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1. Introduction

The convective motion in a fluid layer [1] can be triggered by
buoyancy force [2] (Rayleigh convection), and it has its equivalence
for the fluid in the porous media [3,4]. Besides, the convection can
also be driven by the surface tension force [5], and the same thing
happens to the liquid saturated in the porous layer [6], in which
the motion of fluid can be described by using the Brinkman model
[7], which can obtain the similar results as those of Darcy’s law in
the low porosity case.

The onset of pure Rayleigh convection in the superposed liquid-
porous layers, sandwiched by two horizontal infinite rigid and
thermal conductive wall, heated from below, was first investigated
by Chen and Chen [8]. The Darcy’s law is applied together with the
Beavers and Joseph condition [9] at the liquid-porous interface.
They indicate that the neutral instability curves for the onset of
instability is bimodal which possess two local minima. The key
parameter is the ratio between the depth of liquid layer and that
of porous layer. Its critical value h.=0.13, below which the insta-
bility is called the long-wave mode, and above which the instabil-
ity is called the short-wave mode. After their work, several papers
[10-14] studied the coupled gravity and surface tension driven
instability problems in a similar system, and all focused on the
depth ratio as the crucial parameter which can determine the
mode of convection.
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The continuity of heat flux across top free surface, written as
Newton'’s cooling law [5], is often employed as a thermal boundary
condition. After selecting proper scales (to be mentioned latter), a
dimensionless Biot number Bi, which measures the efficiency of
heat transfer, is introduced. Desaive and Lebon [15] study the ef-
fect of the Biot number on pure buoyancy driven instability. They
have a somewhat simple conclusion that the variation of Bi from
0 to 10 significantly affects the magnitude of both critical wave-
number and critical Rayleigh number. The role of Bi is limited
when it is higher. Accordingly, we aim to make a thorough inves-
tigation and discussion on the onset of convection driven by the
gravity and surface tension, under the influence of the Biot num-
ber, in a superposed liquid-porous system. The complicated phe-
nomena are overlooked by Desaive and Lebon [15].

2. Mathematical model

We consider a homogeneous porous layer of thickness H,,
underlying an incompressible liquid layer of thickness H,. Carte-
sian coordinates are used with origin at the liquid-porous inter-
face. The combined system, which is heated from below, is
infinite in the horizontal direction x. The z direction is opposite
to the gravitational acceleration. The bottom of the porous layer
is a rigid, flat and well thermal conductive wall. The upper
boundary of liquid layer is a free surface without any deforma-
tion. The temperature difference of fluid layer is AT, = Ti, — Ty,
of porous layer is AT, =T, — Tin, and that of the total system is
AT, = ATy + AT},
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The continuity, momentum, energy equations for fluid layer are:
V.9 =0 (1)

Po [ +(0-V)u| = =Vp + Vo - pg[l - Ti - To)le;  (2)
oy (00T, = V7T, 3)
ot
The equations for porous layer are:
V- vn=0 4)
Po0Unm _ G _ _H
o= VP~ pogll — (T —To)les — gl vm (5)
0T 2
(PO m— + (PoC)(Um - V)T = Km(po€)V T (6)
where (pC)m = ¢(poc) + (1 — ¢)(psCs).

In these equations above, the subscripts [, m and 0 denote quan-
tities of the liquid layer, the porous layer and the ambience, respec-
tively. v denotes the velocity, p the pressure, T the temperature, t
the time, p the density, ;= pov; the dynamic viscosity, x the heat
diffusivity, « the thermal heat expansion of the liquid, ¢ the poros-
ity of the porous layer, c the specific heat capacity, K the permeabil-
ity, g gravitational acceleration.

