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The anti-plane electroelastic behavior of three-phase piezoelectric composites (fiber/inter-
phase/matrix) with doubly periodic microstructures is dealt with. A new variational func-
tional for a unit cell is constructed by incorporating the periodic boundary conditions into
the energy functional. Then, by combining with the eigenfunction expansions of the com-
plex potentials satisfying the fiber–interphase–matrix interfacial conditions, an eigenfunc-
tion expansion-variational method based on a unit cell is developed. The numerical results
of the effective electroelastic moduli show a rapid convergence of the present method. A
unified first-order approximation formula is also provided, where an equivalent parameter
matrix reflecting the overall influence of the electroelastic properties of the fiber and inter-
phase on the effective properties, is found. The equivalent parameter matrix can greatly
simplify the complicated relation of the effective electroelastic properties to the internal
structure of a three-phase fiber composite. Though the equivalent parameter matrix is
extracted in the first-order approximation formula, its validity is also verified in the
high-order numerical results.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric composites have been widely used in
smart materials and structures, such as sensors and actua-
tors, due to the outstanding performance compared with
the monolithic piezoelectric materials.

In improving the toughness, flexibility and/or electro-
elastic performance, the two-phase composites have
achieved great success. Many researches focused on this
topic. For instance, Smith et al. (1985) found that the pie-
zoelectric composites can provide a higher piezoelectric
modulus than the constituents. The experiment and theo-
retical prediction by Chan and Unsworth (1989) showed
that the PZT/polymer 1–3 composite has a comparable pie-
zoelectric modulus with the monolithic PZT, while has a
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well-improved flexibility, if only the PZT volume fraction
is up to 0.4.

Three-phase piezoelectric composites may possess bet-
ter designability compared with two-phase composites,
and can serve as multifunctional materials. Lin and Sodano
(2008) introduced a novel active piezoelectric structural fi-
ber (the piezoceramics are coated onto a conductive struc-
tural fiber) that can be laid up in a composite to perform
sensing and actuation, in addition to providing load bear-
ing functionality. Beckert et al. (2001) reported a compos-
ite reinforced with hybrid fiber with an inactive core and a
high performance piezoelectric coating, where the inactive
core provides the mechanical support. Marcheselli and
Venkatesh (2008) reported piezoelectric composites with
hollow fibers, where the piezoelectric coupling constant
may be enhanced significantly by the introduction of
porosity. On the other hand, three-phase piezoelectric
composites may be generated from two-phase piezoelec-
tric composites by introducing an interphase between the
inclusion phase and the matrix. Such a kind of interphase
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Fig. 1. Cross section of a three-phase piezoelectric fiber composite and its
two kinds of doubly periodic microstructures. (a) The composite is
subjected to combined antiplane shear and inplane (Ox1x2-plane) elec-
trical loads; (b) hexagonal fiber array; (c) square fiber array.
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may be formed due to chemical reaction between the con-
stituents, or be introduced to reduce high stress concentra-
tion at the interface arising from the mismatch between
the material properties of constituents. And the stress con-
centrations may lead to failure of the piezoelectric
composites.

Among researches about the topic of multi-phase
piezoelectric material systems, some researches (Jiang
and Cheung, 2001; Shen et al., 2009, 2005; Sudak, 2003;
Yang and Gao, 2009) investigated electroelastic fields in
the material systems of coated or multicoated inclusions
in an infinite matrix, and some researches focused on the
topic of effective properties of three-phase or multiphase
piezoelectric composites. There are generally two kinds
of models for solving the effective properties. One is the
model of a multi-coated inhomogeneity embedded in an
infinite matrix. Dinzart and Sabar (2009) solved the elec-
troelastic coated inclusion problem based on the Green’s
functions technique and on the interfacial operators, and
obtained the effective properties of composites through
the Mori–Tanaka’s model. Koutsawa et al. (2010) pre-
sented a micromechanics-based model to predict the effec-
tive thermo-electro-elastic properties of piezoelectric
composite materials containing ellipsoidal multi-coated
inhomogeneities. Lin and Sodano (2010) extended the
double inclusion model to multiphase composites with
piezoelectric constituents for studying a novel active struc-
tural fiber composite introduced by them. These three
works presented general analytical solutions for effective
piezoelectric properties by treating the inclusion interac-
tions either approximately or in a statistical sense. The
other is periodic microstructure model. Beckert et al.
(2001), Marcheselli and Venkatesh (2008), and Lin and
Sodano (2008) gave finite element solutions of effective
properties for the three-phase composites with periodic
microstructure. Guinovart-Díaz et al. (2008) determined
effective moduli for three-phase piezoelectric unidirec-
tional composites by using asymptotic homogenization
scheme for periodic media. More recently, Hashemi et al.
(2010) developed a robust homogenization scheme for
determination of the effective properties of a periodic pie-
zoelectric composite with general multi-coated inhomoge-
neities, by combining the Fourier series expansion
approach with the eigen-field concept.

Though some very general schemes (such as Koutsawa
et al., 2010; Hashemi et al., 2010) for determination of
the effective properties of the multi-phase piezoelectric
composites have been presented, unified and convenient
engineering closed-form formulae of effective properties
are still desirable for the design of piezoelectric compos-
ites. Moreover, the existing researches show that the effec-
tive properties are complicatedly related to a large number
of microstructural parameters, such as the properties and
arrangements of constituents and the thickness of
interphase. Therefore, it is still necessary to simplify such
complicated relations by extracting equivalent parameters.
Additionally, some piezoelectric composites possess
periodic microstructures, and the periodic composite
models (Berger et al., 2006; Bravo-Castillero et al., 2001;
Rodríguez-Ramos et al., 2010; Nemat-Nasser and Hori,
1999; Pettermann and Suresh, 2000; Xia et al., 2003; Xu
et al., 2007; Yu and Somphone, 2009) provide useful limit-
ing values of interacting inclusions from entirely disorder
(random) to order. Especially, the design of an advanced
composite is generally the one for a unit cell (Sun et al.,
2001). Thus, it is valuable to develop a new analytical
method for analysis of the composites with periodic
microstructures.

