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Abstract. A new kind of shock capturing method is developed. Before applying the high order accurate 
traditional scheme which is called as base scheme in this paper the fluid parameters are preconditioned in 
order to control the group velocity. The newly constructed scheme is high order accurate, simple, has high 
resolution of the shock, and less computer time consumed. 
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INTRODUCTION 

Direct numerical simulations require all the relevant scales to be properly represented in the numerical model. For 
solving such kind of problems high order accurate methods are preferred ][ 31− .In the compressible flow fields there 
may exist the shocks which are discontinuous surfaces for the inviscid flow and surfaces with large cross gradient of 
the fluid parameters for the viscous flows. Many efficient high order accurate schemes are developed for shock 
capturing, and they are used to solve a lot of practical engineering problems ][ 64− . In this paper a new kind of high 
order accurate schemes with high resolution of the shock is developed. The solution process consists of two steps. In 
the first step the fluid parameters at time t is preconditioned by so called wave booster. In the second step we put the 
preconditioned fluid parameters into a base scheme, and obtain a finally difference approximation. It is required that 
the finally obtained scheme is FST/MXD behind the shocks and SLW in front the shocks ][ 5 . The constructed 
scheme by this way is high order accurate and can capture the shocks well.  

GROUP VELOCITY 

Consider the following model equation and its semi-discrete approximation 
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where xFj Δ/  is an approximation of the first derivative xf ∂∂ / ,for example, ( ) ( ) ./fffF jjj 211 −+ −=  

Putting a single Fourier component ( )jj ikxexpcf =  into (2) we have ( ) [ ])(ik)(kcfF irj αα +=  where 

1−=i and xkΔα = . )(kr α corresponds to the dissipation rate and )(ki α  corresponds the to the modified 

wave number. For the second order central deference we have 0=)(kr α , and )sin()(ki αα = . In Ref.[5] the 
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group velocity is defined as ααα d/)(dk)(D i= , and the difference schemes are divided into three classes: 

slow(SLW), fast( FST) and mixed(MXD). We have 1≤)(D α  for the scheme from SLW, 1≥)(D α  for the 

scheme from FST, and 10 ≥< )(D αα  and 10 ≤> )(D αα for the scheme from MXD where 0α depends on 

particular scheme and πα << 00 .  
It is stated in Ref.[5] that the reason of oscillation production in the numerical solutions is due to non-uniform 

group velocity of wave components in the numerical solutions. The oscillations in numerical solutions are produced 
behind the shock(upstream of the shock) for the SLW schemes, in front of the shock(downstream of the shock) for 
the FST schemes. For the scheme from MXD the oscillations are produced in front of the shock for the lower and 
moderate wave components, and  they are produced behind the shock for the high and super high wave 
components. 

For improvements of the shock resolution the scheme should be reconstructed so that the scheme exhibits 
FST/MXD property behind the shock, and SLW property in front of the shock.  

SCHEME CONSTRUCTION 

A  new way to construct the shock capturing schemes is presented. The solution process consists of two 
sub-processes. In the first sub-process the fluid parameters at time step n are preconditioned by a so called wave 
booster(WB)with specially selected control parameter. The second sub-process is the process of discretization of the 
fluid parameters with the base difference from class SLW after wave boosting. The finally obtained scheme exhibits 
property of the scheme from FST/MXD behind the shock, and property of the scheme from SLW in front of the 
shock.  

We chose the 2k+1 order accurate weakly upwind biased schemes as the base schemes which can be written for 
the case c>0 as follows  
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The coefficients la  can be obtained by solving the linear system of algebraic equations (4) and (5) according the 
accuracy requirement.  

                  
For the wave booster(WB) the following conditions need to be satisfied:  
a)  WB can turn the group velocity into direction what we need for improvement of shock resolution;  
b) the accuracy of the schemes is not changed;  
c) the booster is simple.  

In this paper the following WB operator is suggested 
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where ( )xOj Δσ ≈+  in the smooth region. Putting (6) into (3) we obtain  

( )∑
−=

−++ −=
k

kl

n
lj

n
ljl

n
j f̂f̂a)f̂(F 1                                               (7) 

Putting [ ]jj ikxexpf =  in to (3) and (6), and [ ]jj ikxexp)(T̂f̂ α=  into (7), we obtain  

          [ ]jj ikxexp)(Ke)f(F α= ,           [ ]jj ikxeKfF exp)(ˆ)ˆ( α=            

)(iKi)(Kr)(Ke ααα +=           )(ˆ)(ˆˆ)(ˆ ααα iKirKKeTeK +=•=  
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           ),(T̂)(Kr)(rK̂ ααα •=             )(T̂)(Ki)(iK̂ ααα •=                (8) 

                   [ ] 011 >−+= ++ σασα k)cos()(T̂                         (9) 
From (8) and (9) we see that the wave booster is some kind of an amplifier.  