We introduce perturbations of velocities, pressure and temper-
ature in order to linearize the equations, and different scales for the
non-dimensional form. For fluid layer, the temperature is scaled by
AT /%, the length by H,, the time by H2/x, and the velocity by v,/
H, For porous layer, they are AT,Vi/Km, Hmn, H; /Km and v;/Hy
According to the normal mode technique, we seek solutions for
the vertical velocity component and temperature of the form:

Wi, To)" = [Wi(zk), Or(zi)]” exp(iutic + iaxy)

The amplitudes Wy and ®&, (where k = |, m) describe the variation of
the vertical velocity and the temperature. a;,, are the dimensionless
wavenumbers in the x-direction, and /;,, are the complex growth

rates of the disturbance. Then the equations (where D,;=d/dz,

Dy, = d/dz,,) become:

P! (D,2 - a,Z)W, = (Df - a,z)zwl — @Ra)0, (7)

10, = W, + (02 - alz)@, (8)
¢P (D2 @)W = —<D§1 - a;>wm — @ Ra, 6O, 9)

InGnOn = Wi + (D}, - @2 ) O (10)

At z,, = —1, the boundary is a rigid and perfectly heat conduction
wall:

Wn=0, 6,=0 (11)
At z, =1, the top surface with surface tension is assumed to be non-
deformable and heat insulating:

W,=0, DO +Bi® =0, DW,+aMa6,=0 (12)

At the liquid-porous interface (z,, =2z =0), continuity of normal
velocity, temperature, heat flux, normal momentum, and Beaver-
Joseph condition [9] (with an empirical parameter B) are expressed
as following:

=hW,, hO =X?0,, DO, =XDn6On (13)
h i
D,ZwlfﬁfDlw,ngme =0 (14)
2 /hmh4 3 2 h4
P—rlD[Wl oPr mDme —D W[—a,D1W1+5—2Dme (15)

The dimensionless parameters in the above equations include: for
the fluid layer, the Rayleigh number, Marangoni number and Pra-
ndtl number are defined as: Ra; = ochT,H?/(v,K,), Ma; = yATH,/
(wuxcy), Pri= w1, Bij= xH,/(x1p0C)). For the porous layer, the Rayleigh
number, the Prandtl number and Darcy number are defined as: Ra-
m = 0PATH K| Wik ), Priy = vifKm, & = VK /H,,. Besides, h = Hj/H,,,
Gm=(pCml/poct and X=1x/k,. For the whole system,
Ra=Ra;-(1+1/h)*(1+X/h)?, Ma=Ma,-(1+X/h)? Bi=Bi-(1+X/h),
and a = a1 + 1/h). These equations and boundary conditions deter-
mine an eigenvalue problem which can be solved by Chebyshev-tau
method. In our calculation, we choose: 6=3 x 1073, ¢ =0.3, =0.1,
and X=0.7.

3. Results and discussion

Fig. 1(a) presents the marginal curves of the pure Marangoni
case with different Biot numbers. If Bi is small, the curves are bimo-
dal, and the long-wave instability is dominant, i.e., the convection
is initiated in and dominated by the porous layer. With the in-
crease of Bi, the marginal curve becomes single modal, and the
short-wave mode convection takes place, i.e., the convection oc-
curs only in the liquid layer. When the upper surface becomes well
thermal conductive, i.e., Bi — oo, the critical Marangoni number is
also infinite. This means that the surface tension effect disappears.
In the case of the pure Rayleigh convection when Ma = 0, the mar-
ginal curves shown in Fig. 1(b) are always bimodal evidently. The
upper thermal boundary conditions can only determine the values
of critical Rayleigh number, while the Rayleigh effect exists
constantly.

As pointed out by previous works [8,10-14], the depth ratio h is
a major parameter determining the stability modes of the liquid-
porous system. Fig. 2(a) represents the variation of critical depth
ratio hg for pure Rayleigh case and hy, for pure Marangoni case with
increase of Bi, respectively. With a given Bi, the Rayleigh effect is
dominant in the long wave region when h < hg, and in the short
wave region when h > hg. For the Marangoni effect, similar situa-
tion exists. If the system has a depth ratio h = 0.1, which locates
in the open interval (hy,, hg), we can know that the Rayleigh effect
operates constantly in the long wave region, while the Marangoni
effect mainly operates in the short wave region. Therefore, the cou-
pling instability trends to short-wave mode when reinforcing the
surface tension effect. However, the Marangoni effect can be pre-
cluded gradually if the top surface becomes more and more ther-
mal conductive. Therefore, the phenomena of coupling instability
influenced by the Biot number are complicated and of some
abundance.

