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As the nano-motor becomes a mechanical reality, its prototype can be envisaged as nano-sized rotating machinery at a situation, 
albeit for different purposes, like that in the first half of the 20th century during which rotor dynamics has contributed to 
boosting machine power capacity. Accordingly, we take the benefit of hindsight to develop a classical framework of vibration 
analysis. Essentially, the equations of motion are formulated to cope with both the special carbon-nanotube properties and the 
first author’s previously developed spinning beam formalism, establishing a model satisfactorily verified by some available 
molecular dynamics (MD) data and classical spinning beam results extracted from the literature. The model is inexpensive 
based on continuum mechanics as an alternative to the less-flexible MD method for simulating wave motion of the spinning 
single-walled carbon nanotube, yielding several interesting phenomena, including the fall-off and splitting of the wave charac-
teristic curves and the unexpected gyroscopic phase property. Potential applications are proposed. 

spinning single-walled carbon nanotube, gyroscopic phase property, nonlocal elasticity, nonlocal Timoshenko beam 
theory 

PACS: 81.07.De, 62.25.+g, 62.30.+d 
 
 

 
 
Nomenclatures 

a:  CNT length scale 
A:  cross-sectional area 
B:  CNT eight-coefficient bearing matrix 

cs:  shear wave velocity /G   

co:  longitudinal wave velocity /E   

cs:  phase speed of shear wave in nonlocal 

Timoshenko beam /sc   

co:  phase speed of longitudinal wave in 

nonlocal Timoshenko beam /oc   

C: bearing damping coefficient matrix 
Cxx, Cxy, Cyx, Cyy: bearing damping matrix coefficients 

C:  CNT rotor dynamic matrix 
eo:  CNT constant 
E:  Young’s modulus 
ei:  phase angular velocity ( , )xo yo    relative 

to spin   
ei:  phase of spin  relative to angular veloc-

ity ( , )xo yo    of cross-section 

1,2 1,2( , ), ( , ) :x xF z t F z t bearing forces in x and y respectively, 

at location z1 or z2 
G:  shear modulus / 2(1 )E      

h:  wall thickness 
I:  second moment of area  
J:  rotary inertia I   

k:  wavenumber (rad/nm)  
K:  bearing stiffness coefficient matrix 
Kxx, Kxy, Kyx, Kyy: bearing stiffness matrix coefficients  
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L:  length of CNT rotor  
m:  mass per unit length A  

m:  effective mass at wavenumber k 

m A      

q:  ratio of beam rotation to translation  

rg:  radius of gyration /I A  

r:  length scale of wave /o g sc r c  

t: time (ps)  
Tl:  kinetic energy of original Timoshenko 

beam 
Ttrans,nl:  nonlocal elasticity-induced translational 

kinetic energy of nonlocal Timoshenko 
beam 

Trot,nl:  nonlocal elasticity-induced rotational ki-
netic energy of nonlocal Timoshenko 
beam 

TTB-E:  total kinetic energy of nonlocal Ti-
moshenko beam trans,nl rot,nl STl T T T     

TS:  kinetic energy of beam spin 
V:  interlayer surface potential, Ter-

soff-Brenner or Lennard-Jones 

1,2 1,2( , ), ( , ),x xw z t w z t  1,2 1,2( , ), ( , )x xw z t w z t  : journal displace-                

ments velocities at 1z  or 2z  

wo:  arbitrary constant translation amplitude 
wxo, wyo:  centroidal translation in the respective 

,o ox y  axes  

,xow yow :  centroidal translational velocities in the 

respective ,o ox y  axes  

x, y, z:  fixed (inertial) coordinates (nm) 
xo, yo, zo:  spinning (floating) coordinates (nm)  
z1, z2:  bearing locations 
′:  nonlocal k-wave factor 2 21 k   

