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Abstract. A three-dimensional MHD solver is described in the paper. The solver simulates reacting flows with 
nonequilibrium between translational-rotational, vibrational and electron translational modes. The 
conservation equations are discretized with implicit time marching and the second-order modified Steger-
Warming scheme, and the resulted linear system is solved iteratively with Newton-Krylov-Schwarz method 
that is implemented by PETSc package. The results of convergence tests are plotted, which show good 
scalability and convergence around twice faster when compared with the DPLR method. Then five test runs 
are conducted simulating the experiments done at the NASA Ames MHD channel, and the calculated 
pressures, temperatures, electrical conductivity, back EMF, load factors and flow accelerations are shown to 
agree with the experimental data. Our computation shows that the electrical conductivity distribution is not 
uniform in the powered section of the MHD channel, and that it is important to include Joule heating in order 
to calculate the correct conductivity and the MHD acceleration. 
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INTRODUCTION 

Magnetohydrodynamics  (MHD) can be utilized to increase the performance of propulsion systems as it can 
accelerate flows significantly within a relatively short distance. Moreover, MHD modifies flows through 
electromagnetic forces, which makes it work at conditions beyond those of traditional propulsion methods. In order 
to study MHD acceleration, experimental data were obtained at the MHD channel at NASA Ames Research Center 
by Bogdanoff, Park and Mehta.[1] A total of fourteen test runs were reported in the experimental paper, where the 
flow quantities and electrical parameters were measured and presented. The results showed that up to 40% 
acceleration was achieved in an approximately half-meter long channel, where around half of the channel was 
powered by 17 pairs of electrodes. The channel operated at atmospheric pressure with flow Mach number around two 
and temperature 3000 - 4000 K. 1% potassium by mass of the driven gas was injected into the driven tube before 
entering the nozzle. The averaged magnetic field in the channel was about 0.92T.   

The experiments were simulated by Gupta and Tannehill[2] from Iowa State University. In their work, Parabolized 
Navier-Stokes (PNS) equations were solved, and three different chemistry models were used: perfect gas, 
equilibrium and nonequilibrium air-seed chemistry. The vibrational and electron translational nonequilibrium were 
not considered, and the electrical conductivity was assumed constant in their work. Their computed pressure showed 
good agreement with the experimentally measured data. However, for run 15 and 20, their computation 
underestimated the velocity at the channel exit when the measured value of electric field was used. In our present 
work, we simulate the same experiments by solving chemically reacting, three-dimensional Navier-Stokes equations 
including the vibrational and electron energy conservation equation.  We will show that the electrical conductivity 
increases in the streamwise direction due to Joule heating of electrons. Assuming low magnetic Reynolds number, 
we model MHD effects as source terms in the conservation equations. Implicit time marching and the modified 
second-order Steger-Warming[3] scheme are used to discretize the conservation equations, and the resulted linear 
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system is solved iteratively by Newton-Krylov-Schwarz method. In the following sections, the governing equations 
of the MHD solver are given, together with descriptions of the models for energy exchange mechanisms and electron 
transport coefficients. The principles of the numerical method are introduced, followed by convergence and 
scalability tests on a grid of half-million points. Then the MHD acceleration experiments are simulated, and the 
results of five test runs are shown and compared with the measured data. From the computed data, we plot the 
pressure, temperature, conductivity, and back EMF to test the models that are currently in the MHD solver. The flow 
accelerations and load factors at different MHD power levels are also calculated. The conclusions and future research 
directions are given in the last section.    

GOVERNING EQUATIONS OF THE MHD FLOW SOLVER 

We use a five-species (N2, O2, NO, N, O) air chemistry model.[3] Including the seed species (potassium atom and 
ion, electron), a total of eight equations are solved for mass conservation, which take the form  

  
∂ρs

∂t
+ ∇ ⋅ (ρs

G 
u ) + ∇ ⋅ (ρs

G 
v s) = ωs. (1)

Please refer to our previous work[4] for the details of the diffusion model. The momentum equation has an additional 
term and is expressed as 
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where the Lorentz force appears on the right hand side.  
The conservation equations for vibrational energy and electron energy are given by 
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where Ev  and Ee  are the vibrational and electron energy terms, ev,s  is the specific vibrational energy for species s 
and pe  is the electron partial pressure. QT −v  and Qe−v  are respectively the rates of translational-vibrational and 
electron-vibrational energy exchange, and Qh−e  represents the rate of energy exchange between heavy particles and 

electrons. ωsev,s
s=1

ns

∑  and ωeee  are source terms due to chemical reactions. The term   (
G
j ⋅

G
j ) /σ e  in the electron energy 

equation stands for energy addition by Joule heating. 
The energy exchange rate between translational and vibrational modes can be found in [3]. The electron-

translational and electron-vibrational energy exchange rates are given respectively by: 
Qh−e = ne 3k(Te − T)(me /mh )δehν eh

h
∑ , (5)
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*
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,  (6)

where ν eh  is the average collision frequency of the electrons with heavy particles.[4] The coupling of the electron 
energy with the vibrational energy is much stronger for N2 compared to the other species of air,[5] hence the 
contribution of other species to electron-vibrational relaxation is neglected. The nonelastic energy factor δeh  is set to 
a value of 1000.[6] The relaxation time τ ve  can be found in [7].    

