rocess by which finite-amplitude solutions are sustained.

Stabilities of non-Newtonian fluids involving shear flows have
iven rise to great scientific interest. Instabilities of plane Couette
ow and Poiseuille flow of non-Newtonian fluid systems have been
tudied by many authors [9–11]. However, a careful look at pre-
ious works on these subjects indicates that most of instability
nalyses are in the framework of traditional eigenvalue analysis.
ecently, some authors have studied the non-modal stability for
arious non-Newtonian fluid systems [12–14].

Motivated by previous works, we reexamine the instabilities
f plane Couette flow of a polymeric liquid using the non-normal
tability theory. One of the most important characteristics of
acromolecular fluids is the non-Newtonian viscosity, i.e. the fact

hat the viscosity of the fluid changes with the shear rate. The gen-
ralized Newtonian model has been widely used to describe the
hear rate dependence of the viscosity. Various forms, such as the
ower-law mode and the Carreau model, of the generalized Newto-
ian model can be referred in the book by Bird et al. [16]. Recently,
hikkadi et al. [14] have studied the effect of viscosity stratification
n the transition to turbulence using the Carreau model. Although
he generalized Newtonian fluid is of great value in engineering
roblems, its use is strictly limited to steady-state shearing flows.
or unsteady non-Newtonian flows, the elastic response of the fluid
ecomes important. The Maxwell model containing two constants

s widely used to describe the linear viscoelastic fluid [16]. The
ldroyd models can be used to describe the non-linear viscoelastic
on-Newtonian fluids [16]. Hoda et al. [17] have investigated fre-
uency responses of streamwise-constant perturbations in channel
ows of of Oldroyd-B fluids. For unsteady non-Newtonian flows,
oth the viscosity and the elasticity will play role in determin-

ng the stability of the flow. The influence of viscoelasticity on the
ransient behaviors of non-Newtonian flows are somewhat com-
licated. When investigating the problem, it is helpful to look at
ifferent aspects of the problem separately whenever possible. In
he present problem, we only consider the linear transient behav-
or of infinitesimal small disturbance upon a steady basic state. It is
easonable to assume that the perturbed state of the flow does not
epart far away from the basic state. Thus, we only study the influ-
nces of the non-Newtonian viscosity on the transient behaviors
nd neglect the influence of the elasticity. In the present study, we
se the power-law model to describe the polymeric liquid and focus
n the effects of non-Newtonian viscosity, i.e. “shear-thinning” and
shear-thickening”, on the short time transient rather than eigen-
alue mode instabilities.

The paper is organized as follows. In Section 2, the control-
ing equations of the physical model are established. In Section
, we give a brief description of the non-modal stability theory.
he numerical methods of computing pseudospectra and transient
rowth G(t) are presented in Section 4. In Section 5, we present
he results and discussions. Finally, in Section 6, we summarize the
esults and present the conclusions.

. Mathematical formulation

We consider an incompressible power-law fluid bounded by
wo infinite parallel plates moving in opposite directions with

elocities ±U, as illustrated in Fig. 1. The coordinate system (x, y, z)
s chosen such that the origin is a midway between the plates with
he x axis in the direction of basic flow and the z axis perpendicular
o the plates. The two plates are located at z = ±d. The parallel basic
ow ū(z) in the x-direction only depends on z.
Fig. 1. Geometry and coordinate system for plane Couette flow of a power-law fluid.

For plane shear flow, the linear stability of the streamwise
can be described by the Orr–Sommerfeld equation, and the span-
wise and three-dimensional disturbances can be described by the
Orr–Sommerfeld and Squire equations. For Couette and Poiseuille
flows, Squire’s theorem [18] implies that the critical Reynolds num-
ber for two-dimensional disturbances is lower than the that for
three-dimensional ones. So, for normal mode analysis one only
need to study the two-dimensional case of streamwise distur-
bance. We should note that Squire’s theorem is only valid for
eigenvalue problems. Strictly speaking, in order to seek the opti-
mal transient growth, investigating the non-modal stability of
three-dimensional disturbances is indispensable. For Couette and
Poiseuille flows of Newtonian fluids, spanwise disturbances have
the optimal transient growth [19]. Chikkadi et al. [14] have studied
the transient growth of the Poiseuille flow using the Carreau model.
The authors stated that the optimal transient growth of spanwise
disturbances is only slightly influenced by “shear-thinning” effect.
We should note that the viscosity perturbations are neglected in
Ref. [14]. Nouar et al. [15] have revisited the same problem. Being
different to Chikkadi et al. [14], the authors have considered a non-
vanishing viscosity disturbance, and obtained different results to
that reported in Ref. [14]. However, the influence of non-Newtonian
viscosity on the transient growth of the streamwise disturbances
has not been reported in Refs. [14,15].