:  nonlocal elasticity operator 2 21 z     

:  Eringen’s nonlocal parameter oe a  

,xo yo yo xo     :  bending projection on spin axis 

,xo yo :  cross-sectional bending rotation about the 

respective ,o ox y  axes 

,xo yo :  cross-sectional angular velocities of 

bending about the respective ,o ox y  axes 

xo , yo :  shear deformations about the respective 

,o ox y  axes 

:  shear coefficient 
:  wavelength (nm) 2 /k   

:  spinning velocity (rad/ps) and 
cr
    

,yo yo   :  spin velocity projections in the cross sec-

tion along respective xo and yo axes 

:  mass per unit volume (density) 
:  Poisson’s ratio 

:  wave frequency (rad/ps) and 
cr




   

cr :  critical frequency / /s g oc r c r   

cr :  nonlocal critical frequency cr /    

xo :  angular velocity in ox  

yo :  angular velocity in oy   

zo :  angular velocity in oz  axis 

2 2 2
2

1
s z t

sc     : D’Alembertian for shear wave in nonlo-

cal Timoshenko beam 

2 2 2
2

1
o z t

oc     : D’Alembertian for longitudinal wave in 

nonlocal Timoshenko beam 
(   )t   :  once time derivative 

2 (   )t   :  twice time derivative 

, (   )z zo
   :  once space derivative 

2 2, (   )z zo
   :  twice space derivative 

1  Introduction 

For the dynamic design of a conceptual nano-sized rotating 
machine, one has an aim to ascertain its smooth running 
through avoiding resonances with the force arising from 
running the shaft system. This justifies our study of the vi-
bration of spinning carbon nanotubes (CNTs), with which a 
nano-motor has successfully been fabricated [1,2]. Owing to 
the lattice feature of the CNTs, traditional continuum me-
chanics is not applicable straightforwardly but the need for 
a continuum model is obvious especially for a substitution 
of the more expensive and less-flexible molecular dynamics 
(MD) model for CNT vibration simulation. There are al-
ready some vibration studies in this regard using the 
so-called Timoshenko beam theory [3–5] and the Eringen’s 
nonlocal elasticity theory [6] where special constitutive re-
lationship has been employed to replace the traditional 
strain and stress relation, hereafter referred to as the nonlo-
cal Timoshenko beam theory. Hamilton’s principle [7,8] 
and Flügge’s shell theory [8,9] are two other approaches, 
which have resulted in some energy formalisms [7] for our 
reference. The purposes of these investigations were to un-
derstand the effects of tube size, wavenumber, nano-
tube-lattice length, temperature-induced axial strain, and 
beam support nature, etc. on the CNT wave and/or vibration 
characteristics including phase speed, natural frequencies 
and/or mode shapes [3–5,8–10]. The primary objective was 
to find data to underlie future design and development of 
nanoelectromechanical systems (NEMS) devices [10]. 
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The present authors, from the point of view of wave me-
chanics, consider vibrations of beams as waves in superpo-
sition, and have shown that to find the dispersion character-
istics of the constituent waves is the essential task [11]. The 
second task facing us is the way that integrates the nonlocal 
elasticity (NE) effect into the formulation with the spinning 
CNT (a nano-sized rotor). For the non-spinning case, Wang 
and Hu [12] showed that the nonlocal elasticity is an im-
portant factor that makes the dispersion characteristics pre-
dicted by the nonlocal Timoshenko beam theory consistent 
with the MD benchmarking scheme, as shown in Figure 1 
plotted in normalized form with data extracted from the MD 
result [12] and from our own spinning nonlocal Timoshenko 
beam model expressed as eq. (15), taking zero speed as a 
special case. 

Our flexural beam model combines the shear deforma-
tion [11–14] and nonlocal elasticity [6] in addition to the 
gyroscopic effect and the associated helicity properties [14]. 
So far as a spinning CNT rotor is concerned, this is the first 
model. Our aim is to provide a better understanding about 
CNT dynamics to extend its application. In particular, the 
gyroscopic effect can potentially be used for gauging direc-
tions and splitting vibration frequencies. 

The rotational nano-motor has become a reality [1] that 
could see further development due to availability of some 
millimetre-long CNTs and smooth nano-bearings [2]. Re-
lated work [15–17] has already been in progress using at-
omistic approach, which has put forward a shaft speed limit 
of 5 rad/ps as a stability criterion and as a reason for a de-
sign with the inner nanotube as spinning rotor and with the 
outer one fixed [17] framing rather like a nano-rotating 
machinery in similitude of the traditional rotating machines 
[18,19]. 

