Approximate Engineering Solution for Predicting
Groundwater Table Variation During Reservoir Drawdown
on the Basis of the Boussinesq Equation
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Abstract: With reservoir drawdown, the groundwater table in the adjacent aquifer falls down correspondingly. It is useful to calculate the
groundwater table variation as a function of time during reservoir drawdown for hydraulic and hydrological purposes. The Boussinesq
equation with a moving boundary is applied to analyze the groundwater table variation in the unconfined aquifer during reservoir drawdown.
This approach assumes a negligible seepage face. Because the moving boundary condition in the mathematical formulation precludes
analytical solutions even for the linearized Boussinesq equation, we have transformed the Boussinesq equation into an advection—diffusion
equation to address the negligible seepage face and the moving boundary condition. On the basis of the Laplace transformation, we yield
an analytical solution of a fixed boundary problem, which is further simplified to upper and lower polynomial solutions for convenient
practical use. The polynomial approximate solutions are satisfactorily compared with a number of numerical simulations of the nonlinear
Boussinesq equation. The results indicate that the polynomial solutions match well with the numerical solution, but demonstrate that
the replacement of the sloped reservoir—aquifer interface by a vertical interface may cause errors of up to 10% of the height of the
reservoir drawdown in the prediction of the groundwater table location. On the basis of the polynomial solutions, a methodology is
provided to determine the ratio of hydraulic conductivity to specific yield along with a chart for convenient practical use. The limitation
of the present study is that the presented solution tends to underestimate the groundwater table with seepage face neglected for rapid draw-
down, high specific yield, low hydraulic conductivity, or mildly sloped interface cases. DOI: 10.1061/(ASCE)HE.1943-5584.0000372.
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Introduction

During reservoir drawdown, the groundwater table in the adjacent
aquifer falls. The prediction of groundwater table variations in
the aquifer during reservoir drawdown is useful for hydraulics
and hydrological analysis. The Boussinesq equation is most often
used to analyze groundwater flows in an unconfined aquifer
(Mizumura 2009; Bansal and Das 2010). Analytical solutions
for this equation can provide insight into the physics of ground-
water flows. In the meantime, they can also be used to verify
numerical solutions. Therefore, it is still meaningful for us to ex-
plore a new approximate analytical solution for extending the
existing solutions and providing additional applications.
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The Boussinesq equation is nonlinear and hardly has theo-
retical solutions in general. In previous works, the equation was
analytically solved for specific initial and boundary conditions
(Telyakovskiy and Allen 2006; Telyakovskiy et al. 2010). Hogarth
et al. (1999) used the Boussinesq equation to describe groundwater
flows in an initially dry aquifer when the level of a stream expe-
riences temporal variation. Analytical solutions on the basis of the
Heaslet-Alksne technique (Heaslet and Alksne 1961) were given to
estimate the groundwater table height and flux between a stream
and the adjacent aquifer. Parlange et al. (2000) reported a useful
analytical solution of the Boussinesq equation that provides an
insight into the physical processes of water exchange between an
aquifer and a free water body of varying elevation. The solution is
able to describe water movement both in and out of the aquifer,
including the case of a finite aquifer. Lockington et al. (2000) pre-
sented a simple analytical solution of the Boussinesq equation for
water motion from a stream into an initially dry, unconfined, hori-
zontal, semi-infinite aquifer on the basis of Shampine’s transforma-
tion when the boundary condition obeys a power law of time. Song
et al. (2007) proposed a perturbation solution of the Boussinesq
equation for one-dimensional tidal groundwater flows in a coastal
unconfined aquifer. This solution exhibits various propagation
characteristics of tidal fluctuating signals in the aquifer. Serrano
et al. (2007) solved the Boussinesq equation by using the decom-
position method to model transient stream-—aquifer interaction,
and gave some analytical solutions subjected to transient, large-
amplitude, periodic boundary conditions. However, all of the pre-
viously mentioned researchers assumed that the interface between
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Fig. 1. Sketch of idealized cross section for the mathematical model
(seepage face is neglected if the exit point coincides with the intersec-
tion as in this study)

the free water body and the adjacent unconfined aquifer was
vertical.