For the present problem, at a fixed Reynolds number, the tran-
sient growth of the streamwise disturbances may be far weaker
than that of three-dimensional case. Nevertheless, it does not
indicates that investigating the response or the transient growth
of streamwise disturbances are not important. From an input-
out point of view, input of streamwise disturbance is possible.
Before we study the transient behavior of three-dimensional dis-
turbances, it is helpful to know the influence of non-Newtonian
viscosity on the non-modal stability of streamwise disturbance.
In the present paper, we only consider two-dimensional distur-
bances, even though we are fully aware that three-dimensional
disturbances may have a larger amplification. At least, the results
of two-dimensional streamwise disturbances predict the lowest
bound of the optimal growth of the disturbances propagating in
different directions.

2.1. Controlling equations

The equations governing the evolution of fluid flow are the
Navier–Stokes equations. For an incompressible non-Newtonian

fluid, the equations are expressed as:

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u = − 1
�

∇p+ ∇ · �, (3)
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ith the boundary conditions

(d) = U, v(d) = 0, w(d) = 0, (4)

(−d) = −U, v(−d) = 0, w(−d) = 0, (5)

here t is the time, u is the velocity vector, u, v, w are the velocity
omponents in the x, y, z directions respectivley, p is the pressure, t
s the stress tensor which can be written in a generalized Newtonian
orm [1]

= ��̇, with � = �(�̇), (6)

ere �̇ = ∇u + (∇u)T is the rate of strain tensor, and the effective
iscosity � is the function of �̇ . The magnitude of the rate of strain
ensor is defined as:

˙ =
√

1
2

(�̇ : �̇). (7)

here are many expressions to describe the non-Newtonian
iscosity function �(�̇). For polimeric liquid, we choose the two-
arameter power-law expression for �(�̇)

= m�̇n−1, (8)

n which m and n are constants characterizing the fluid. In pro-
essing range of many polymeric liquids the power-law is a good
pproximation. A “shear-thinning” fluid has n < 1, and a “shear-
hickening” fluid has n > 1. n = 1 reduces to the Newtonian case.
early all non-Newtonian fluids show “shear-thinning”, only some
articularly concentrated suspensions show regions of “shear-
hickening” [20].

The evolution equations for the disturbances can be derived by
onsidering a basic state (ū, p̄) and the perturbed state (u, p) =
ū + u′, p̄+ p′). Here the prime denotes disturbed variable. For both
tates, the Navier–Stokes equations are satisfied.

.2. Basic state

In the basic state, the velocity components and the magnitude
f �̇ are:

=
(
Uz

d
,0,0

)
, ¯̇� = U

d
. (9)

he rate of strain tensor and the stress tensor are:

¯̇ =

⎛
⎜⎜⎝

0 0
U

d
0 0 0

U

d
0 0

⎞
⎟⎟⎠ , �̄ =

⎛
⎜⎜⎜⎝

0 0 m
(
U

d

)n
0 0 0

m
(
U

d

)n
0 0

⎞
⎟⎟⎟⎠ . (10)

.3. Linearized equations

Subtracting the equations for the basic and perturbed state, the
inearized evolution equations for disturbances can be written as:

· u′ = 0, (11)

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū = − 1

�
∇p′ + ∇ · (�̄�̇ ′) + ∇ · (�′ ¯̇�), (12)

n which

· (�̄�̇ ′) = m ¯̇�
n−1∇2u′, (13)[ ]
· (�′ ¯̇�) = m(n− 1) ¯̇�
n−1 ∂� ′

xz

∂z
ex + ∂� ′

xz

∂x
ez , (14)

ere � ′
xz = ∂w′/∂x + ∂u′/∂z, ex and ez denote the unit vectors point

n the x and z directions.
Mech. 165 (2010) 1228–1240

For Couette flow, the non-Newtonian fluid has the same basic
velocity with Newtonian ones. The last term in Eq. (12) denotes
the departure from Newtonian fluid behavior. In Eq. (14), we note
that this additional term only appears in the x and z momentum
equations. Thus, the non-Newtonian effect of nonconstant viscosity
is anisotropic.

