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Abstract 

The dynamic characteristics of slender cable often present serried modes with low frequencies due to large structure flexibility

resulted from high aspect ratio (ratio of length to diameter of cable), while the flow velocity distributes non-uniformly along the 

cable span actually in practical engineering. Therefore, the prediction of the vertex-induce vibration of slender cable suffered

from multi-mode and high-mode motions becomes a challenging problem. In this paper a prediction approach based on modal 

energy is developed to deal with multi-mode lock-in. Then it is applied to the modified wake-oscillator model to predict the VIV

displacement and stress responses of cable in non-uniform flow field. At last, illustrative examples are given of which the VIV

response of flexible cable in nonlinear shear flow field is analyzed. The effects of flow velocity on VIV are explored. Our results

show that both displacement and stress responses become larger as the flow velocity increasing; especially higher stress response 

companied with higher frequency vibration should be paid enough attention in practical design of SFT because of its remarkable 

influence on structure fatigue life. 

© 2010 Published by Elsevier Ltd. 
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1. Introduction  

For a vibrating cable experiencing non-uniform flow, the wake field, body motion and the coupling between fluid 

and structure are more complex than the case of uniform flow, e.g. the vortex mode and shedding frequency vary 

along the cable length, or no longer maintain constant. Moreover, the dynamic characteristics of slender cable tend 

to reveal low-frequency and high-density natural modes due to large flexibility. Therefore the vortex-induce 

vibration (VIV) of a slender cable experiencing non-uniform flow may present some new phenomena such as multi-

mode lock-in [1–6] , travelling wave and wide–band random vibration. Its response prediction becomes more 

complex. 
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Some large-scale experiments and 3D CFD simulations have been implemented in recent years. The vortex mode 

and fluid force distribution for lower Re numbers (mainly for Re=102-103) are presented by numerical simulations. 

While mechanism analysis and empirical formula based on large-scale experiments has been developed. Among 

these researches [7–13] the multi-mode vibration and drag coefficient given by Huarte [6], high-mode (10-25) lock-

in by Vandiver [12] and modal analysis of experimental results by Huse [7] and Lie [13] provided fruitful base for 

analysis of multi-mode VIV. 

In this paper a novel prediction approach of multi-mode VIV is developed. Based on the modal energy, the 

locked mode as well as its original modal weight is identified from potential vibration modes. Then the modal 

parameter such as the lock-in length, effective mass and damping can be calculated. Consequently the final response 

is given by employing the modified wake oscillator model. A satisfactory agreement between the response of the 

presented approach and the results of large-scale experiments is observed. Moreover, the approach benefiting from 

its convenient and fast calculation is suitable for application to practical engineering. At last, illustrative examples 

are given of which the effect of flow distribution on the VIV of cable is discussed. 

2. Basic model 

2.1. Multi-mode lock-in in shear flow 

When the flow velocity varies along the cable span, it is observed experimentally that the wake vortex sheds from 

the cable in the manner of vortex cells where the shedding frequency keeps constant in one cell and jumps 

discontinuously from one cell to another. When the lock-in occurs, the shedding frequency in a cell is consistent 

with a certain natural frequency of the cable, and the cell number depends on the span distribution of flow velocity 

and the dynamic characteristics of structure. Note that in different cells the vortex may shed at different frequencies. 

In this sense, multiple natural modes may be excited and each mode has its lock-in span region among which 

exciting vibration energy is applied to structure by the ambient fluid and beyond which structure vibration energy is 

damped along the cable by the ambient fluid.  

The natural frequency of potential locked modes should fall into range of min max

lock n lockf f f� �  according the 

Strouhal law, where min

min /lock tf S V D� , max

max /lock tf S V D� , minV  and maxV  are the minimum and maximum values of 

the flow velocity respectively, nf  is the frequency of the n th mode, D  is the diameter of cable. Further, the 

position and length nL  of modal lock-in region can be determined by the value of reduced velocity r nV V f D�  (V
is the flow velocity) satisfying 4 12rV� �  and the span distribution of flow velocity. However troubles are raised in 

that large variety of modes (even beyond 20) may simultaneously resonance and the lock-in region may overlap or 

even interlace. In fact it was experimentally indicated that the number of locked mode is really limited (around 10). 