In a natural reservoir—aquifer system, the interface between the
reservoir and the adjacent aquifer is generally nonvertical, which
results in a moving boundary condition in the mathematical model
for groundwater table prediction during reservoir drawdown
(see Fig. 1). This moving boundary precludes analytical solutions
even for the linearized Boussinesq equation. Only a few studies
have addressed the issue of the moving boundary condition.
Nielsen (1990) presented an analytical investigation in which
the assumption of a fixed boundary condition was relaxed. He de-
rived a perturbation solution for small-amplitude fluctuations in the
water table on the basis of the linearized Boussinesq equation by
matching a prescribed series solution with the moving boundary
condition. Li et al. (2000) transformed the Boussinesq equation into
an advection—diffusion equation with an oscillating water table to
account for the moving boundary effect. Maintaining the simplicity
of the linearized Boussinesq equation, they presented a new pertur-
bation approach to deal with the propagation of spring neap tides.
However, all of the foregoing solutions focus on the sinusoidal
oscillating moving boundary condition and cannot be applied di-
rectly to study the effects of reservoir drawdown with constant
speed on groundwater table variation in the adjacent aquifer.

The purpose of the present paper is to extend the work of Li et al.
(2000) to determine the groundwater table location during reservoir
drawdown. A new analytical solution of the linearized Boussinesq
equation is presented to describe groundwater table variation in a
semi-infinite unconfined aquifer when reservoir water drops at a
constant speed. On the basis of the analytical solution by virtue
of the Laplace transformation, we yield the upper and lower bound
solutions, which are further simplified into an approximate poly-
nomial formula. They are well verified by comparison with a num-
ber of numerical simulations of the nonlinear Boussinesq equation
for different physical parameters. Finally, a methodology along
with a chart is provided for the determination of the ratio of hy-
draulic conductivity to specific yield in an aquifer for engineering
applications.

Governing Equation for Transient Groundwater
Flows with a Moving Boundary

Generally speaking, the governing equation for one-dimensional,
lateral, unconfined groundwater flows in the Boussinesq equation
(Parlange et al. 1984) is

Ooh KO [ Oh

ot Sox (hax) )
in which & = groundwater table height from the horizontal,
impermeable aquifer base [L]; K = hydraulic conductivity [LT~'];
S = specific yield; x = horizontal coordinate [L]; and 7 = time [T].
Without loss of generality, the replenishment due to rainfall infil-
tration is not taken into account because our attention at present
is mainly focused on the effects of reservoir drawdown. More-
over, the capillary effects on the groundwater table elevation are
neglected as well. The modifications of this equation to incorporate
vertical flow and capillary effects were previously made by Nielsen
et al. (1997) and Parlange and Brutsaert (1987), respectively.

Meanwhile, the boundary and initial conditions for a semi-

infinite aquifer in a slope look like

h[X(r),f] = H,(¢) X(r) = H,(t) cot 3, >0 (2

h(oo,t) = N t>0 (3)

h(x,0) = h; 0o > x> H;(0)cotf 4)
in which X(#) = x-coordinate of the moving boundary [L], with the
origin of the x-coordinate located at the toe of the sloped interface;
(3 = slope angle; &; = initial height of the groundwater table across
the aquifer [L]; and H, () = reservoir water level at the left boun-
dary [L]. Eq. (2) actually implies that the seepage face is totally
negligible. In reality, the groundwater flow in the adjacent aquifer
may not instantly follow the variation of the water surface in
the reservoir, thus resulting in the formation of a seepage face
on the slope if the reservoir water level drops quickly enough or
seepage flows move slowly enough. The intersection of the ground-
water table and a slope surface is commonly termed the “exit
point,” and the region between the exit point and the reservoir water
level is termed the “seepage face.” In the present study, we assume
that the exit point happens to be at the water surface of the reservoir,
namely, the effect of the seepage face is neglected for the sake of
convenient manipulation. Fig. 1 depicts an idealized cross section
of the model under consideration.