The two-dimensional streamwise disturbances are expanded in
Fourier form:

f ′(x, z, t) = f (z, t) exp(i˛x), (15)

here ˛ is the streamwise wavenumber.
The controlling equations are nondimensionalized with length

scale d, velocity scale U, time scale d/U. Using the continuity equa-
tion and eliminating the pressure, we obtains the Orr–Sommerfeld
equation for plane Couette flow:

∂

∂t
(D2 − a2)w + iaz(D2 − a2)w = 1

Re
[nD4 + 2(n− 2)a2D2 + na4]w,

(16)

with boundary conditions

w(±1) = Dw(±1) = 0, (17)

in which D denotes ∂/∂z, the Reynolds number is defined as:

Re = �Ud

m

(
d

U

)n−1

. (18)

3. Non-modal stability theory

In non-modal stability theory, stability is redefined in a broader
sense as the response to general input variables, including initial
conditions, impulsive and continuous external excitations. In math-
ematic sense, an impulsive excitation is equivalent to an initial
condition. In this section, we will give a brief description of the non-
modal theory. More details can be referred in the books by Trefthen
et al. [5] and by Schmid et al. [6]. As most of previous works on the
subject of non-modal analysis on hydrodynamic stabilities, we are
interested in responses to continuous external excitations and to
initial conditions.

Now we begin with the responses to external excitations. Sup-
pose a fluid system is driven by a signal of the form:

V(x, y, z, t) = exp(−iωt)v(x, y, z), (19)

in whichω is the complex frequency. Then the response U(x, y, z, t)
and the input signal V satisfy the equation:

dU

dt
= −iLU + exp(−iωt)v. (20)

From Eq. (20), we obtain the response U(x, y, z, t) in the form of

U(x, y, z, t) = i exp(−iωt)u = i exp(−iωt)(ωI − L)−1v, (21)

here I is the identical matrix. The solution operator (ωI − L)−1 is
known as the resolvent. We denote the maximum amplification of
a disturbance at frequency � byR(ω,˛).R(ω,˛) is equal to the norm
of the resolvent and expressed as:

R(ω,˛) = sup
v /= 0

‖u‖
‖v‖ = ‖(ωI − L)−1‖, (22)

here ‖ · ‖ denotes a norm on L, “sup” denotes maximum. An eigen-
value of L is a number ω such that ‖(ωI − L)−1‖ = ∞. Generalizing

this result leads naturally to the definition of “ε-pseudospectra” [5].

For each ε> 0, the ε-pseudospectra �ε(L) of an operator L is the
set of ω∈C such that

||(ωI − L)−1|| ≥ ε−1. (23)
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seudospectra can also be defined in other equivalent ways [5].
or a normal operator L, the 2-norm of the resolvent R(ω,˛) =
|(ωI − L)N−1||2 is given by R(ω,˛) = sup� ∈	(L)|ω − �|−1, where

(L) is the spectrum of L and | · | denotes the distance. When ω
s far from the spectrum the resolvent norm of a normal operator
s small. However, for a non-normal operator L, the norm of the
esolvent can be large even when ω is far from the spectrum.

Quest for maximum amplification of initial condition is of par-
icular interest in many hydrodynamic stability problems. For a
inearized fluid system:

du
dt

= iLu (24)

f the operator Lhas no time-dependence, the solution has the form:

(t) = e−iLtu(0). (25)

he maximum amplification of initial condition has the form:

(t) = sup
u(0) /= 0

||u(t)||2
||u(0)||2 = ‖e−iLt‖2. (26)

.1. Choice of measure
We note that both the pseudospectral and the growth func-
ion are dependent on the definition of norm. From mathematical
nd physical consideration, an appropriate measure of the distur-
ance is indispensable. Mathematically speaking, it is convenient
o take || · || to be 2-norm and the corresponding inner product is

ig. 2. Pseudospectra for plane Couette flow with˛= 1.0, n = 2.0: (a) Re = 350, (b) Re = 1000
o 10−3 in (a), 10−6 in (b) and 10−8 in (c).
Mech. 165 (2010) 1228–1240 1231

defined as:

(u,v) = v∗u, (27)

here * denotes the conjugate transpose. The energy norm can be
introduced as:

||v||2 =
∫ 1

−1

(|u|2 + |v|2 + |w|2)dz, (28)

here v = (u, v,w) are the amplitude of velocity. After introducing a
Fourier mode associated with the streamwise wavenumber ˛, for
two-dimensional disturbances the energy norm is in the form of

||v||2 = 1
˛2

∫ 1

−1

(|Dw|2 + ˛2|w|2)dz. (29)

As seen in Section 4, the energy norm can be handled within the
framework of the 2-norm by introducing an energy matrix.