Additionally, the number and order of the locked mode may be different from that of experiments sometimes, if the 

rule of higher-order-mode priority is used by which the higher-order mode is always prior over the lower-order 

mode in vibration. 

In this paper, we introduce a parameter describing the modal energy as the level of the original weight so as to 

identify the locked mode from large variety of potential exciting modes and subsequently to determine lock-in 

region. The potential modal energy is expressed in terms of the power of the exciting mode as follows, 

2( ) /(2 )n n nP F R�                                                                                        (1 )

where the modal force 2 2(1/ 2) ( ) ( ) ( )

n

n L n
L

F C V z D z z dz� �� �  and the modal damping n hn snR R R� � . z  is the 

coordinate in span-wise direction, nL  is the exciting length of mode n , ( )n z�  is the mode shape, �  is the fluid 

density, LC  is the vortex-induced lift coefficient and usually takes a value of 0.8 [12] for a flexible cable; hnR  and 

snR  are the modal hydrodynamic damping and structural damping respectively. 
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The modal structure damping 2sn Sn n nR M� 	� , nM is the modal mass and 2n nf	 
� . Generally, modal 

hydrodynamic damping is much greater than structural damping and written as [12]  

2( ) ( )

n

hn h n n
L L

R r z z dz� 	
�

� �                                                                          (2)

where L  is the total length of cable. At lower reduced velocity the hydrodynamic damping ( )hr z  is 

( )h sw rlr z r C DV�� � , where the static damping 
2 2 2

2 Re
sw sw

Dr C
	

	
� � 

� �� �� �

� �
, 2Re D	 	 �� , �  is viscous of fluid, 

swC  and rlC  are constant and have values of 0.2 and 0.06 respectively. While at higher reduced velocity we 

have 2( ) /h rhr z C V� 	� . The constant rhC  is 0.2. Hence the modal damping can be written as 

2 2( ) ( ) ( ) ( )

n

n h n n s n n
L L L

R r z z dz r z z dz� 	 � 	
�

� �� �                                                           (3)

It should be pointed out that only those of powerful mode rather than all of potential modes are finally locked 

because of the interaction and competition between the potential vibrating modes. So the dimensionless modal 

energy max/( )n n nP P P�  is taken to indicate the competition level of mode n , where max( )nP  is the maximum value 

of nP . And the mode satisfying 0.10nP �  is finally regarded as a locked mode.  

2.2. VIV response of cable 

The displacement and stress response of locked modes and the final response of cable are calculated by the 

modified wake oscillator model [3, 15] that considers the variation of added mass and the non-linear relationship 

between reduced velocity and displacement amplitude, and is particularly suitable for VIV of flexible cable in non-

uniform flow. The effective mass [3, 15] of mode n  is written as 

2

0

2

0

( ) ( )

( ) ( )

L

n

n L

n

m z z dz
v

s z z dz

�

�
�
�

�
                                                                                (4)

where ( )m z  is the structure mass of unit length, ( )s z  is the lock-in index having a value of 1.0 in lock-in region and 

a value of 0.0 in non-lock-in region. The displacement amplitude is 1/ 2( ) ( )n n nY z DF I z���  where the shape 

coefficient 4 2

0 0

( ) ( ) ( ) ( )

L L

n n nI m z z dx m z z dx� �� � �  and nF  is the amplified coefficient. The damping ratio S
n�  of the 

system and the amplified coefficient nF  can be obtained by a iteration calculation according to the formula 