Then, we prefer first to consider the drawdown condition at a
constant speed; that is, the reservoir water level can be specified as

H (t)=h -Vt (5)

in which V = drawdown speed of reservoir water level. When V¢ is
larger than h;, the reservoir water level is below the data chosen for
this problem and the moving boundary in Eq. (2) is no longer sat-
isfied, which is out of the scope of the present paper. This means
that in the present paper, V¢ should always be no larger than A;.

Similar to Li et al. (2000), we introduce a new variable
z =x — X(¢), indicating the horizontal distance between a point
in the aquifer and the intersection of reservoir water-surface level
and sloped interface. Eqs. (1)—(4) can then be rewritten as

o =5 () 0% ©
h(0,t) =h; — Vt t>0 (7)

h(oo,t) =h; 120 (8)
h(z,0)=h;, o00>z>0 9)

in the new coordinate system, in which
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vty = — X0 _y o (10)
dt
denotes the horizontal speed of the intersection of the reservoir
water level and the sloped interface during reservoir drawdown.
In this way, we have reformulated a moving boundary problem
of Eq. (1) into a fixed boundary problem. However, the governing
equation now should include an additional advective term due to
the effect of the sloped interface.

Solution of the Linearized Boussinesq Equation

If we assume that the variations of the groundwater table are
small compared to a characteristic height of the groundwater table
(van de Giesen et al. 1994; Serrano et al. 2007), the Boussinesq
equation can be linearized and solved analytically. Eq. (6) is lin-
earized by replacing the term h, associated with diffusive terms,
with £, the average height of groundwater table, or #; in this study,
and then can be written as

Oh  Kh;0*h Oh

=S 92 Vcotﬁaz (11)

We further assume that u(z, ) = h; — h(z,t) and Egs. (7)—(11)

can be transformed to

%:K;igiz’j— Vcotﬁg—z (12)
u(0,t) =Vt t>0 (13)
u(oo,1) =0 120 (14)

u(z,0)0 =0 oc0>z20 (15)

By using the Laplace transformation
oo
Uer) = Llzn) = [Tucnerar (0
0

Eq. (12) can be transformed into

Kh; d*U dUu
=—iZ - _ — 17
pU S a2 Vcotﬂdx (17)

The boundary conditions can be redefined in the Laplace
domain as

\%
U|x:0 :]? U|x:oo =0 (18)

0.1091X* — 0.7501\ + 1.9283\% —2.2319A+1 0<A <2
MM =1,

The lower and upper solutions of the height of the groundwater
table are now given by

h(z,t) = h; — VIM()) exp [(M> )\2}

Z

2z — Vrcot
z coﬂvt

hy(z,t) = h; — VtM(\) exp [( 2 cot ﬂ) )\2} (25)

The solution of Eq. (17) turns out to be

Vot 3 — \/Vzcot2ﬂ+4%p
(19)

Kh;
275

1%
U(z,p) = |

By using the inverse Laplace transformation, u(z,7) is now
given by

(—p+1)zexp (— V2p2Scot? 3—S8z2+2VpSz cot ﬂ)
t

0 5 wSp3
\l Kh;
(20)

and the height of groundwater table by

h(z,t) = hy — u(z, 1) (21)

This analytic solution representing groundwater table variation
in the adjacent aquifer during reservoir drawdown looks too com-
plicated to be easily used for practical engineering. If we let p in the
first term of the exponential term (—V2p®Scot?3) /4Kh;p be 0 or ¢,
two simpler approximate solutions can be derived. Because they
are less and larger than the solution to Eq. (21), respectively, they
represent the lower and upper bound solutions of the actual ground-
water table height.

The lower solution now is

hy(z,t) = h; — Vi [(1 +2X%)erfe(N) — %)\e*’\z}

X exp <72Vt cots )\2) (22)

Z

And the upper solution is

X exp { <2Z_‘Z/+Otﬂ Vi cot 6) )\2} (23)

in which \ = (z/2)+/S/(Khjt); erfc(\) = (2//7) [{° e dx.