4. Numerical method

We implement a Chebyshev collocation method to solve the

pseudo-eigenvalue problem. The variable w is expanded as:

w =
N∑
n=0

anTn(z), (30)

, (c) Re = 3500. The outermost and innermost contours represent levels from ε= 10−1
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n which Tn denotes the nth Chebyshev polynomial. Using the
hebyshev series (30), Eq. (16) can be written in vector form:

d

dt
w = Losw, (31)

n which w = (a0, . . . , aN). This system of equations is required to
olve for N + 1 unknowns. Chebyshev-Tau method and collocation
ethod have been used to solve eigenvalue problems by many

uthors. The numerical method for the general eigenvalue prob-
em in the form of Ax = 
Bx are described in the book by Canuto
t al. [22]. In our problem, after we implement the boundary con-
itions, the matrix B should remain to be non-singular. The detail
f implementation of the boundary conditions can be refer in Ref.
6]. In our computations, N = 80 is enough to obtain satisfactory
esults.

We substitute Eq. (30) into Eq. (29), the energy norm of v is
xpressed as:

|v||2 = w∗Ew (32)

he matrix E is symmetric and can be decomposed in the form
= M∗M. The energy norm is expressed as:

|v||2 = (Mw,Mw). (33)
n our computation, let x = Mw. Thus, the energy norm of v is
quivalent to the 2-norm of x, and the O–S equation is in the form
f

d

dt
x = −iMLosM−1x. (34)

ig. 3. Pseudospectra for plane Couette flow with˛= 1.0, n = 1.0: (a) Re = 350, (b) Re = 1000
o 10−4 in (a) and 10−8 in (b) and (c).
Mech. 165 (2010) 1228–1240

We compute the norm of the solvent by using the relation:

||(ωI − L)−1||2 = [smin(ωI − L)]−1, (35)

where L = MLosM−1, smin(ωI − L) denotes the smallest singular
value ofωI − L. Thus, the pseudospectra can be obtained by solving
the singular value problem. It is convenient to compute the entire
set of singular values of ωI − L using the SVD function in matlab or
library software such as LAPACK.

The growth function G(t) associating with the energy norm can
be computed using the method in Ref. [2]. In this approach we only
need the eigenvalues and corresponding eigenvectors. The function
G(t) is approximated by

GK = ||Fe−i	K tF−1||22, (36)

where �K is the matrix of dimension K with the first K eigenval-
ues on the diagonal. F can be obtained by A = F∗F in which the
components of A are the inner product of the eigenvector:

Ajl = (qj, ql). (37)

The growth function can also be computed directly by

G(t) = ||e−iLt ||22. (38)

Our computations indicate that these two method yield almost
indistinguishable results except for t → 0.
5. Results and discussions

The eigenvalues only predict the long time instability behaviors.
Only for normal operators, eigenvalues is sufficient to describe the

, (c) Re = 3500. The outermost and innermost contours represent levels from ε= 10−1
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ig. 4. Pseudospectra for plane Couette flow with˛= 1.0, n = 0.2. (a) Re = 350, (b) Re =
o 10−8.

nstability behaviors for all time. For the present problem, the oper-
tor is of non-normal type. We will study the transient behaviors
f the responses to external excitations and initial conditions. In
athematical meaning, the resolvent norm and the growth func-

ion represent the amplification of response to external forcing and
nitial condition, respectively.

.1. Spectra and pseudospectra

The instability behavior depends not only on the eigenvalues,
ut on the regions where the resolvent norm is large. For the present
roblem, examining the structure of pseudospectra is helpful to
nderstand the influences of the Reynolds number and the effect
f non-Newtonian viscosity on the transient behavior.