The present work is devoted to develop an eigenfunc-
tion expansion-variational method for analysis of the
anti-plane electroelastic behavior of three-phase piezo-
electric composites (fiber/interphase/matrix) with a
doubly periodic microstructure. High-order numerical
solution and a convenient engineering closed-form for-
mula for the effective electroelastic moduli are presented.
In addition, an equivalent parameter matrix reflecting the
overall influence of the electroelastic properties of the fiber
and interphase on the effective moduli, and a parameter
reflecting the fiber distribution are extracted in the
closed-form formula. The validity and accuracy of these
parameters are verified.
2. Statement and formulation of the problem

As shown in Fig. 1(a), a piezoelectric material is sub-
jected to combined antiplane shear and inplane (Ox1x2-
plane) electrical loads, with a poling direction being along
the x3-axis. Then only the antiplane displacement w and
inplane electrical potential u need to be considered, and
they are the functions of x1 and x2 only,
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Fig. 2. Two kinds of unit cells taken from three-phase fiber composites
(fiber/interphase/matrix). (a) Hexagonal unit cell and (b) square unit cell.
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The strain and electrical field components ei3 and Ei

(i = 1,2) satisfy the gradient equations:
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" #
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For a transversely isotropic piezoelectric material, say,
the fiber, interphase and matrix, the antiplane constitutive
equations (Tiersten, 1969; Tong et al., 2006) can be written
as:

si3

Di

� �
¼

C44 e15

e15 �j11

� �
2ei3

�Ei

� �
ð3Þ

where si3, Di (i = 1,2) are the antiplane shear stress and in-
plane electrical displacement components, respectively;
C44, e15 and j11 are the shear, piezoelectric and dielectric
moduli of the material, respectively.

The equilibrium equations and charge equations are

X2

i¼1

@si3

xi
¼ 0;

X2

i¼1

@Di

xi
¼ 0 ð4Þ

For brevity and convenience, now introduce matrix nota-
tions for the variables as follows:

w ¼
w

u

� �
; c1 ¼

2e13

�E1

� �
; c2 ¼

2e23

�E2

� �
;

c ¼
2e13 2e23
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� �
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s13
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� �
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s23

D2

� �
;
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s13 s23

D1 D2

� �
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@x1
;
@

@x2

� �
;
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x1

x2

� �
; L ¼

C44 e15

e15 �j11

� �
ð5Þ

where w, c and s are called generalized displacement,
strain and stress, respectively. Then the basic equations
are put in matrix form:

gradient equation : c ¼ w�r ð6aÞ
constitutive equation : s ¼ Lc ð6bÞ
equilibrium equation : rsT ¼ 0 ð6cÞ

where superscript ‘‘T’’ denotes transpose.
From Eqs. (6a)–(6c), the displacement and electric po-

tential fields satisfy the following Laplace’s equation:

r2w ¼ 0 ð7Þ

and r2 ¼ @2

x2
1
þ @2

x2
2

� �
is the Laplacian operator.

3. Periodicity conditions and variational functional for a
unit cell

Consider a piezoelectric composite with a doubly peri-
odic microstructure as shown in Fig. 1. Two fiber distribu-
tions of practical importance, i.e., the hexagonal and square
arrays, are shown in Fig. 1(b) and (c), respectively, where
d1 and d2 denote two fundamental periods. A general per-
iod p can be defined as:
p ¼ m1d1 þm2d2 ð8Þ

where m1 and m2 are arbitrary integers. For the piezoelec-
tric behavior considered here, the displacement field w(x)
and electrical potential field u(x) are quasi-periodic,
the stress field {s13(x),s23(x)} and electrical displacement
field {D1(x),D2(x)} are periodic, and they can be expressed
as:

wðxþ pÞ �wðxÞ ¼ hcip
sðxþ pÞ � sðxÞ ¼ 0

�
ð9Þ
where hci denotes the average of the strain and electrical
field matrix c over a unit cell.

Due to the periodicity, unit cells are picked out for anal-
ysis, and the hexagonal and square unit cells are shown in
Fig. 2(a) and (b), respectively. The unit cell boundaries can
be divided into @Vþ ¼

P
s@Vþs and @V� ¼

P
s@V�s , where

s = 1,2,3 in Fig. 2(a) and s = 1,2 in Fig. 2(b). By a proper
translation ps, the boundary @V�s will coincide with the
boundary @Vþs , where p1 = d1, p2 = d2 and p3 = d2 � d1 in
Fig. 2(a) and p1 = d1 and p2 = d2 in Fig. 2(b). Then the peri-
odic boundary conditions of a unit cell corresponding to
Eq. (9) can be written as:

wsþ �ws� ¼ hcips

tsþ þ ts� ¼ 0

�
ð10Þ
where t(=sn) denotes the generalized boundary stress con-
sisting of the boundary stress and boundary electrical dis-
placement. n denotes the unit normal vector on the
boundary; the quantities with superscripts ‘‘s�’’ and ‘‘s+’’
are corresponding to taking values from @V�s and @Vþs ,
respectively.