If we assume M(X\) = (14 2X2)erfc(N) —2Xe ™/ /7, for
engineering applications, a simpler polynomial can be used to
fit M(A\) (Zheng et al. 2005).

hy(z,1) = h; — Vi [(1 +22\)erfc(\) — \/i_)\e‘*z]

A2

If the upper and lower solutions are very close to each other,
which will subsequently be proved in a few examples, both of them
will be very close to the exact solution and can be regarded as
accurate approximate solutions. Egs. (24) and (25) indicate that
the influential distance at a given time ¢ is z = 41/Kh;t/S. To re-
phrase the solution in the x-coordinate, it suffices only to substitute
z=x—X(z) into Eq. (25).
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Numerical Verification and Discussion

The Boussinesq equation describes nearly horizontal flows with the
vertical motion and capillary effects of fluid neglected. The linear-
ized Boussinesq equation further requires a constant transmissivity
T, which can be written as

for horizontal flows with a saturated aquifer thickness d and hori-
zontal hydraulic conductivity K. Hence, the transmissivity, which
is directly proportional to the horizontal hydraulic conductivity
and the saturated thickness of an aquifer, can be regarded as a
measure of water seepage capacity horizontally. As x increases,
the hydraulic-gradient and groundwater-table variations drop and
the transmissivity tends to a constant. As a result, the accuracy
of the linearization for the Boussinesq equation is improved.

The effectiveness of the approximate solution is verified by
comparing the upper solution with numerical results. The numeri-
cal calculation of the nonlinear Bousinesq equation is performed on
the basis of a standard explicit finite difference scheme with high
spacial resolution and small time step as follows:
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in which At = time interval and Az = space increment. The sub-
scripts i and j indicate time and space steps, respectively. The boun-
dary conditions are Eqs. (7) and (8), and the initial condition is
given by Eq. (9). Although such a numerical scheme is inefficient
and restrictive in terms of the allowable time step due to stability
consideration, it is still appropriate for our purpose. In the calcu-
lations of the solutions presented, Ar is 0.0001 days and Az is
0.5 m, and the total time ¢ is 5 days. Fig. 2 shows comparisons
between the upper polynomial solutions and the numerical results
for different drawdown speeds, hydraulic conductivities, specific
yields, and slope angles, respectively. The seepage face is negli-
gible in these simulations. The simulations show that the upper
polynomial solution compares reasonably well with the numerical
one. Fig. 2(a) illustrates that the elevation of the groundwater table
is lower as the drawdown speed increases. Fig. 2(b) shows the

22
i V=0.5m/day, $=0.1
| h=20m, p=45°
nr e R AT e
| e #. R
Lo g
- g /_ov' -
- g
£ - | o« o/-iﬂ"
T N P
.g 5 slope surface
T [ a numerical K=0.1 m/day
o analytical K=0.1 m/day
| < numerical K=0.5 m/day
————————— analytical K=0.5 m/day
18 o numerical K=1.0 m/day
H —— = analytical K=1.0 m/day
gl o
20 40 60 80 100
(b) x(m)
21
L V=0.5m/day, $=0.1
K=0.5m/day, h=20m
ar oo R RS D — &~
- /.G"':‘—-A" o a
| A A
o«
—_— 3 & 7
£ L /Q/ 7 P
£ 19} e F “
S ¢ &
s Y 7 7 . o
X T o a numerical p=30
L 7/ T analytical p=30°
| ¢ # ° numerical p=45°
18 _?’ ;>’ ?’ --------- analytical p=45°
;o 1 -1 numerical p=60°
# i ; i - analytical p=60°
b & i
Py 2 N NN EERTIN R U S
20 40 60 80 100 120
C) x(m)