This analogy provides us with a benefit of hindsight that 
we may proceed to establish a classical framework for de-
sign and analysis of the spinning CNT rotor vibration. The 
present paper is to formulate a mathematical model that  

 
Figure 1  (Color online) Dispersion characteristic of the sa wave propa-
gating in a CNT modelled by the nonlocal Timoshenko beam theory or the 
molecular dynamics. 

represents the vibration of the spinning CNT rotor and to 
obtain exact expressions for the dispersion characteristics of 
the waves. MatLab is used to find phase speed (or fre-
quency) versus wavenumber relationships for different rotor 
speeds with graphical results showing features like diver-
gence, fall-off, wave and frequency splitting and helical 
structure arising either from the nonlocal elasticity or the 
gyroscopic effect. The finding of the 90 gyroscopic phase 
angle between the spin and bending angular velocities is 
surprising, which is often neglected classically and regarded 
as zero. 

2  The nano-rotating machinery 

2.1  Equation of motion of a nano-rotor supported on 
two bearings 

The equation of motion for a CNT rotor in free vibration is 
written as: 

 ,Ds 0  (1) 

where  T
0 0 0 00  and  T

x y y xw w  s  

is a column matrix with elements representing the transla-
tion and rotation displacements. D is an operator containing 
all the structural information about the spinning CNT. In 
this conceptual design, the nano-rotating machinery model 
has the interlayer surface force as supporting bearings to 
prevent the high speed shaft from contacting the stationary 
sleeves. The distributed force can be calculated by using 
suitable energy expressions in refs. [15–17], denoted as V 
computed using the MD/atomistic simulation, by finding its 
gradients xV  & .yV  The localized bearing forces, 

expressed as a column matrix ,x

y

F

F

 
 
 

 are the integrations 

of xV  and yV  over the journal bearing surface. It is 

related to the shaft local displacement x

y

w

w

 
 
 

 & velocity 

x

y

w

w

 
 
 


  relative to each bearing sleeve as shown in Appen-

dix A. The eight bearing coefficients in eq. (a1) can be 
found by employing the classical scheme of Morton [20,21] 
while using atomistic simulation for computing the forces. 
Eqs. (a1), (a2) and (1) then yield 

 1 2{ [ ( ) ( )] } ,z z z z     D B s 0  (2) 

where  

 1
1

1

1 ,
( )

0 ,

z z
z z

z z



   




 2
2

2

1 ,
( )

0 ,

z z
z z

z z



   




 

at the two bearing locations. D in eq. (2) is the same as that 
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in eq. (1). Thus, we may separate the study into two parts: 
(1) Find D for an indefinitely long CNT rotor as a spinning 
nonlocal Timoshenko beam on which wave can propagate; 
(2) find B by computing the eight bearing coefficients, 4 for 
stiffness K and 4 for damping C. 

2.2  The kinetic energy expressions and the gyroscopic 
phase 

In the present problem, the gyroscopic and the nonlocal 
elasticity effect coexist. It is not in prior known if there is 
synergism between them and whether the CNT rotor vibra-
tion is in phase with its own spinning momentum. One 
needs to include these effects in the formulation. With a 
spinning speed, the CNT is attached to the coordinate sys-
tem ,o o ox y z  the so-called floating coordinate system [22], 

which rotates at an angular velocity   relative to the 
right-handed fixed coordinate x y z  system about the z 

axis in alignment with zo, as illustrated in Figure 2. In the 
absence of a wave, the shaft is lying straight along and 
spinning about the z  axis. 

From Adali’s flexural vibration result [7], we make use 
of his energy formulations for an extension to a sin-
gle-walled CNT modelled as a spinning nonlocal Ti-
moshenko beam. The wave function T( )x y y xw w   

transforms to T( )x y y xw w        for the CNT 

rotor. Thus, the kinetic energy (KE) expression is 

 TB-E S l trans,nl rot,nl ,T T T T T     (3) 

where 2 2 /2S gT mr L   being the energy of the spin of the 

CNT with length L. l ,T  trans,nlT  and rot,nlT  are the sepa-

rated parts of the KE of the CNT rotor expressed as eqs. 
(b1), (b2) and (b3) of Appendix B, respectively. The total 
translational and rotational KE are written, respectively, as 
eqs. (b4) and (b5). The phases ie   and ie   appearing in 
eq. (b5) are the characteristic values to be determined, re-
ferred to as the gyroscopic phase. Their physical meaning 
can be explored in a later section. 