By using the Lagrangian multiplier method, the periodic
boundary conditions of a unit cell can be incorporated
into the functional for the piezoelectric issue under
consideration:

P ¼
Z

V

1
2
s : cdV þ

Z
@Vþ

k� � ðwþ �w� � hcipÞdS ð11Þ

where k⁄ is a Lagrangian multiplier to be determined. The
variation of the generalized functional (11) can be written
as:
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dP ¼
Z

V
s : dcdV þ

Z
@Vþ

dk� � ðwþ �w� � hcipÞdS

þ
Z
@Vþ

k� � ðdwþ � dw�ÞdS ¼ �
Z

V
rsT� �

� dwdV

þ
Z
@V

t � dwdSþ
Z
@Vþ

dk� � ðwþ �w� � hcipÞdS

þ
Z
@Vþ

k� � ðdwþ � dw�ÞdS ð12Þ

where d(�) denotes the variation, and the second term can
be written as:Z
@V

t � dwdS ¼
Z
@Vþ
ðtþ � dwþ þ t� � dw�ÞdS ð13Þ

If the equilibrium equation (Eq. (6a)) is satisfied in ad-
vance, the variation (12) can be written as:

dP ¼
Z
@Vþ

dk� � ðwþ �w� � hcipÞdSþ
Z
@Vþ
ðt� � k�Þ � dw� dS

þ
Z
@Vþ
ðtþ þ k�Þ � dwþ dS ð14Þ

It can be seen form Eq. (14) that the stationary condition
requires:

wþ �w� � hcip ¼ 0; tþ þ t� ¼ 0; k� ¼ �tþ ð15Þ

Thus, the Lagrangian multiplier k⁄ is determined as �t+,
and the variation of the generalized functional (14) can
be rewritten as:

dP ¼ �
Z
@Vþ

dtþ � ðwþ �w� � hcipÞdS

þ
Z
@Vþ
ðtþ þ t�Þ � dw� dS ð16Þ

The stationary condition dP = 0 leads toZ
@Vþ

dtþ � ðwþ �w�ÞdS�
Z
@Vþ
ðtþ þ t�Þ � dw� dS

¼
Z
@Vþ

dtþ � hcipdS ð17Þ

or

X
s

Z
@Vþs

dtsþ � ðwsþ �ws�ÞdS�
X

s

Z
@Vþs

ðtsþ þ ts�Þ � dws� dS

¼
X

s

Z
@Vþs

dtsþ � hcips dS ð18Þ

in another form. This stationary condition (18) will be used
to develop an eigenfunction expansion-variational method
based on a unit cell.

4. Eigenfunction expansions of complex potentials

4.1. Complex potential

Because the generalized displacement satisfies the La-
place’s equation (7), and from Eqs. (6a)–(6c), the general-
ized displacement w, generalized stress s and generalized
resultant force T can be formulated by two potentials
{f1(z), f2(z)} with a vector form f(z):
w ¼ 1
2

fðzÞ þ fðzÞ
h i

ð19aÞ

s1 � is2 ¼ Lf 0ðzÞ ð19bÞ

T ¼
Z B

A
sndS ¼ 1

2i
L fðzÞ � fðzÞ
h iB

A
ð19cÞ

where, z = x1 + ix2 is a complex variable, the over bar
denotes the complex conjugate, the prime denotes the
derivative with respect to z; ½��BA denotes the difference
of the values of the bracketed function from point A to
point B.

4.2. Eigenfunction expansions in a unit cell

A typical unit cell of a three-phase fiber composite with
a doubly periodic microstructure is divided into three
regions occupied, respectively, by a fiber, a coating/inter-
phase and a surrounding matrix as shown in Fig. 2. R0

and R are the internal and external radii of the coating/
interphase, respectively. Subscripts/superscripts ‘‘f’’, ‘‘c’’
and ‘‘m’’ refer to the fiber, coating/interphase and matrix,
respectively.

The complex potential ff(z) in the fiber region can be ex-
panded into a Taylor series, fc(z) in the coating/interphase
region and fm(z) in the matrix region can be expanded into
Laurent series,

ff ðzÞ ¼
X1
n¼1

C1nz2n�1 ð20aÞ

fcðzÞ ¼
X1
n¼1

C2nz�ð2n�1Þ þ
X1
n¼1

C3nz2n�1 ð20bÞ

fmðzÞ ¼
X1
n¼1

C4nz�ð2n�1Þ þ
X1
n¼1

C5nz2n�1 ð20cÞ

where C1n, C2n, C3n, C4n and C5n are complex coefficient vec-
tors. Due to the centrosymmetry of the unit cell, only odd
terms in Eqs. (20a)–(20c) remain.

Now examine the relations between the five sets of un-
known coefficients.

The continuity conditions of the generalized resultant
force T and the generalized displacement w across the fi-
ber-coating and coating-matrix interfaces can be written
as

Tf ¼ Tc; wf ¼ wc at jzj ¼ R0 ð21aÞ
Tc ¼ Tm; wc ¼ wm at jzj ¼ R ð21bÞ

The interfacial conditions (21) can provide four sets of
equations with respect to five sets of unknown complex
coefficients C1n, C2n, C3n, C4n and C5n. Only one set of inde-
pendent unknown complex coefficients (choose C5n) re-
mains. It will be seen that the estimation of the effective
electroelastic moduli requires only fm(z). Substituting
Eqs. (20a)–(20c) into Eqs. (19a) and (19c), and then into
Eqs. (21a) and (21b) as detailed in Appendix A, one obtains
the relation between C4n and C5n,