Fig. 2. Comparison between upper polynomial solutions and explicit finite-difference solutions for (a) different drawdown speeds: 0.1 m/day,
0.5 m/day, and 1.0 m/day; (b) different hydraulic conductivities: 0.1 m/day, 0.5 m/day, and 1 m/day; (c) different specific yields: 0.05, 0.1,

and 0.5; (d) different slope angles: 30°, 45°, and 60°
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groundwater table heights for different hydraulic conductivities,
demonstrating that as the hydraulic conductivity increases, the in-
fluential region of reservoir drawdown becomes larger, and hence
the groundwater table is lower. In contrast, Fig. 2(c) indicates that
the aquifer has a higher groundwater level for smaller specific
yield. Fig. 2(d) displays the groundwater table variation for differ-
ent slope angles. Obviously, the groundwater table for a mild
slope is lower than that for a steeper one.

To quantitatively estimate the accuracy of the upper polynomial
solution, we define

‘hu B hn|

accuracy ratio in percent = x 100 (28)

i

in which &, and h, are the groundwater table heights for upper
polynomial and numerical solutions, respectively, and h; is the
initial groundwater table height. We have calculated the accuracy
ratios for all previously mentioned simulations, as shown in Fig. 3.
The results prove that the accuracy ratios are less than 0.8%, which
is precise enough for engineering applications. As x increases, the
differences of all the simulations exhibit similar variation patterns.
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The reason is that the difference between fitted polynomial and
actual function of M(\) has the similar variation pattern. Fig. 3(a)
presents the accuracy change with the drawdown speed, showing
that the maximal error increases with the drawdown speed. For in-
stance, the maximal error is only 0.03% for a drawdown speed of
0.1 m/day. In contrast, the maximal error rises up to 0.79% for a
drawdown speed of 1 m/day. Fig. 3(b) demonstrates that the maxi-
mal error grows from 0.13% to 0.24% as the hydraulic conductivity
increases from 0.1 m/day to 1.0 m/day. Fig. 3(c) illustrates that
the maximal error decreases from 0.24% to 0.13% as the specific
yield varies from 0.05 to 0.5. Fig. 3(d) shows that the maximal error
increases as the reservoir—aquifer interface angle becomes larger.
As the slope angle expands from 30° to 60°, the maximal error
increases from 0.18% to 0.24%. In addition, we also have calcu-
lated the differences between the upper and lower polynomial
solutions for all the previously mentioned simulations to validate
our approximate solutions. The results show that the maximal dif-
ference between two polynomial solutions is minor, approximately
of the order of 0.3% of the initial groundwater table height, imply-
ing that both upper and lower solutions can be regarded as accurate
approximate solutions.
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Fig. 3. Quantitative differences of upper polynomial solutions and explicit finite-difference solutions for (a) different drawdown speeds: 0.1 m/day,
0.5 m/day, and 1 m/day; (b) different hydraulic conductivities: 0.1 m/day, 0.5 m/day, and 1 m/day; (c) different specific yields: 0.05, 0.1, and 0.5;

(d) different slope angles: 30°, 45°, and 60°
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Fig. 4. Schematic diagram of the difference between the “vertical inter-
face solution” and the realistic upper polynomial solution

Most existing solutions (e.g., Zheng et al. 2005) were derived on
the basis of the assumption of a vertical reservoir—aquifer interface.
Simplifying the sloped interface by a vertical boundary may cause
some errors. The difference between the “vertical interface solu-
tion” and the more realistic upper polynomial solution is exhibited
in Fig. 4. The “vertical interface solution” matches the reservoir
water level along the imaginary vertical interface, and thus coin-
cides with the initial reservoir water level at point A’ and the current
reservoir water level at point B’. The upper polynomial solution
matches the reservoir water level along the sloped interface, and
hence coincides with the initial reservoir water level at point A
and the current reservoir water level at point B. The imaginary
vertical interface is assumed to pass through the midpoint of the
line AB (Nielsen 1990), indicating that this imaginary interface
is moving leftward during the process of reservoir draw-
down. The maximal difference dh between the “vertical interface
solution” and the more realistic upper polynomial solution occurs
along the imaginary vertical interface, as shown in Fig. 4. Further-
more, Fig. 5 illustrates that the errors caused by vertical-interface
assumption increase with the reservoir drawdown height and
decrease with the slope angle. It should be noted that simplifying
the sloped reservoir—aquifer interface by a vertical boundary may

0.12
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Fig. 5. Difference between the “vertical interface solution” and the
realistic upper polynomial solution for different slope angles: 30°,
45°, and 60°

lead to an error of up to 10% of the height of the reservoir
drawdown (Fig. 5).