2.3  Hamilton’s least action principle and the governing 
equation of motion 

Also based on Adali’s result [7], we may show that the po-
tential energy (PE) expression for a beam with nonlocal 
elasticity does not appear to have changed from that of a 
beam without elasticity. The PE integral for our spinning 
CNT rotor is written as eq. (b6). The difference between KE 
and PE is called the Lagrangian L. Its integral with respect 
to time is called the action S. When the variation S is  

 

Figure 2  (Color online) Schematic of the coordinate systems of spinning 
CNT. 

zero, the action is least [23]. Hamilton’s principle is written 
as: 

 
2

TB-E TB-E

1

( )d 0,
t

t

S T V t      (4) 

where the complete expressions for TB-ET  and TB-EV  

have been derived and given in Appendix B as eqs. (b7) and 
(b8). Substituting them into eq. (4), after some algebraic 
procedure, we obtain the governing equation of motion 

 ,o o D s 0  (5) 

where the matrix elements of oD  are given in Appendix C 

as eqs. (c1) and (c2) in which the nonlocal operator 
2 2(1 )zo  α  is present. T( )o xo yo yo xow w  s  is 

the four-component expression of vibration in terms of 
translation and rotation as a column matrix, with respect to 
the floating coordinate system. In Appendix (C), eq. c3) is 
written for transformation of the coordinate from the float-
ing to the fixed system while eq. (c4) expresses the trans-
formations of the generalized coordinates, translation & 
rotation respectively. According to Goldstein, similarity 
transformation [24] is needed to be performed on oD  to 

complete the so-called invariant transformation to obtain D. 
A simpler method using complex notations can be used as 
shown in Appendix C, proceeding from eqs. (c5) to result-
ing in eq. (c10) as the governing equation of motion in the 
fixed coordinate system. Owing to the physical insight that 
is implicit through the following analysis, we prefer to give 
the details in context here as: 

 ( i ) ,
w

 

 
  

 
d g 0  (6) 

where 
i

i

x y

y x

w ww

  

  
        

 as in eq. (c5), and 

2 2

2 2 2 2 i i 2i 2 ,
(2e 2e e 1)

z t z

z z g t g

GA m GA

GA EI GA m r m r   

  
   

     
             

d                  (7) 
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 2 i i

0 0
.

0 2 (1 e e )g tm r  
 

       
g  (8) 

The nonlocal operator is now 
2 21 z     referring to z. 

Eq. (6) is reconverted as eq. (1) with 
 

   

d g
D

g d
 where 

the sub-matrices are the same as eqs. (7) and (8). In d, 
2 i i 2i 2(2e 2e e 1)gm r         should equal 0  because all 

centrifugal forces are fictitious according to classical me-
chanics [23]. In g, i i(1 e e )    equals 1 to ensure 

2 i i 22 (1 e e ) 2g t g tm r m r          for 1,   a corre-

spondence requirement for the CNT rotor dynamics. Given 
this as a special case, eq. (1) would be the same as eq. (2.3) 
of Chan et al. [14] or as a similar equation given in Zu and 
Han [25]. Eq. (6) on the other hand is exactly the same as 
the equation of motion by Argento and Scott [26]. Thus, one 
has i ie e i    for the spinning CNT rotor, implying the 
gyroscopic phase to be a constant angle /2 irrespective of 
whether the nonlocal elasticity effect exists or not. 

2.4  Interpretation of the gyroscopic phase 

The nonzero phase angles,  & , give us a surprise. Clas-
sically, gyroscopic top is considered as a rigid body [23] 
where the phase angles are zero. As a matter of hindsight, 
however, a spinning CNT beam element is elastic, vibrating 
at a certain characteristic frequency to produce the apparent 
precession [14]. The phase, referred to as the gyroscopic 
phase, can be nonzero. To examine this further from a 
physical point of view, the angular velocity due to bending 
is expressed as: 

 
i

i i

( ) e ( )

 ( e ) ( e ) ,

xo o yo o o xo o yo o

xo yo o yo xo o



 

   

   

    

     

x y z x y

x y

 

 
 

(9)
 

where the components ,yo xo    are the instantane-

ously projected components of the spin angular velocity 
onto the beam’s cross-section along the respective axes. 