C4n ¼ gnR4n�2C5n ð22Þ
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where

gn ¼ ½Iþ ðIþ L�1
c LmÞ�1gfcðL

�1
c Lm � IÞðR0=RÞ4n�2��1

� ½ðIþ L�1
c LmÞ�1gfcðIþ L�1

c LmÞðR0=RÞ4n�2 þ gcm� ð23Þ

gfc ¼ ðLf þ LcÞ�1ðLc � Lf Þ ð24Þ

gcm ¼ ðL
�1
c Lm þ IÞ�1ðL�1

c Lm � IÞ ð25Þ

and I is an identity matrix. Then, the eigenfunction expan-
sion of the complex potential fm(z) can be written as:

fmðzÞ ¼
X1
n¼1

gnR4n�2C5nz�ð2n�1Þ þ C5nz2n�1 ð26Þ

Consider the square and hexagonal unit cells shown in
Fig. 2. If the boundary conditions are also symmetric about
x2 axis, the expansion coefficients additionally satisfy fol-
lowing relations:

C1n ¼ �C1n; C2n ¼ �C2n; C3n ¼ �C3n;

C4n ¼ �C4n; C5n ¼ �C5n ð27Þ

That is, the expansion coefficients are pure imaginary.
The eigenfunction expansion of the complex potential
fm(z) is further simplified as:

fmðzÞ ¼
X1
n¼1

ð�gnR4n�2z�ð2n�1Þ þ Iz2n�1ÞC5n ð28Þ

The remaining work is to determine one set of unknown
coefficient, C5n, which can be completed by using the sta-
tionary condition (18).

4.3. Determination of the unknown coefficients

In this section, a detailed solving procedure of the un-
known coefficients is given for the case of the shear stress
field and electrical displacement field being symmetric
about x2 axis. Substituting Eq. (28) into Eqs. (19a)–(19c),
and taking an appropriate truncation of each expansion,
the generalized stresses, displacement, boundary stress
and resultant force can be expressed as follows:

si ¼
XN

n¼1

sðnÞi Xn; w ¼
XN

n¼1

wðnÞXn;

t ¼
XN

n¼1

tðnÞXn; T ¼
XN

n¼1

TðnÞXn; i ¼ 1;2 ð29Þ

where
Xn ¼ iC5n 1 6 n 6

sðnÞ1 ¼ 1
2i Lm½Ið2n� 1Þðz2n�2 � �z2n�2Þ
þgnR4n�2ð1� 2nÞð�z�2n � z�2nÞ� 1 6 n 6

sðnÞ2 ¼ 1
2 Lm½Ið2n� 1Þðz2n�2 þ �z2n�2Þ
�gnR4n�2ð1� 2nÞð�z�2n þ z�2nÞ� 1 6 n 6

wðnÞ ¼ 1
2i ½Iðz2n�1 � �z2n�1Þ þ gnR4n�2ð�z1�2n � z1�2nÞ� 1 6 n 6

tðnÞ ¼ sðnÞn 1 6 n 6

TðnÞ ¼ � 1
2 Lm½Iðz2n�1 þ �z2n�1Þ � gnR4n�2ð�z1�2n þ z1�2nÞ�BA 1 6 n 6

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:
The substitution of Eq. (29) into the stationary condition
(18) yields the following linear algebraic equations:

XN

m¼1

AnmXm ¼ Bn; n ¼ 1;2; . . . ;N ð31aÞ

where

Anm ¼
X

s

Z
@Vþs

tsþ
ðnÞ

� �T
wsþ
ðmÞ �ws�

ðmÞ

� �
dS

�
X

s

Z
@Vþs

ws�
ðnÞ

� �T
tsþ
ðmÞ þ ts�

ðmÞ

� �
dS ð31bÞ

Bn ¼
X

s

Z
@Vþs

tsþ
ðnÞ

� �T
ðhcipsÞdS ¼

X
s

Tsþ
ðnÞ

� �T
ðhcipsÞ ð31cÞ

tsþ
ðnÞ;w

sþ
ðmÞ and Tsþ

ðnÞ denote taking the values of t(n),w(m) and
T(n) from @Vþs , respectively; and the quantities with the
superscript ‘‘s�’’ are corresponding to taking values from
@V�s .

Once the unknown coefficients are determined by Eqs.
(31a)–(31c), the generalized stress and displacement fields
can be obtained by Eqs. (29) and (30).

5. Effective electroelastic moduli

The effective electroelastic moduli of a composite, Le
ij,

are determined with the aid of the average field theory
(Nemat-Nasser and Hori, 1999):

hsii ¼ Le
ijhcji; i; j ¼ 1;2 ð32Þ

where hsii is the average generalized stress within the unit
cell, which can be calculated by the following formula:

hsii ¼
1
V

Z
V
sidV ¼ 1

V

X
s

Tsþps
i ð33Þ

Ts+ is the generalized resultant force on the boundary @Vþs .
It is worth noting that the periodic boundary conditions
(10) are prescribed for the unit cell by setting the average
generalized strain hci, and then the average generalized
stress hsi is solved for calculating the effective electroelas-
tic moduli.

For a piezoelectric composite with a square or hexago-
nal array of fibers, according to the symmetry, the effective
electroelastic moduli matrix satisfies:
N

N

N

N

N

N

ð30Þ



Table 1
Electroelastic material properties.

Hollow Epoxy Glass BaTiO3 PZT

C44 (GPa) 0 1.8 29.6 43.86 25.696
e15 (C/m2) 0 0 0 11.4 9.35
j11 (nF/m) 0.00886 0.0372 0.0566 12.8 4.065
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Le
11 ¼ Le

22 ¼ Le ¼
Ce

44 ee
15

ee
15 �je

11

" #
; Le

12 ¼ Le
21 ¼ 0 ð34Þ

In order to determine the reduced effective electroelastic
moduli matrix Le, a boundary condition symmetric about
x2 axis are prescribed for the symmetric unit cell (as shown
in Fig. 1(a)) by setting hc1i = 0 and hc2i– 0. Then the aver-
age generalized stress can be calculated by:

hs2i ¼
1
V

XN

n¼1

XN

m¼1

X
s

Tsþ
ðnÞp

s
2

 !
ðA�1Þnm

X
s

Tsþ
ðmÞp

s
2

 !
hc2i

ð35Þ

From Eqs. (32) and (35), it is obtained that

Le ¼ Le
22 ¼

1
V

XN

n¼1

XN

m¼1

X
s

Tsþ
ðnÞp

s
2

 !
ðA�1Þnm

X
s

Tsþ
ðmÞp

s
2

 !