One problem in using the Boussinesq equation is that no cri-
terion is given for the estimation of seepage-face development.
In the present paper, the seepage face is assumed to be entirely neg-
ligible. Turner (1993) proposed a model for the movement of the
exit point entirely on the basis of the dynamics of an isolated water
particle on the seepage face. On the basis of the concept from
Turner, the following criterion can be derived to predict situations
in which the assumption of a negligible seepage face is reasonable:

Ksin?g3
VS

> 1 (29)

This expression implies that the approximate polynomial solu-
tions are only suitable for relatively slow drawdown speed, small
specific yield, high hydraulic conductivity, or a steep reservoir—
aquifer interface. The previously mentioned criterion limits the
application of the approximate polynomial solutions. If the seepage
face occurs, the approximate polynomial solutions are probably
impractical and may underestimate the height of the groundwater
table; however, the approximate polynomial solutions are both sim-
ple and very useful if the seepage face can be negligible.

Egs. (24) and (25) indicate that the influential distance at any

time ¢ can be measured by z = 41/Kh;t/S. Then, this relationship
can be used to determine the aquifer parameters. Assume that the
initial groundwater table in the aquifer is horizontal and equals
the initial reservoir water level. A monitoring well is drilled deep
into the aquifer. Evidently, we can obtain the distance L between
the monitoring well and the intersection of the reservoir water level
and the sloped interface at the time f when the groundwater table in
the monitoring well begins to drop (Fig. 6). The ratio of hydraulic
conductivity K to specific yield S can then be determined by

K L2

S~ 16th;

(30)

Eq. (30) for any sloped reservoir—aquifer interface and a chart as
presented in Fig. 6 are both suitable for engineering applications.
Although the chart is valid only for conditions as shown in Fig. 6, it
could be useful for a preliminary estimate of the ratio of hydraulic
conductivity to specific yield in an aquifer.

350
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g |- -
NE 200 - > Vt<h
E < L ’
(%] . s
~_ 150 4 Ksm'ﬁ21
$ s
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Fig. 6. Chart for the determination of aquifer hydraulic parameters
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Conclusions

An approximate analytical solution is proposed by solving the
linearized Boussinesq equation for one-dimensional groundwater
flows in a slant slope adjacent to a reservoir during water draw-
down. A constant drawdown speed, a negligible seepage face,
and a moving boundary condition are assumed. Since the analytical
solution we have yielded is difficult to use for practical engineering,
it is simplified to upper- and lower-bound solutions and further
fitted in the form of an approximate polynomial formula. The upper
polynomial solution is satisfactorily verified by comparison with
a number of numerical simulations. The results indicate that the
effect of slope angle is significant and the replacement of slant
slope by a vertical interface may cause errors of up to 10% in
the prediction of groundwater elevation. On the basis of the poly-
nomial equations, a methodology along with a useful chart is pro-
vided for the determination of the ratio of hydraulic conductivity
to specific yield. We should emphasize at this moment that the
upper and lower polynomial solutions with seepage face entirely
neglected are only applicable to the cases for relatively slow draw-
down speed, small specific yield, high hydraulic conductivity, or a
steep reservoir—aquifer interface. On the other hand, it appears to
be very helpful for a preliminary estimate of the ratio of hydraulic
conductivity to specific yield. Even for more complicated scenarios
when we have to resort to more general numerical approaches,
the theoretical expressions derived in this paper seem to be
useful in the validation and verification of numerical models and
schemes.
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