Figs. 2–4 plot pseudospectral boundaries together with the
pectra in the ω plane for n = 2.0, 1.0, 0.2 and ˛= 1.0 with Reynolds
umbers Re in the range of 350–3500. The real part of the complex

requency is denoted by ωr and the imaginary part by ωi. In these
gures, n = 2.0, 1.0, 0.2 correspond “shear-thickening”, Newtonian
nd “shear-thinning” cases, respectively. For Newtonian fluid, these
eynolds numbers roughly span the range from occasional turbu-

ence to unavoidable turbulence. As expected, the system does not
ermit unstable spectra for both Newtonian and non-Newtonian
uids.
In Fig. 2 for the “shear-thickening” case of n = 2.0, the spec-
ra consist of three main branches, i.e. the left, middle, and right
ranches. The left and the right branches are symmetric about
r = 0. Comparing Fig. 2(a)–(c), it is observed that the number of
igenvalues on each branch depends on the Reynolds number. In
, (c) Re = 3500. The outermost and innermost contours represent levels from ε= 10−1

Fig. 2(a) for Re = 350, there are only two eigenvalues in the left or
the right branch. As Re increases to 3500, the number of eigen-
values in the left branch or the right branches increases to 10. In
Fig. 2(a)–(c), the inner boundaries of pseudospectra are located
near the intersection of the three branches. In Fig. 2(a) the inner
boundary is ε= 10−3, and the lines of ε≤ 10−4 shrink to the points
of eigenvalues. In Fig. 2(c), the inner boundary of ε= 10−8 covers
an appreciable region near the intersection of the three branches.
The pseudospectra in Fig. 2(a)–(c) show that with the increase of
Reynolds number, the intersection region of the three branches
becomes more sensible to perturbations.

In Fig. 3, the structures of spectra for n = 1.0 are qualitatively
similar to those for n = 2.0 in Fig. 2. Comparing the spectra and the
boundary of pseudospectra in Fig. 3(a)–(c) to that in Fig. 2(a)–(c)
respectively, we observe that each branch of n = 1.0 has a larger
number of spectra, and the vicinity of intersection of the branches
of n = 1.0 is more sensible to perturbations than that of n = 2.0.

As shown in Fig. 4(a) for n = 0.2, the structure of spectra of
Re = 350 is qualitatively similar to those in Figs. 2 and 3. How-
ever, even for such a low Reynolds number, the eigenvalues in the
vicinity of the intersection of branches are rather sensible to pertur-
bations. With the increase of the Reynolds number, the sensibility
of the spectra in the intersection region dramatically increases. As
a result, the symmetry of middle branch is broken and the middle

branch becomes a region consist of random spectra.

As the above discussions, the results show that the sensibility
of the vicinity of the intersection is dependent on the Reynolds
number and the coefficient n. The increase of Reynolds number
and the “shear-thinning” effect play an active role in increasing
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Fig. 5. Pseudospectra of L for two-dimensional plane Couette flow with Re

he sensibility to perturbations and the amplification to external
xcitations.

.2. Resonance of external excitation

Spectra and pseudospectra provide us with the transient behav-

or for a given wavenumber ˛. In order to obtain the maximum of
esonance to external excitations, we need to examine the global
ehavior of the operator L for all wavernumbers.

Plots of the pseudospectra of the continuous operator are
resented in Fig. 5 for n = 2.0, 1.0, 0.2. In Fig. 5, the spectra of two-

Fig. 6. Pseudoresonance to real frequency for two-dimensional plane
. (a) n = 2.0, (b) n = 1.0, (c) n = 0.2. The contours represent the level of log ε.

dimensional operator L are confined in the shade region. Trefethen
et al. [21] presented the pseudospectra of the three-dimensional
operator for Newtonian Couette flow. For each (˛, ˇ) the the
spectrum is discrete. Here ˇ is the spanwise wavenumber. The
spectra of three-dimensional operator L are continuous. According
to Square theorem [18], the two-dimensional instability is more

unstable than the three-dimensional counterpart. So, spectra of
the three-dimensional operator have the same boundary as that
of the two-dimensional one. Here we should note that the spectra
of the two-dimensional operator are discrete and only confined
in the shade region. The contour of ε can be interpreted as the

Couette flow at various Reynolds numbers. (a) n = 1.0, (b) n = 0.2.
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ig. 7. Pseudoresonance to real frequency for two-dimensional plane Couette flow
ith various n at Re = 1000.

oints of equal magnitude of resonance to external excitations. It is
hown that with the decrease of n, the spectral region significantly
xtends in the stable plane (ωi < 0). However, unstable eigenval-
es are not permitted even when n decreases to 0.2. Apparently,
ith the decrease of n, the pseudospectra of ε= 10−2, 10−1.5 pro-

rude more deeply into the unstable plane (ωi > 0). As shown in
ig. 5(a)–(c), for each ω the magnitude of resonance ε−1 increases
ith the decrease of n. This indicates that “shear-thinning” effect
ill amplify the resonances to external excitations.