ð36Þ

When the term number N of the eigenfunction expan-
sion is large enough, high-order numerical results of the
effective electroelastic moduli are obtained. When N = 1,
a first-order approximation formula is obtained. Interest-
ingly, as detailed in Appendix B, for the square and hexag-
onal fiber arrays, the first-order approximation formula
can be written as a unified expression:

Le ¼ LmðpI� akgÞ2½p2Iþ ð2p2 � 2apÞkg� a2k2g2��1

ð37Þ

where k is a total volume fraction of the fiber and coating/
interphase; and g is a composite parameter matrix syn-
thetically characterizing the constituent properties and
relative coating/interphase thickness,

g ¼ ½Iþ ðIþ L�1
c LmÞ�1gfcðL

�1
c Lm � IÞðR0=RÞ2��1

� ½ðIþ L�1
c LmÞ�1gfcðIþ L�1

c LmÞðR0=RÞ2 þ gcm� ð38Þ

gfc and gcm are given in Eqs. (24) and (25), and a is a
parameter reflecting the distribution of fibers,

a ¼
2 for square array
3
ffiffiffi
3
p

=2 for hexagonal array

�
ð39Þ

It is interesting to note that when a = p, the first-order
approximation formula (37) can be reduced into the result
of the generalized self-consistent method (Jiang and Che-
ung, 2001; Jiang et al., 2001):

Le ¼ LmðI� kgÞðIþ kgÞ�1 ð40Þ

For a two-phase fiber reinforced piezoelectric composite,
this formula coincides with the result in Jiang and Cheung
(2001).

The numerical results in the next section will show that
the first-order approximation formula can consider the ef-
fect of the fiber distribution to some extent, thus can be re-
garded as an improvement of the generalized self-
consistent formula (40).

From the first-order approximation formula (37) and
the generalized self-consistent formula (40), an equivalent
parameter matrix, g, reflecting the overall influence of the
electroelastic properties of the fiber and interphase on the
effective moduli, is found. Such an equivalent parameter
matrix can greatly simplify the relation of the effective
moduli to the internal structure of the composites. For in-
stance, a three-phase composite (fiber/interphase/matrix)
can be equivalent to a two-phase composite (equivalent-fi-
ber/matrix), if only the values of g are the same. Let LF de-
note the electroelastic moduli of the equivalent fiber in
contrast to Lf of the fiber in the three-phase composite,
g(2) and g(3) denote g for a two-phase and a three-phase
composite, respectively, and

gð2Þ ¼ ðLF þ LmÞ�1ðLm � LFÞ ¼ gð3Þ ð41Þ

Then LF is determined by

LF ¼ LmðI� gð3ÞÞðIþ gð3ÞÞ�1 ð42Þ

It is worth noting that LF coincides with the effective mod-
uli Le calculated by the generalized self-consistent method
(Eq. (40)) for k = 1. The validity and accuracy of such an
equivalent relation will be verified by high-order numeri-
cal results in Section 6.3.
6. Numerical examples and discussions

In the following, several typical two-phase and three-
phase piezoelectric composites are taken for numerical
examples. The properties of the constituents are listed in
Table 1.

6.1. Convergence analysis

First examine the convergence and accuracy of the pres-
ent method. Consider two doubly periodic fiber arrays:
hexagonal array and square array with k = 0.6. The varia-
tions of the effective electroelastic moduli Ce

44; e
e
15;je

11

� �
with the eigenfunction expansion term number N are
listed in Table 2 for a two-phase composite (PZT/Epoxy)
and in Table 3 for a three-phase composite (Glass/PZT/
Epoxy, R0/R = 2/3), respectively. To the best of our knowl-
edge, neither analytical nor numerical usable results of
the anti-plane electroelastic moduli of three-phase com-
posites with doubly periodic array of coated fibers were re-
ported. Hence only for the two-phase composite (PZT/
Epoxy), a comparison with finite element results (Berger
et al., 2006; Pettermann and Suresh, 2000) is listed in Table
2 for a square fiber array and a hexagonal fiber array. From
Tables 2 and 3, a good agreement and rapid convergence of
the present results are observed. It is also noticed that the
present first-order approximation formula (N = 1) pos-
sesses a good engineering accuracy and can serve as a con-
venient and efficient engineering closed-form formula. A
further discussion refers to Fig. 3.



Table 3
Variation of the effective electroelastic moduli Ce

44; e
e
15;je

11

� �
with the term number N of the eigenfunction expansion, for a three-phase composite (Glass/PZT/

Epoxy) with a total volume fraction of Glass and PZT k = 0.6, and a relative radius of glass fiber R0/R = 2/3.