,xo yo   , are the components of the vibratory angular veloc-

ity. Thus, the vibration components are ( i )xo yo    & 

( i )yo xo    where the imaginary number i  comes from 

  /2. 
Likewise, the spin angular velocity is expressed as: 

 
ie ( ) ( )

 ( e e ) ,

o xo o yo o xo o yo o

i i
xo yo yo xo o



 

   

   

    

  

z x y x y

z

 

 
 

(10)
 

where ,xo yo yo xo      are the projected components of the 

vibratory angular velocity onto the spin axis, the cause of 
the spin fluctuation with speed expression as ( i xo yo    

i )yo xo   . The presence of i is not only natural 

( &xo yo   could produce i from differentiation) but also 

essential for eliminating the fictitious forces from the equa-
tion with reference to the fixed coordinate system. 

2.5  Wave equation and the helical structure of the 
waves 

Using the wave mechanics approach requires us to consider 

the wave function  T

x y y xw w  s  as represent-

ing a wave entity. By dividing eq. (1) with the constant 
GA , one may obtain the wave equation written as: 

2 2 2

2 2 2 2 2
cr

2 2 2

2 2 2 2 2
cr

0/ 0 0

0( / ) 1 0 (2 / )
,

00 0 /

00 (2 / ) ( / ) 1

z t s z

z z t o t

z t s z

t z z t o

c

r c

c

r c






 


 

      
                                   

s                (11) 

where /o g sr c r c  is a length scale, and cr cr /  α  

is the NE critical frequency. The D’Alembertian operators 
2 2 2/z t sc    & 2 2 2/z t oc    represent the constituent shear 

and longitudinal waves, respectively. Given the wavenum-

ber k, 21 k      becomes a real number always 

greater than 1. This in effect means that the speeds of these 

two constituent waves on the CNT rotor are /s sc c    

& / .o oc c    Together with cr α , they are reduced 

from their respective classical values ,sc  oc  & cr  as 

new constants. Operator  acts on the inertia terms to yield 

m m A      as an increased effective mass. 

The wave entity s is helical in structure. One may con-
sider it as a helix traced by its deformed centroidal line with 

a pitch 2 /k    and a revolving speed  as introduced 

in Appendix D. Eqs. (d2) and (d3) depict the polarizations 
[14] as: 

 
1 1

2 2

arctan( / )

& arctan( / ) .

y x

y x

w w t kz

w w t kz

 

 

   

  
 (12) 

From this equation, one may show that the tip of w1 traces a 
right-hand (RH) helix and the tip of w2 traces a left-hand 
(LH) helix. The former revolves anticlockwise (rev-A) at 1 
rad/s and the latter revolves clockwise (rev-C) at 2 rad/s,  



 Chan K T, et al.   Sci China Phys Mech Astron   October (2011)  Vol. 54  No. 10 1859 

both producing a forward wave motion as illustrated in Fig-
ures 3(a) and 3(b) for a forward in space (FIS) wave. A 
scheme exists for finding the revolving standing waves and 
normal modes based on information about these helical 
wave properties [14]. The nonlocal elasticity effect does not 
show explicit influences on the helical geometric structure 
but implicitly changes the relationship between   and   

and also alters 2 2/ ,sq k kc     the ratio of the bending 

angle to the translation. 

2.6  Phase speed versus wavenumber on the spinning 
CNT 

From eq. (11), the characteristic equation is obtained as: 

2 2 2

2 2 2 2 2 2
cr

2 2 2

2 2 2 2 2 2
cr

/ i 0 0

i / 1 0 2i /
0.

0 0 / i

0 2i / i / 1

s

o

s

o

c k k

k r c r k

c k k

k r c r k

 
   

 
   

 
    


 

   





               (13) 

After some algebraic expansion, it becomes a dispersion 
equation either written as: 
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or as 
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(15)

 

When 1   as a special case, eq. (14) is the same as 
eq. (2.31) of Chan et al. [14]. Eq. (15) is to express the root 

s

c

c
 versus .gr k

k 


 The “  ” sign of the 5th term of eq. 