In the complex ω plane, we are interested in the resonance of
he real axis because it corresponds to external excitations at real
requencies. The maximal amplification of disturbance with a fixed
avenumber has been defined by Eq. (22). We define the maximal

esonance of excitations with real frequencies as:

(ω) = max
∀˛∈R

R(ω,˛), ω∈R. (39)

In Fig. 6(a) and (b), the curves of the maximal resonance versus
he frequency of external excitation are presented for Newtonian

uid and “shear-thinning” fluid at various Reynolds number from
00 to 3500. As shown in these figures, the resonances significantly

ncrease with the Reynolds number for both cases of n = 1.0 and 0.2.
t is also observed that the resonance decreases monotonously with
he magnitude of frequency. This result indicates that the largest

Fig. 8. Transient growth G versus time for two-dimensional plane Co
Fig. 9. Transient growth G versus time for two-dimensional plane Couette flow with
various n at Re = 1000.

amplification is achieved for time-independent excitation and the
response is more sensible to lower frequency disturbances.

In Fig. 7, the curves of the maximal resonance versus the fre-
quency are presented for different n at the Reynolds number
Re = 1000. As shown in this figure, the maximal resonance occurs
at zero frequency for each n. The resonance significantly increases
with the decrease of n at each frequency. The curves in Fig. 7 show
that the “shear-thinning” effect and the “shear-thickening” effect
have adverse influences on the resonances to external excitations.

5.3. Response to initial condition

In this subsection, we will examine the effects of non-Newtonian
viscosity and the Reynolds number on the growth function G(t) of
streamwise disturbances. We define the optimal growth Gmax =
maxtG(t), and denote the optimal time corresponding to Gmax by
tmax. Reddy and Henningson [19] consider three types of behaviors
for the Poiseuille flow of Newtonian fluids. If the Reynolds num-

ber is less than Re1, then G(t) < 1 for t < 0. In this case, Gmax = 1 and
tmax = 0. If the Reynolds number exceeds Re2 such that the oper-
ator L has an unstable eigenvalue, then Gmax = ∞ and tmax = ∞. If
Re1 < Re < Re2, the flow is linearly stable but has a transient growth.

uette flow at various Reynolds numbers. (a) n = 0.2, (b) n = 2.0.
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For general instability problems, these three types of behavior
hould be considered. However, for Couette flow the operator has
o unstable eigenvalue, so Re2 = ∞. For Newtonian Couette flow,
e found that Re1 = 57.5 at ˛= 1.0. For non-Newtonian cases, we

ompute Re1 for various n in the range of 0.2 ≤ n ≤ 2.0 at ˛= 1.0. It is
ound that Re1 and n has approximately a linear relation expressed

s:

e1 = 22.6 + 43.9(n− 0.2). (40)

In general, Re1 is the function of ˛ at a fixed n. In the latter part
f the present paper, we will present the curves of Re1 versus ˛.

ig. 10. Amplitudes of the streamfunction for n = 0.2, 1.0 and 2.0. (a)initial condition, (b)
ondition, (f) optimal time for n = 2.0; The other parameters are Re = 1000, the streamwise
Mech. 165 (2010) 1228–1240

Fig. 8(a) and (b) presents the curves of the energy growth func-
tion G(t) versus time for “shear-thinning” and “shear-thickening”
cases at several typical Reynolds numbers. As shown in these
figures, each curve shows that the Couette flow experiences a tran-
sient growth and then decays for t > tmax. For both cases of n = 2.0
and 0.2, Gmax and tmax apparently increase with the growth of the

Reynolds number. Fig. 9 presents the curves of G(t) versus time for
various n at Re = 1000. With the decrease of n, both Gmax and tmax

significantly increase.
For two-dimensional flow, it is convenient to introduce the

streamfunction to describe the flow structure. In the present prob-

optimal time for n = 0.2; (a)initial condition, (b) optimal time for n = 1.0; (e)initial
wavenumber ˛= 1.0.
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Fig. 11. Flow patterns of the streamfunction for n = 0.2, 1.0 and 2.0. (a)initial condition, (b) optimal time for n = 0.2; (a)initial condition, (b) optimal time for n = 1.0; (e)initial
condition, (f) optimal time for n = 2.0.
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em, the amplitude of the streamfunction satisfies:

(z) = iw(z)
˛

. (41)