N Square array Hexagonal array

Ce
44 ðGPaÞ ee

15 ðC=m2Þ je
11 ðnF=mÞ Ce

44 ðGPaÞ ee
15 ðC=m2Þ je

11 ðnF=mÞ

1 6.755 0.06127 0.1563 6.231 0.04855 0.1420
3 6.477 0.05678 0.1495 6.141 0.04676 0.1397
5 6.462 0.05658 0.1492 6.144 0.04684 0.1398
7 6.462 0.05661 0.1492 6.144 0.04684 0.1398
9 6.462 0.05662 0.1492 6.144 0.04684 0.1398

Table 2
Variation of the effective electroelastic moduli Ce

44; e
e
15;je

11

� �
with the term number N of the eigenfunction expansion and a comparison with the finite element

results (Berger et al., 2006; Pettermann and Suresh, 2000), for a two-phase composite (PZT/Epoxy) with PZT volume fraction k = 0.6.

N Square array Hexagonal array

Ce
44 ðGPaÞ ee

15 ðC=m2Þ je
11 ðnF=mÞ Ce

44 ðGPaÞ ee
15 ðC=m2Þ je

11 ðnF=mÞ

1 6.989 0.05617 0.1657 6.419 0.04392 0.1493
3 6.689 0.05209 0.1579 6.322 0.04224 0.1466
5 6.672 0.05192 0.1575 6.324 0.04232 0.1467
7 6.673 0.05195 0.1576 6.324 0.04232 0.1467
9 6.673 0.05196 0.1576 6.324 0.04232 0.1467
FEMa 6.683 0.05204 0.1577 6.328 0.04244 0.1469
FEMb 6.643 0.05154 0.1571 6.298 0.04221 0.1469

a Refer to Pettermann and Suresh (2000).
b Refer to Berger et al. (2006).
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6.2. Comparison between different solutions

To further discuss the accuracy of the first-order
approximation, and the effect of the fiber distribution on
the effective electroelastic moduli Ce

44; e
e
15;je

11

� �
, take the

three-phase composite (Glass/PZT/Epoxy, R0/R = 2/3) as
an example. A comparison of the present first-order
approximation (EEVM, First-order) with the results of the
generalized self-consistent method (GSCM) and the pres-
ent high-order numerical solution (EEVM, High-order) is
depicted in Fig. 3, where EEVM: eigenfunction expansion-
variational method, SQU: square fiber array and HEX: hex-
agonal fiber array. The maximum inclusion volume frac-
tion k is 0.785 for a square array, and 0.907 for a
hexagonal array, while k can reach 1 for the GSCM because
it refers to an idealized even fiber distribution. It is worth
noting that in the GSCM the effective electroelastic moduli
for k = 1 correspond to the moduli of the equivalent fiber of
the fiber and interphase, which is mentioned in Eq. (42)
and will be discussed in Subsection 6.3.

It is seen from Fig. 3 that the effective electroelastic
moduli estimated by the GSCM are closer to those by pres-
ent EEVM for the hexagonal array, and the present estima-
tions for the square array are larger than both of them. For
a small (dilute) volume fraction of inclusions, different
solutions give almost identical results, which shows inter-
action between inclusions is weak. However, for a large
inclusion volume fraction k, the difference between the
solutions becomes larger and larger with the increase of
k, and the difference is significant especially when k
approaches to an extreme value. This fact reflects the inter-
action between inclusions becomes strong and strongly
depends on fiber distribution, when fibers are close
together.

Fig. 3 also shows that the first-order approximation for-
mula possesses a good accuracy when k < 0.7 for a square
array and k < 0.8 for a hexagonal array. For k out of this
range, the high-order numerical solutions are needed to
obtain accurate results.
6.3. The equivalency between three-phase and two-phase
composites by g

In the first-order approximation formula (37) and the
generalized self-consistent formula (40), the equivalent
parameter matrix g is extracted. This matrix can reflect
the overall influence of the electroelastic properties of
the fiber and interphase on the effective moduli, and by
which a three-phase composite can be equivalent to a
two-phase composite. For high-order numerical results,
does such an equivalent relation still exist? To answer this
question, take two kinds of three-phase piezoelectric com-
posites for examples: Glass/PZT/Epoxy with a square fiber
array and Hollow/PZT/BaTiO3 with a hexagonal fiber array.
The moduli of the equivalent fiber in the corresponding
equivalent two-phase composite are calculated by Eq.
(42) for different interphase thickness. The high-order
numerical results of the effective electroelastic moduli of
the three-phase and corresponding equivalent two-phase
composites versus the relative interphase thickness for dif-
ferent volume fraction k are depicted in Fig. 4 for the Glass/
PZT/Epoxy and in Fig. 5 for the Hollow/PZT/BaTiO3,
respectively.
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Fig. 3. A comparison of the present first-order approximation and high-
order numerical solution for a square fiber array and a hexagonal fiber
array, with the generalized self-consistent estimation, for a three-phase
composite (Glass/PZT/Epoxy, R0/R = 2/3): (a) effective shear modulus Ce
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15; (c) effective dielectric modulus
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Fig. 4. For a three-phase composite (Glass/PZT/Epoxy) with a square fiber
array, the high-order numerical results of the effective electroelastic
moduli of the three-phase and corresponding equivalent two-phase
composites versus the relative interphase thickness (R � R0)/R for differ-
ent volume fraction k: (a) effective shear modulus Ce

44; (b) effective
piezoelectric modulus ee

15; (c) effective dielectric modulus je
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From Figs. 4 and 5, it is seen that the effective moduli of
the three-phase composites and the corresponding equiva-
lent two-phase composites agree well even when volume
fraction k approaches 0.75 for the square array and 0.90
for hexagonal array. This fact indicates that the equiva-
lence between a three-phase composite and the corre-
sponding equivalent two-phase composite by g is
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reasonable, though it is approximate nevertheless. There-
fore, g can indeed reflect a combined effect of the fiber
and interphase properties on the effective moduli with a
good accuracy and can greatly simplify the relation of
effective moduli to the internal structure of a composite.