1.81 [1 9.6( ) ]n s
n r nF � �� � , where the modal mass ratio n

r n Dm� �� , Dm  is the displaced mass. Let S I
n n n nF� � �� � ,

then the effective damping of mode n  is written as 

3

0

4 1/ 2 2 1/ 2

0 0

2 ( ) [1 ( )] ( )

3 [ ( ) ] [ ( ) ]

L

D n

n L L

n n

D C z D s z z dz

m z dz m z dz

� �
�


 � �

�
�

�

� �
                                                                      (5)
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where the drag coefficient is generally taken as a constant 1.2DC � . Total response of the cable is the summation of 

all locked modes, i.e. ( ) ( ) ( )n n n
n n

Y z Y z w z�� �� � , where nw  is the final modal weight of the n th locked mode 

and its non-dimensional form is max/( )n n nw w w� , max( )nw  is the maximum value of nw .

2.3. Verification  of the model 

In order to verify the presented model, the VIV response of a slender cable experiencing linear shear flow is 

calculated and compared with the experimental results [7]. The parameters of the cable are listed in Table 1. The 

modal weights and the displacement response at 0.54m/s and 1.14m/s flow velocity are plotted in Fig. 1 and Fig. 2 

respectively and listed in Table 2.  

In Fig. 1(a) both the priority mode, mode 11, and the locked modes, modes 8-20, are consistent with the 

experimental results except an additional one, mode 3 of the calculation. For case of experiment those modes below 

the 8th were cut-off, or only the modes between 8-30 were included in the modal analysis. However the 

displacement response including mode 3, either the RMS average value in Table 2 or the RMS distributions in Fig. 

1(b), are closer to the experimental results in comparison to the response excluding mode 3. Further, since the 

addition of the 3rd mode as well as its weight on the final response, the modal weights of mode 12, 13 and 14 are 

less than experimental values, as presented in Fig. 1(a). Compared with the calculation by the previous wake 

oscillator model [16] the displacement RMS agrees better with the experimental curve as shown in Fig. 1(b), and the 

previous model presented a different priority mode, the 13th mode [16] from the experimental results. 

Table 1. Parameters of the cable  (unit: m/s/kg) 

Length Inner/outer diameter Youngs modulus Density Top tension 

90 0.026/0.03 2.1� 1011 3211 3700 

Table 2. VIV response of the cable   (unit: m/s/kg) 

 0.54m/s velocity 1.14m/s velocity 

 RMS average  Priority mode Locked modes RMS average Priority mode Locked modes 

7.21 11 3, 8-20 8.60 22 10-25 

Calculations
6.83 11 8-20    

Experiments 
7.35 11 8-20 7.47 22,15 10-25 

Ref. [21] 
6.83 13     

       

(a)                          (b) 

Fig. 1. VIV response at 0.54m/s flow velocity: (a) Modal weights nw ; (b) Displacement RMS distribution 
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For case of 1.14m/s flow velocity, both the locked modes, 10-25, and the priority mode, 22, are consistent with 

that of experiments, as shown in Fig. 2(a) and Table 2. The displacement RMS in Fig. 2(b) among the exciting 

regime (0-0.40 cable span) generally agrees with the experimental curve, whereas the vibration keeps the same level 

rather than the experimental attenuation as approaching the cable bottom due to the travelling effect. Hence the 

average value of the calculated displacement RMS based on standing wave assumption is 15.1% greater than the 

experimental value. 

                

 (a)              (b) 

Fig. 2. VIV response at 1.14m/s flow velocity: (a) Modal weights of locked modes; (b) Displacement RMS distribution 