ACCURACY AND BEHAVIOR ANALYSIS 

The above listed base schemes are dissipative, and belong to the class SLW. After wave booster treatment with 
selected parameter σ  we can turn the SLW scheme into MXD scheme. We use two way to analyze the accuracy 
and behavior of the numerical solutions, the Taylor series expansion, and the Fourier analysis. 

The modified equation for the case of third order accurate base scheme(c>0) after wave booster treatment is as  
follows 
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Consider the leading terms on the right hand side of (10). The term with fourth derivative is produced from the 
original third order accurate scheme(c>0), and it gives the positive dissipation. The term with third derivative is 
newly produced by wave boosting, and it does not change the accuracy of the scheme with xΔ≈+σ . We see that 
the introduced term by wave booster gives positive dispersion, and the amount of dispersion, and the group velocity 
can be controlled by the parameter +σ .The above analysis can be done for the higher order accurate base schemes 
with higher order accurate wave booster.  

The accuracy and the behavior of the numerical solutions also can be discussed by the Fourier analysis. Putting 
the single Fourier component into the wave booster treated scheme we can obtain )(ˆ αiK , )(ˆ αrK .and the group 

velocity [ ] αα diKd /)(ˆ . In Fig.1 are shown the variations of the group velocity [ ] αα diKd /)(ˆ  and the 

dissipation rate )(ˆ αrK  as function α for the 7th order accurate base scheme with different parameter +σ . 

 
FIGURE 1. (a) group velocity for k=3 with different σ  

 
FIGURE 1. (b) dissipation rate k=3 with different σ  

 
From Fig.1 we can also see that the scheme is dissipative and belongs to the class SLW for the case of 0=+σ . 

With increasing the parameter +σ the booster turns the SLW scheme into the scheme which belong to the class 
MXD. From figures it also can be seen that the dissipation rate is increased with increasing the parameter +σ .  

DISCRETIZATION OF EULER EQUATIONS 

Consider the one dimensional Euler equations in vector form 

0fU =
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                                                      (11) 
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where 

[ ]TE,u,ρρ=U ,       ( )[ ]T2 pEu,pu,u ++= ρρf      

[ ]T0 T,u,)( ρ=U ,      ( )22 /VCvTE += ρ   
With Steger-Warming flux vector splitting we have the following wave treated semi-discrete difference 

approximation    
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The control parameter function ±
jσ  is defined in this paper as follows  
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In present computation 01 == ±±
du ,σσ  is used.  

NUMERICAL EXAMPLES 

The above presented methods with order of accuracy 2k+1(k=1,2,3,4) are used to solve some model problems 
such as 1-D and 2-D Sod model problems, 2-D Riemann problems, and sound generation by shock-vortex interaction. 
Only part of the computed results are shown here. 
Sod model problem. A tube extends from x=0 to x=1 is divided by 100 equal intervals. with ,1== ρp  and 

0=u  in the subdomain [0, 0.5], and 0,125.0,1.0 === up ρ  in the subdomain (0.5,1.0] where. p , ρ  and 
u are the pressure, density and velocity, respectively. The one-dimensional Euler equations are discretized by the 7th 
order accurate base scheme with the wave booster (6)(k=3). Fig.2 shows the obtained density and pressure 
distribution. 
 

 
FIGURE 2. (a) Density distribution with 7th order scheme 

 
FIGURE 2. (b) pressure distribution with 7th order scheme 

 
2-D Riemann problem The second example is a two-dimensional Riemann problem ][ 7 .In 
computation 401401×=× NYNX  grid points are used. This problem was computed by the 7th order accurate 
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base scheme with wave booster k=3. The contours of density and pressure at t=0.52 are given in Fig.3 The shocks 
and the slip lines can be seen clearly. In the figures down-left we also can see the smaller structures.  
 

 
FIGURE 3. (a) Density distribution with 7th order upwind 
scheme 

 
FIGURE 3. (b) pressure distribution with 7th order upwind 
scheme 

SUMMARY 

A new high order accurate scheme with wave booster is developed, and the accuracy and behavior of the 
numerical solution are analyzed The developed scheme is simple, less computer time consumed, and can capture the 
shocks well. The scheme is used to solve practical problems, and obtained results are satisfactory. 
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