It is also seen from Figs. 4(b) and 5(b) that, with the
increase in the relative thickness (R � R0)/R of the piezo-
electric interphase, the effective piezoelectric modulus
ee

15 increases dramatically, then levels out and finally be-
comes nearly saturated. This fact is useful for design opti-
mization of the three-phase piezoelectric composites
(Beckert et al., 2001; Marcheselli and Venkatesh, 2008): if
only the relative radius R0/R of the glass fiber is less than
0.4, the glass fiber in the Glass/PZT/Epoxy provides the
mechanical support meanwhile the effective piezoelectric
modulus is without great decrease; similarly, if only R0/
R < 0.2, the hollow in the Hollow/PZT/BaTiO3 reduces the
density meanwhile the effective piezoelectric modulus is
without great decrease.
7. Conclusions

A new variational functional for a unit cell is con-
structed to deal with the anti-plane electroelastic behavior
of three-phase piezoelectric composites with doubly peri-
odic microstructures. Then, by combining with the eigen-
function expansions of the complex potentials, an
eigenfunction expansion-variational method based on a
unit cell is developed. The numerical results of the effective
electroelastic moduli show a rapid convergence of the
present method. By introducing a simple scalar parameter
a, a unified first-order approximation formula is also
provided, which can cover square and hexagonal fiber dis-
tributions, and can also cover the generalized self-consis-
tent estimation. Compared with the present high-order
numerical results, the first-order approximation possesses
a good accuracy when k < 0.7 for a square array and k < 0.8
for a hexagonal array, thus can serve as a convenient and
efficient engineering closed-form formula.

An equivalent parameter matrix g is extracted in the
unified first-order approximation formula. The matrix g
can reflect the overall influence of the fiber and interphase
properties on the effective electroelastic moduli of the
three-phase composites, and can greatly simplify the com-
plicated relation of the effective moduli to the internal
structure of a composite. And the validity and accuracy of
the matrix g are verified by the high-order numerical
results.

The numerical examples reveal good designability of
the three-phase composites as multifunctional composites.
For a Glass/PZT/Epoxy composite, if only the relative radius
R0/R of the glass fiber is less than 0.4, the glass fiber pro-
vides the mechanical support meanwhile the effective pie-
zoelectric modulus is without great decrease; similarly, for
a Hollow/PZT/BaTiO3composite, if only R0/R < 0.2, the hol-
low reduces the density without greatly decreasing the
effective piezoelectric modulus.
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Appendix A. Derivations of Eqs. (22)–(25)

The Substitution of Eqs. (20a)–(20c) into Eqs. (19a) and
(19c) yields the expansions of the generalized displace-
ment w and generalized resultant force T in the fiber, coat-
ing/interphase and matrix regions, respectively,

wf ðzÞ ¼ 1
2

P1
n¼1

C1nz2n�1 þ C1n�z2n�1
� �

Tf ðzÞ ¼ Lf
1
2i

P1
n¼1

C1nz2n�1 � C1n�z2n�1
� �

8>><
>>: ðA1Þ

wcðzÞ ¼ 1
2

P1
n¼1

C2nz�ð2n�1Þ þ C3nz2n�1 þ C2n�z�ð2n�1Þ þ C3n�z2n�1
� �

TcðzÞ ¼ Lc
1
2i

P1
n¼1

C2nz�ð2n�1Þ þ C3nz2n�1 � C2n�z�ð2n�1Þ � C3n�z2n�1
� �

8>><
>>:

ðA2Þ

wmðzÞ ¼ 1
2

P1
n¼1

C4nz�ð2n�1Þ þ C5nz2n�1 þ C4n�z�ð2n�1Þ þ C5n�z2n�1
� �

TmðzÞ ¼ Lm
1
2i

P1
n¼1

C4nz�ð2n�1Þ þ C5nz2n�1 � C4n�z�ð2n�1Þ � C5n�z2n�1
� �

8>><
>>:

ðA3Þ

At the fiber-coating interface, z�z ¼ R2
0, substituting Eqs.

(A1) and (A2) into interface condition (21a) and replacing
�z with R2

0z�1, one obtains
P1
n¼1

C1nz2n�1 þ C1nR2ð2n�1Þ
0 z�ð2n�1Þ

� �
¼
P1
n¼1

C3n þ C2nR�2ð2n�1Þ
0

� �
z2n�1 þ C2n þ C3nR2ð2n�1Þ

0

� �
z�ð2n�1Þ

h i

Lf
P1
n¼1

C1nz2n�1 � C1nR2ð2n�1Þ
0 z�ð2n�1Þ

� �
¼ Lc

P1
n¼1

C3n � C2nR�2ð2n�1Þ
0

� �
z2n�1 þ C2n � C3nR2ð2n�1Þ

0

� �
z�ð2n�1Þ

h i
8>><
>>: ðA4Þ
Similarly, at the coating-matrix interface, z�z ¼ R2, substi-
tuting Eqs. (A2) and (A3) into interface condition (21b)
and replacing �z with R2z�1, one obtains
P1
n¼1

C3n þ C2nR�2ð2n�1Þ
� �

z2n�1 þ C2n þ C3nR2ð2n�1Þ
� �

z�ð2n�1Þ
h i

¼
P1
n¼1

C5n þ C4nR�2ð2n�1Þ
� �

z2n�1 þ ðC4n þ C5nR2ð2n�1ÞÞz�ð2n�1Þ
h i

Lc
P1
n¼1

C3n � C2nR�2ð2n�1Þ
� �

z2n�1 þ C2n � C3nR2ð2n�1Þ
� �

z�ð2n�1Þ
h i

¼ Lm
P1
n¼1

C5n � C4nR�2ð2n�1Þ
� �

z2n�1 þ C4n � C5nR2ð2n�1Þ
� �

z�ð2n�1Þ
h i

8>><
>>:

ðA5Þ
Comparing the coefficients of the same order of z in Eqs.
(A4) and (A5), four sets of equations with respect to the
five sets of unknown complex coefficients are obtained as:
C1n ¼ C3n þ C2nR�2ð2n�1Þ
0

Lf C1n ¼ Lc C3n � C2nR�2ð2n�1Þ
0

� �
8<
: ðA6Þ

C3n þ C2nR�2ð2n�1Þ ¼ C5n þ C4nR�2ð2n�1Þ

Lc C3n � C2nR�2ð2n�1Þ
� �

¼ Lm C5n � C4nR�2ð2n�1Þ
� �

8<
: ðA7Þ

Solving Eq. (A6), one obtains the relation between C2n and
C3n,

C2n ¼ gfcR2ð2n�1Þ
0 C3n ðA8Þ

where gfc = (Lf + Lc)�1(Lc � Lf). Substituting Eq. (A8) into
(A7), and then solving (A7), one obtains the relation be-
tween C4n and C5n, that is, Eqs. (22)–(25).

Appendix B. Derivations of Eqs. (37)–(40)

When only one term of the eigenfunction expansion is
taken, N = 1, form Eqs. (36) and (31b) a first-order approx-
imation formula is obtained as:

Le ¼ Le
22 ¼

1
V

X
s

Tsþ
ð1Þp

s
2

 !
A�1

11

� � X
s

Tsþ
ð1Þp

s
2

 !
ðB1Þ

where

A11 ¼
X

s

Z
@Vþs

tsþ
ð1Þ

� �T
wsþ
ð1Þ �ws�

ð1Þ

� �
dS

�
X

s

Z
@Vþs

ws�
ð1Þ

� �T
tsþ
ð1Þ þ ts�

ð1Þ

� �
dS ðB2Þ
Noting Eq. (23), let

g ¼ g1 ¼ Iþ Iþ L�1
c Lm

� ��1
gfc L�1

c Lm � I
� �

ðR0=RÞ2
� ��1

� Iþ L�1
c Lm

� ��1
gfc Iþ L�1

c Lm

� �
ðR0=RÞ2 þ gcm

� �
ðB3Þ
and then the eigenfunction expansions of the generalized
stresses, displacement, boundary stress and resultant force
(Eq. (30)) can be rewritten as follows:
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sð1Þ1 ¼ �1
2i Lm½gR2ð�z�2 � z�2Þ�

sð1Þ2 ¼ 1
2 Lm½gR2ð�z�2 þ z�2Þ�

wð1Þ ¼ 1
2i ½Iðz� �zÞ þ gR2ð�z�1 � z�1Þ�

tð1Þ ¼ sð1Þn
Tð1Þ ¼ � 1

2 Lm½Iðzþ �zÞ � gR2ð�z�1 þ z�1Þ�BA

8>>>>>>><
>>>>>>>:

ðB4Þ

For a square array shown in Fig. 1(c),

p1 ¼ R

ffiffiffiffi
p
k

r
f1;0g; p2 ¼ R

ffiffiffiffi
p
k

r
f0;1g ðB5Þ

and the summations and integrations in Eqs. (B1) and (B2)
can be simplified as:

A11 ¼ �
p
k

Lm þ ð2� 2pÞLmgþ 2gTLm þ
4k
p

gTLmg ðB6ÞX
s

Tsþ
ð1Þp

s
2 ¼ i

p
k

Lm � 2Lmg
� �

ðB7Þ

For a hexagonal array shown in Fig. 1(b),

p1 ¼ R

ffiffiffiffiffiffiffiffiffiffi
2pffiffiffi

3
p

k

s
f1;0g; p2 ¼ R

ffiffiffiffiffiffiffiffiffiffi
2pffiffiffi

3
p

k

s
1
2
;

ffiffiffi
3
p

2

( )
;

p3 ¼ R

ffiffiffiffiffiffiffiffiffiffi
2pffiffiffi

3
p

k

s
�1

2
;

ffiffiffi
3
p

2

( )
ðB8Þ

and the summations and integrations in Eqs. (B1) and (B2)
can be simplified as:

A11 ¼ �
p
k

Lm þ
3
ffiffiffi
3
p

2
� 2p

 !
Lmgþ 3

ffiffiffi
3
p

2
gTLm þ

27k
4p

gTLmg

ðB9Þ

X
s

Tsþ
ð1Þp

s
2 ¼ i

p
k

Lm �
3
ffiffiffi
3
p

2
Lmg

 !
ðB10Þ

Combining with Eqs. (B6), (B7) and (B9), (B10), and not-
ing gTLm = Lmg, the first-order approximation formula (B1)
can be written as a unified expression, that is, Eq. (37).

When a = p, Eq. (37) can be reduced as:

Le ¼ LmðpI� pkgÞ2ðp2I� p2k2g2Þ�1

¼ LmðI� kgÞ2ðI� kgÞ�1ðIþ kgÞ�1

¼ LmðI� kgÞðIþ kgÞ�1 ðB11Þ

which coincides with the result of the generalized self-con-
sistent method (Jiang and Cheung, 2001; Jiang et al., 2001).
In this case, the fiber distribution can be regarded as an
idealized even distribution, whose configuration is de-
picted in Hu and Weng (2000), where the shapes of the
double-cell and inclusion are both circular. Thus, a is a
parameter reflecting the distribution of fibers, and Eq.
(39) can be rewritten as:

a ¼
2 for square array
3
ffiffiffi
3
p

=2 for hexagonal array
p for idealized even distribution

8><
>: ðB12Þ
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