As the results shown in Fig. 1(a) and (b), the marginal curves of
liquid-porous system always have a bimodal characteristic, except
in the case of pure Marangoni instability with a too large Biot num-
ber. Fig. 2(b)-(d) present the variation of Rayleigh numbers with
respect to the increase of Biot number for different Ma. In
Fig. 2(b), Ma=1000, the solid curve (long-wave mode) is con-
stantly lower than the dashed one (short-wave mode). This means
that the coupling instability is of always long-wave mode and cor-
responding convection is constantly dominated by the combined
layers. In this case, the Marangoni effect is too weak to enhance
the convection in liquid layer, and the coupling mode is mainly
determined by buoyancy effect.

In Fig. 2(c), Ma = 1750, the solid curve and the dashed one have
two intersections. This means that the mode transits twice. This
phenomenon can be explained from Fig. 2(a). When the Biot num-
ber keeps small enough, its increase can make the depth ratio h ap-
proach to hg gradually, caused by the diminution of hi. Hence, the
buoyancy convection in the porous layer is weakened. At the same
time, the small Biot number cannot evidently preclude the suffi-



S.C. Zhao et al./ International Journal of Heat and Mass Transfer 53 (2010) 2951-2954

10", Bi=0.0
Bi=60
. Bi=100.0
10 Bi=1000.0
— ——=~ Bi=100000
0k —-2—s== Bi=100000.0

o

=

3 1 1 L i 1 1
O ——=56——"20 30 20 B0 &0
wavenumber
())Ra=0

2953

1E+07
————- Bi=10000

BE+06 — ——= Bi1=10000.0
— - Bi=100000.0

BE+06

Ra

4E+06

2E+06

15 20
wavenumber

(b)yMa=0

Fig. 1. (a) Marginal curves of pure Marangoni instability for different Biot numbers with depth ratio h = 0.03; (b) marginal curves of pure Rayleigh instability for different Biot

numbers with depth ratio h =0.12.
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Fig. 2. Biot numbers versus critical Rayleigh numbers of different modes for various Marangoni numbers.

ciently forceful surface tension effect which enhances the flow in
the liquid layer. Therefore, the coupling instability turns into the
short-wave mode. When the Biot number becomes sufficiently
large, the Marangoni effect is precluded obviously, and the insta-
bility is driven only by the buoyancy effect which forms the con-

vection in the combined layer, so then the second mode
transition occurs.

In Fig. 2(d), Ma = 2000, the Marangoni effect is forceful enough
to form the coupling convection occurring the liquid layer even
when Bi = 0. Therefore, its gradual preclusion by the increase of
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the Biot number makes the mode of coupling instability become
long wave, and the mode transition takes place only once.

4. Conclusion

Alinear analysis is proposed to study the convective instability in
the fluid-porous system. The upper boundary is set to be free in
order that the Marangoni effect can be taken into account. The influ-
ence of heat transfer condition at the upper surface, represented by
Bi, on the instability mode of the system is investigated numerically.
For pure Marangoni convection, the long-wave mode instability may
disappear when Bi grows, and the surface tension effect can be pre-
cluded completely when the top surface becomes well thermal con-
ductive. For pure Rayleigh instability, the variation of Bi does not
change the bimodal characteristic of the marginal curve. For the cou-
pled Rayleigh-Marangoni convection in the system with h locates in
the open interval (hy,, hg), the mode of combined instability is deter-
mined by both Marangoni number and Biot number. If the Marang-
oni effect is weak, the increase of the thermal effect at free surface
cannot change the mode of convection appearing in the combined
two layers. The mode transition of the instability only takes place
evidently in a system with a forceful surface tension effect.
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