The streamfuction of streamwise disturbance has the form of

(x, z) = |� (z)|ei˛x+i
(z), (42)

n which
(z) is the argument of� (z). In order to know the influence
f non-Newtonian viscosity on the structures of optimal distur-
ances, we present the amplitudes of the streamfunction and the
ow patterns at initial time and optimal time for various n. Fixing
he Reynolds number Re at 1000 and the streamwise wavenum-
er ˛ at 1.0, the amplitudes of streamfunction are presented in
ig. 10. As shown in Fig. 10(a), (c) and (e), at initial time both the
eal and imaginary parts of� (z) display oscillatory behavior. With
he increase of n,� (z) becomes less oscillatory in the z direction. In
ig. 10(b), (d) and (f), the oscillatory distributions of� (z) have been
ignificantly smoothed. The flow patterns of the optimal distur-
ances of the initial time and optimal time are presented in Fig. 11.
t initial time, in Fig. 11(a), (c) and (e) the disturbances are char-
cterized by flow patterns which significantly tilt to the oppose
irection of the basic flow. The flow patterns display a streak-like
tructure. With the increase of n, the widths of the streaks signifi-
antly increase. At optimal time, as shown in Fig. 11(b), (d) and (f),

he structures of the flow pattern are similar.

For Couette flow, we are interested in the initial and the asymp-
otic long time behavior of G(t). The eigenvalues of L predict the
symptotic behavior of t → ∞. For Couette flow there is no unsta-
le eigenvalue, so G(t) → 0 for t → ∞. In Fig. 8(a), it is interesting

Fig. 13. Contour of G for two-dimensional plane Couette
Fig. 12. dG(t)/dt versus Reynolds number for various n.

that for small time, each curve of growth function is almost indis-
tinguishable from other curves. In Fig. 9, similar result is found as

well for various n at Re = 1000. However, in Fig. 8(b) the values of
G(t) for Re = 350 is apparently lower than other curves at small time.

In order to understand the the short time behavior of G(t), we
examine the initial growth rate of G(t) which can be given by the

flow at various n. (a) n = 0.2, (b) n = 1.0, (c) n = 2.0.
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xplicit formula:

dG(t)
dt

|t=0 = sup�(−iL + iL∗) (43)

n which � denotes the set of eigenvalues. In Fig. 12 we present
he curves of initial d G/d t versus Reynolds number for n = 0.2, 1.0,
.0. As shown in this figure, for each n, dG(t)/dt increases dramati-
ally at low Reynolds numbers. However, at high Reynolds numbers
he dG(t)/dt approximates to a constant. It is interesting that for
arge Reynolds number, dG(t)/dt is insensitive to n. These results
re consistent with the fact predicted in Figs. 8(a) and 9 that G(t)
as qualitatively the same value at small t.

In Figs. 8 and 9, the curves of the growth function are presented
or streamwise disturbances with the wavenumber˛= 1.0. In order
o examine the transient behavior of the continuous operator L,
ig. 13(a)–(c) plots the the contours of G(t) for n = 0.2, 1.0, 2.0 in
he ˛–Re plane. The contour of G = 1 in each figure separates the
–Re plane into two regions. The region of G > 1 is linear stable but
as a transient growth. As shown in Fig. 13(a) for n = 0.2, at Re = 500
he maximal transient growth exceeds 20. For n = 1.0 and 2.0 in
ig. 13(b) and (c), at Re = 500 the maximal transient growth is much
ower than 20. Only when Re reaches about 1800 for n = 1.0 and
300 for n = 2.0, the transient growths reach 20. This result indicates
hat in the region of Re > Re1 “shear-thinning/shear-thickening”
ffect plays a destabilizing/stabilizing role in amplifying the tran-
ient growth.

.4. Influence of non-Newtonian viscosity on transient growth of
panwise disturbances

We have studied the influences of “shear-thinning” and
shear-thickening” effects on the transient growth of streamwise
isturbances. For the Couette and Poiseuille flows of Newtonian
uids, the spanwise disturbances have the optimal growth. For
he present problem, we only give some results of the spanwise
isturbance. The deduction of the controlling equations of span-
ise disturbances can be referred in the works by Chikkad et al.