(14) corresponds to the “” (& “  ”) signs of the 2nd (& 
5th) terms of eq. (15), representing the rev-A wave. On the  

other hand, the “” sign of eq. (14) corresponds to the “  ” 
(& “”) signs of the 2nd (& 5th) terms of eq. (15), repre-
senting the rev-C wave. Given  positive definite, the sign 
of c/cs, as output from the Matlab, becomes an indication: 
“  ” as rev-C while “” as rev-A solution. From eq. (15), 
four dispersion curves can be obtained by MatLab to ex-

press c/cs versus ,k  taking the following coefficients as 

input: 
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Eq. (d4) of appendix D has a   sign which can be used 

for differentiating the sa or sb [11] wave. For a given k , we 
have three cases: 

(1) cr / ,    taking the “+” sign in eq. (d4) one 

has the evanescent wave solution; taking “” sign one ob-
tains the sa wave solution.  

(2) cr / ,    taking “+” sign one has the sb wave  

 

Figure 3  (Color online) Picture of helical waves. 

(16) 
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solution, “” sign the sa wave solution.  

(3) cr / ,    a thickness shear mode for “+” sign 

and a sa wave at that frequency. 
A summary is given in table 1. 

3  Numerical examples for the Wang, Guo and 
Hu’s armchair (5, 5) CNT 

The structural properties of the Wang & Hu’s [12] armchair 
(5, 5) single-walled CNT modelled as a nonlocal Ti-
moshenko beam are:  

346.8 Pa m,Eh   26 41.704 10  Pa m ,EI    0.22,   

/ 0.152 nm,gr I A    0.0355 nm,   
15 11.625 10  kg m ,A     0.5,   

3760.5 kg m  nm,h   353.736 10  kg m.I    

Eq. (15) with a   value has four roots for 0   as a 
special case or 0   as a general case. With the numeri-
cal values given, the coefficients (16) as input to MatLab 

can be calculated for finding the roots to plot ca/cs versus k  
as shown in Figure 1. Comparison with the MD data [12] 
appears to be promising, both models exhibiting a fall-off 
trend for short wavelength. The two curves agree quite well 
over the whole wavenumber range, and the continuum 
model is in good agreement with the MD simulation. We 
also show the results in Figures 4–6. Based on the above, 
we make a summary as follows. 

4  Summary of the observations 

4.1  Fall-off 

As shown in Figure 1, the short wave curves exhibit a 
fall-off trend for both the MD and nonlocal Timoshenko 
beam models, compared with the classical Timoshenko 
beam result. This trend is more prominent for the sa wave 
and does not appear to be markedly affected by the gyro-
scopic effect, as shown in Figures 4 and 5. 

Table 1  MatLab roots identification 

Roots 
s

c

c
 Type of wave 

o

s

c

c 



 sb rev-C 

1/   sa rev-C 

o

s

c

c 
 


 sb rev-A 

0
s

c

c
 1/    sa rev-A 

4.2  Divergence trend 

As shown in Figure 1, a divergence trend is noticeable at k  
greater than 0.6 indicative of the nonlocal elasticity effect 
on the shear coefficient . Employing Flügge’s shell theory 
[8,9], one may find a more realistic shear coefficient by 
bridging the gap of the divergence. 

4.3  Wave splitting and frequency splitting 

Figures 4(a) and 4(b) show respectively the sa and sb dis-
persion curves, showing that wave splitting arises from the 
gyroscopic effect. The sa (sb) wave splits into a rev-A RH 
and a rev-C LH revolving helical sa (sb) FIS wave. The 
rev-C wave appears to travel faster than the rev-A wave. 
Figures 5(a) and 5(b) show the  versus  curves, indicat-
ing the frequency splitting due to gyroscopic effect. This is 
especially marked for the sb wave. 

4.4  Non-synergetic mechanisms 

Figures 6(a) and 6(b) show that the wave splitting is more 
marked at lower wavenumbers than at higher wavenumbers, 
especially for the sb wave. The nonlocal-elasticity fall-off is 
more predominant at higher wavenumbers, especially for 
the sa wave. In the intermediate range, both the effects are 
slight. Thus, the two effects do not appear to constitute a 
synergism. 