3. Applications and discussion 

3.1. VIV response of slender cable in nonlinear shear flow 

The parameters of a slender cable attached by buoyancy rings with 1.4m diameter are: 0.53m and 0.425m outer 

and inner diameters respectively, 3000m length, 582kg/m3 density, 2.10E+11 Youngs modulus and 3.20E+07 N top 

tension. Two nonlinear shear flow profiles, the velocity and distribution span length of Flow 1 are respectively half 

of and double of that of the Flow 2, are shown in Fig. 3. The natural frequencies and the corresponding Strouhal 

velocity n
St n tV f D S�  are shown in Fig. 4 where 0.17tS �  [14] for a flexible cable, rather than 0.20tS �  for a 

rigid cylinder. The responses of dimensionless displacement /Y D  and stress max/� �  ( 6

max 2.35 10� � � /Pa) are 

presented in Table 3 and Fig. 5. Compared with the Flow 1, the Flow 2 has smaller span length with higher flow 

velocity as well as larger modal exciting length (0.10-0.50 cable span). So the effective mass and damping (Eq. (4) 

and (5)) of the system in the Flow 2 are smaller and consequently the final response becomes larger, as shown in Fig. 

5.

Fig. 3. Flow velocity profile 
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Fig. 4. The natural frequencies of structure and the St velocities versus the mode number 

Table 3.  Averaged response of the cable undergoing two flows  

 Flow 1 Flow 2 

Locked modes 1-6 1-12 

Averaged displacement RMS 
0.08 0.26

Displacement amplitude average
0.14 0.28

Averaged stress RMS 
0.43 0.82

Stress amplitude average 
0.52 1.00

                
(a)                                (b) 

Fig. 5. Response of cable undergoing non-uniform flows: (a) Displacement RMS distribution; (b) Stress RMS distribution 

3.2. Effect of flow velocity on VIV response  

The average values of the displacement and stress RMS undergoing the Flow 1 are plotted against the maximum 

flow velocity in Fig. 6, while the flow profile along the cable span is proportionally maintained. The displacement 

RMS in Fig. 6(a) tends to increase as the flow velocity becoming larger except at some flow velocities, e.g. V=0.8, 

1.8 and 2.0m/s. And there exist two response regimes, i.e. around 0.08-0.15 displacement RMS at flow velocity 

ranging from 0.4 to 1.0m/s and then jumping up around 0.30-0.45 displacement RMS at 1.2-3.0m/s flow velocity. 
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The displacement jumping may be due to a significant increase of the exciting length resulted from new locked 

modes along 0.50-1.00 cable span as the flow velocity increasing. 

             

                 (a)                    (b) 

Fig. 6.  VIV response versus flow velocity: (a) Average displacement RMS versus flow velocity; (b) Average stress RMS versus flow velocity 

Fig. 6(b) indicates that stress RMS increases monotonically as the flow velocity becoming larger. Because 

successive higher order modes are excited as flow velocity monotonically increasing, that has larger deformation 

curvature and higher modal stress. Moreover, higher stress responses are generally companied with higher frequency 

vibration, that should be noted in practical design of SFT because of its remarkable influence on structure fatigue 

life.

4. Conclusions

An approach based on modal energy is developed here to solve the problem mainly raised from multi-mode lock-

in. It is applied to the modified wake-oscillator model to predict the VIV displacement and stress response of slender 

cable. Illustrative examples are given, by which the VIV analysis of flexible cable in linear and nonlinear shear flow 

fields is carried out. Effect of flow velocity on VIV is explored. Our results show that: 

(1) Compared with case of the Flow 1, the cable in Flow 2 has larger modal exciting regimes. So the effective 

mass and damping of the system are smaller and consequently the final response in the Flow 2 is larger.  

(2) Displacement RMS tends to increase as the flow velocity becoming larger except at some flow velocities. 

And there exist two response regimes due to a significant increase of the exciting length resulted from new locked 

modes along 0.50-1.00 cable span as the flow velocity increasing.  

(3) Stress RMS increases monotonically as the flow velocity becoming larger. Because successive higher order 

modes are excited as flow velocity increasing, that has larger deformation curvature and higher modal stress. 

Moreover, higher stress responses are generally companied with higher frequency vibration, which should be paid 

enough attention in practical design of SFT because of its remarkable influence on structure fatigue life. 
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