The equation for conservation of the total energy is given by  
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where the last term on the right hand side is the MHD power input, and the electron heat conduction vector   
G
q e  is 

given by 
  
G
q e = −κe∇Te , (8)

where κ e  is the electron thermal conductivity 
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κe =
2.4k 2neTe

meν eh

. (9)

In the scope of present work, Hall effect and Ion slip are negligible, and the electric current density   
G
j  is computed 

from Ohm's law 

  
G
j = σ e (

G
E +
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B ). (10)

For electrical conductivity σ e  we use the Frost formula[8] 
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0

∞
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where fM  is the Maxwellian velocity distribution function. The one-equation Spalart-Allmaras RANS turbulence 
model is used in the current work. 

NUMERICAL METHOD 

The conservation equations are discretized with the modified second-order Steger-Warming scheme.[3] After 
discretization, the system has the form 

dU
dt

= −
1

Vi, j ,k

R, (12)

where U is the vector of unknown variables and R  is the residual. Then the implicit Euler time-marching is applied 
I
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(n )

ΔU(n ) = −R(n ), (13)

where A  is the summation of the flow Jacobians and Δt  is the time step. Equation (13) is referred as Inexact-
Newton method due to the additional time step term. If Δt → 0, Newton's method is recovered. 

Directly solving the large sparse linear system resulted from equation (13) is prohibitively expensive, therefore 
simplification of the implicit part of the system is needed to reduce the cost. For example, DPLUR and DPLR[9] 
methods move certain implicit terms to the right hand side so that efficient direct solvers can be applied. Newton-
Krylov methods take a different approach by transforming the system with preconditioners 

P−1 I
Δt

+ A
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

(n )

ΔU(n ) = −P−1R(n ). (14)

The effect of the preconditioner, P  in the above equation, is rescaling the eigenvalue spectrum of the system to near 
unity. In the present paper, we use the Newton-Krylov-Schwarz method from [10] and implement it by including 
PETSc package.[11] Namely, domain decomposition is applied for parallelization, and we use an ILU(0) 
preconditioner and the GMRES method in every sub-domain, together with the restricted additive Schwarz method 
for inter-domain convergence acceleration. 

NUMERICAL RESULTS 

The experimental data were obtained at the MHD channel at NASA Ames Research Center by Bogdanoff, Park 
and Mehta.[1] The simulations were performed on a grid of 251×51×51 points with minimum near-wall spacing 10-6, 
and because of the flow symmetry, only a quarter of the nozzle and channel cross section was computed. The 
averaged magnetic field in the channel was about 0.92 Tesla. 

As the initial conditions for the simulations, zero velocity and high pressure and temperature were set at the 
nozzle entrance. Temperature at the channel wall and electrodes was assumed constant as 300 K, while for electron 
temperature zero-gradient boundary condition was applied. We simulated five experimental runs. The nozzle 
entrance conditions and computed electric field strength for these five runs are listed in Table 1. The electric field 
strengths were determined by taking the measured voltage drop across the central flow and dividing by the channel 
height. The electrodes were open-circuited in the experiments when MHD power was off; hence for Run 9 we 
determined the electric field by assigning a load factor of negative one. The streamwise component of electric field 
and the Hall effect were neglected as the MHD channel operates in the segmented Faraday mode. The voltage drop 
in the boundary layer and sheath is neglected in the scope of the present paper. 
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TABLE 1. Flow parameters for the five simulation runs. 
Case Nozzle entrance 

pressure (atm) 
Nozzle entrance 
temperature (K) 

Capacitor voltage 
(V) 

Electric field (V/m)

Run 9 8.3 5560 0 Load factor = -1 
Run 13 9.9 5560 210 3400 
Run 15 8.4 5560 320 4130 
Run 20 10.6 5560 380 4500 

Run noB 9.9 5560 260 3540 
 

Parallel scalability, speedup and memory usage were tested on a cluster of dual-processor, dual-core, 2.2 GHz, 
AMD Opteron, 64-bit computers with 4 GBytes of memory per computer node. The Portland Group compilers and 
OpenMPI were used for producing the executables, including the PETSc library. Fig. 1 plots the convergence history 
for the channel flow computation with the same series of CFL numbers used, which shows that the fully coupled 
method converges twice as fast as DPLR. The reason for this difference is that DPLR only performs implicit 
relaxation in one direction, while the fully coupled method does unbiased global implicit relaxation in every 
subdomain. 