14] and by Nouar et al. [15]. In order to know the influence of
shear-thinning” and “shear-thickening” effects on the transient

rowth of spanwise disturbances, we present in Fig. 14 the curves of
nergy growth function G(t) with various n at Re = 1000. As shown
n this figure, with the decrease of n both Gmax and tmax signifi-
antly increase. This result indicates that for spanwise disturbances
nd streamwise disturbances, the influences of n on the transient

ig. 14. Transient growth G versus time for the optimal spanwise disturbance of
lane Couette flow with various n at Re = 1000. The streamwise wavenumber ˛= 0
nd the spanwise wavenumber ˇ = 1.0.
Mech. 165 (2010) 1228–1240 1239

growth are similar. Recently, Nouar et al. [15] have studied the
influences of “shear-thinning” effect on the transient growth of
spanwise disturbances in Poiseuille flow of non-Newtonian flu-
ids using the Carreau model. The result in Ref. [15] shows that the
“shear-thinning” effect slightly influences the transient growth of
spanwise disturbance. If the Reynolds number is defined based on
the viscosity averaged across the channel, the optimal growth of
the plane Poiseuille flow significantly increases with the decrease
of the index n. This result is qualitatively the same to that in the
present paper for a plane Couette flow of a power-law fluid.

Comparing the curves of the energy growth in Fig. 14 with that
in Fig. 9, it is shown that for each n, Gmax and tmax of spanwise
case are more larger than that of streamwise case. We look at the
curves of n = 0.2, at t = 10 the energy growth function G(t) ≈ 20 for
streamwise case and G(t) ≈ 25 for spanwise case. It is obvious that
at the initial stage of the linear transition, the magnitudes of the
energy growth of the streamwise and spanwise disturbance are
comparable. This result indicates that the non-linear region may be
reached before the spanwise disturbance reaches its optimal value.
So, both the streamwise and the spanwise disturbances may play
important roles in the non-linear transient stage.

6. Conclusions

The instabilities of a plane Couette flow of power-law fluid
to infinitesimal two-dimensional disturbances have been inves-
tigated. We focus on the effects of non-Newtonian viscosity
on the non-modal stability of streamwise disturbances. The
coefficient n > 1 and n < 1 correspond to “shear-thinning” and
“shear-thickening” liquids, respectively. The results indicate that
“shear-thinning” and “shear-thickening” effects have adverse influ-
ences on the transient behaviors.

Because the evolution of infinitesimal disturbances are gov-
erned by a non-normal operator L, the eigenvalue analysis is
inappropriate to predict the instability behavior of operator L. Our
analysis is in the framework of non-normal stability theory rather
than the traditional eigenvalue analysis. We focus on the responses
to external excitations and initial conditions for both the Newtoni-
anl and the non-Newtonian cases.

The results show that the instabilities of plane Couette flow is
strongly related to the Reynolds number and the non-Newtonian
coefficient n. Eigenvalue analysis indicates that the plane Couette
flow has no unstable eigenvalue for any Reynolds number and coef-
ficient n. This means the system is asymptotic stable for both the
Newtonian and the non-Newtonian flows. The spectral structures
of the non-Newtonian Couette flows are qualitatively similar to that
of the Newtonian case, which consists of three branches. The vicin-
ity of the intersection of the three branches becomes more sensible
to perturbations with the increase of the “shear-thinning” effect.

The resolvent norm and the energy growth function G(t) repre-
sent the amplitude of responses to external excitations and initial
conditions. The Reynolds number and “shear-thinning/shear-
thickening” effect play important roles in determining the
non-modal stabilities. We have examined the resonances to exter-
nal excitations with a real frequency. The results show that the
resonance monotonically decreases with the growth of the real
frequency. We have also examined the pseudospectra for the
continuous operator L. The plots of pseudospectra indicate that
“shear-thinning” effect amplifies the responses to external exci-
tations.

The results about the responses to initial conditions show that

when the Reynolds number exceeds Re1, the system will experi-
ence a transient growth and then an exponential decay. By fixing
the wavenumber at ˛= 1.0, we found that the value of Re1 signifi-
cantly increases with the growth of n. When Re exceeds about 1000,
it shows that the initial growth of G(t) is insensitive to the Reynolds
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umber and the coefficient n. In order to examine the global behav-
or of G(t), we present the contours of G(t) in the Re–˛ plane for
= 0.2, 1.0, 2.0. The results show that with the decrease of n the

ystem has a larger optimal response to initial conditions.
The purpose of the present study is to provide valuable insight

nto the roles of non-Newtonian effect on the transient behavior
f plane Couette flow. However, most of the results are limited to
he instabilities to two-dimensional streamwise disturbances. We
lso make a brief study on the spanwise case. The influences of
oefficient n on the transient behaviors of the spanwise disturbance
nd the streamwise disturbance are similar. In our further work,
e will consider the non-modal stability of the three-dimensional
isturbances for non-Newtonian Couette flow.
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