 
(a) CPU time                                                           (b) Iteration 

FIGURE 1. Convergence rates of the fully coupled and DPLR method. 
 
Figure 2 plots the pressure distribution along the channel centerline for run 13, 15 and 20. They show that the 

computed pressure agrees with the experimentally measured value. Figure 3 plots the translational, vibrational and 
electron temperature, as well as the conductivity distribution along the channel centerline. The figure shows that the 
electron temperature nonequilibrium is not significant due to the high pressure in the channel. The Joule heating, one 
the other hand is very important and hence solving the electron temperature equation is necessary. The nonelastic 
factor in the energy exchange rate between translational and electron energy mode is set to be 1000. The peak 
temperature in the channel becomes larger as the power input increases, as a result of Joule heating and energy 
exchange between electrons and heavy particles. The computed conductivity based on electron temperature is 
compared with measured data, and they are in good agreement. 

Gupta and Tannehill using a PNS and equilibrium model simulated the experiments. In their results, the 
computed velocity of run 20 was underpredicted compared to the experimental data. In the present work, 
computations are conducted with both electron temperature equilibrium and nonequilibrium model. With the 
nonequilibrium model, the electron energy equation is solved and the conductivity is computed based on the electron 
temperature; whereas with the equilibrium model, the electron energy conservation equation was not solved, instead, 
the electron temperature is forced equal to the translational temperature, and the conductivity is computed using the 
translational temperature. The computed results for run 20 are shown in Fig. 4. The equilibrium conductivity is lower 
than the nonequilibrium one, because it is unable to predict the Joule heating with the equilibrium model. The lower 
conductivity causes smaller flow acceleration as shown in the figure. 
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(a) Run 13                                    (b) Run 15                                    (c) Run 20 

FIGURE 2. Static pressure of runs 13, 15 and 20 along the channel centerline. 
 The dots are the measured data, and the lines are the computational results. 

 

 
(a) Run 13                                    (b) Run 15                                    (c) Run 20 

FIGURE 3. Translational, vibrational and electron temperature, and conductivity of runs 13, 15 and 20 along the channel 
centerline. The dots are the measured data, and the lines are the computational results. 

 
The computed flow acceleration is plotted in Fig. 4, all using the nonequilibrium model. The velocity is first 

averaged across the channel cross section at the location of electrode pair 19, then it is normalized by the velocity 
with magnetic field on and MHD power off.  It shows that the computed acceleration agrees with the experimental 
value. After comparison with the results of Gupta and Tannehill, it is concluded that modeling the Joule heating is 
essential.  

CONCLUSIONS 

A three-dimensional MHD flow solver was described in the present paper. The solver can simulate viscous 
reacting flows, with relaxation between translation-rotational, vibrational and electron-translational modes included. 
The effects of MHD on flows, namely Lorentz force, Joule heating and MHD power input, were incorporated as 
source terms. The models of electrical conductivity, electron thermal conductivity and collision frequencies were 
taken from the corresponding references.  The conservation equations were discretized with the second-order 
modified Steger-Warming scheme, and the Inexact-Newton method was used to linearize the discretized equations, 
which were then solved iteratively by the GMRES method. Parallelization was realized by domain decomposition, 
and the Schwarz method was applied to achieve inter-domain convergence acceleration. The fully coupled method 
was implemented by PETSc routines. Good scalability and convergence rates were achieved by the fully coupled 
method, and when compared with the DPLR method, the fully coupled method converges about twice faster in terms 
of CPU time.  

The experiments conducted at the MHD channel at NASA Ames Research Center by Bogdanoff, Park and Mehta 
were simulated. A total of five runs were computed. Three runs were with both magnetic field and MHD power on; 
one was with magnetic field but no MHD power; the last run was conducted with MHD power but no magnetic field. 
The computed channel static pressures agreed with the experiment data. The translational, vibrational and electron 
temperature were plotted for the three test runs with MHD power on, which showed insignificant nonequilibrium 
(about 200 K maximum). However, it was shown that Joule heating had large influence on the conductivity and 
solving the electron energy equation was necessary. With increasing MHD power level, the peak electron 
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temperature increased, and so did the translational and vibrational temperature due to energy exchange between 
electrons and heavy particles. Then computed nonequilibrium electrical conductivity was plotted, and the results 
agreed with the experiments. Run 20 was simulated with both electron temperature equilibrium and nonequilibrium 
model. The results showed that only the nonequilibrium simulations predict the correct MHD acceleration, whereas 
the equilibrium model underpredicted the conductivity and flow velocity. Conducted to measure the normalization 
velocity in the acceleration evaluation, the experiment run without MHD power was simulated. The MHD 
accelerations were plotted, and they agreed well with the experiments. In summary, our computational model and 
tool are accurate for the presented type of flow. 

 
FIGURE 4. Normalized velocities at the last electrode pair at different MHD power levels. 

The velocities are averaged across the channel cross section. 
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