The frequency splitting phenomenon can be applied to 
produce a heterodyning vibration. The heterodyning fre-
quency can be used as a more suitable frequency for meas-
uring the spinning speed of CNT rotor if required because 
the vibration frequencies themselves may be too high for 
direct measurement. With a revolving wave, the CNT rotor 
behaving like a gyroscope can be used to gauge direction. 
The fall-off phenomenon corresponding to the zero group 
velocity [27] can be used to produce a vibration energy trap 
for short-wavelength waves. Since the group velocity gov-
erns wave energy transport rate, the gyroscopic effect could 
allow one to adjust energy transportation through varying 
the spinning speed. The expression for group velocity  

/ k   can be found from equation (D5) by using MatLab. 

4.5  A framework for dynamic design of nano-rotor 

For the dynamic design of conceptual nano-sized rotating 
machinery, one has an aim to ascertain its smooth running 
through avoiding resonances with the force arising from 
running the rotor system. The initial step is to find the dis-
persion characteristics for the constituent helical waves on 
the CNT shaft, based on which the principal normal modes 
can be found. We may use MatLab and equation (15) to 
obtain these relationships, c/cs (or ) versus k, for the spin-
ning CNT rotor. Given the length and bearing stiffness  
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Figure 4  Wave splitting of the sa (a) and sb (b) revolving wave propagating in a spinning CNT modelled as a spinning nonlocal Timoshenko beam. 

 

Figure 5  Frequency splitting of the rev C & rev A sa (a) and sb (b) waves (wavelengths 2 & 4 nm) propagating in a spinning CNT modelled as a nonlocal 
Timoshenko beam. 

 

Figure 6  Wave dispersion curves of the rev-C sa (a) and sb (b) wave propagating in a CNT modelled as a nonlocal Timoshenko beam with & without spin-
ning compared with the same in a Timoshenko beam. 

boundary conditions, the revolving principal normal modes 
are established using the scheme proposed by Chan et al. 
[14] (p3921). The normal modes are then used as compo-

nents in normal mode expansion to represent vibration of 
the actual CNT rotor with bearing damping and external 
forces. 



1862 Chan K T, et al.   Sci China Phys Mech Astron   October (2011)  Vol. 54  No. 10 

Appendix A  The bearings and the bearing co-
efficients 

The spinning shaft is elastic and supported on two bearings. 
It responds to external forces to assume a vibration shape 
(forced mode shape) with a form depending on how close 
its running speed is to the natural frequencies [20,21]. The 
bearings are regarded as consisting of springs and dampers 
localized at the supporting positions. Their characteristics 
are modelled using a stiffness and a damping coefficient 

matrix written as 
xx xy

yx yy

K K

K K

 
   
 

K  and 
xx xy

yx yy

C C

C C

 
   
 

C , 

respectively. The localized forces [21] at location 1 2 or z z  

are expressed as: 

 1,2 1,2 1,2

1,2 1,2 1,2

( , ) ( , ) ( , )
,

( , ) ( , ) ( , )
x x x

y y y

F z t w z t w z t

F z t w z t w z t

                
          

K C

  (a1) 

where the cross-diagonal elements of K & C couple the mo-
tion between the x and y coordinates. Traditional bearings 
use oil films for lubrication. The eight coefficients of K & C 
are measured by experiments or calculated based on fluid 
mechanics theories like using the Reynolds equation [22]. 
However, the forces at the CNT bearings are due to atom-
istic potential. Assuming no torques to be generated by the 
CNT potential, the bearing force is written as  

 

0 0

0 0 0 0
.

0 0

0 0 0 0

xxx xx t xy xy t

y

yyx yx t yy yy t

x

wK C K C

wK C K C





      
  

           
    

Bs  (a2) 

This force is localized at each bearing support as external 
force. It is not dependent on the nonlocal elasticity effect. 

Appendix B 

B.1  Mechanical energy formalism for the CNT rotor 

The different parts of KE of the spinning Timoshenko beam 
are expressed as: 
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with  

 i( e ) ,xo xo yo o
     x  i( )yo yo xo oe      y   

 & i i( e e ) .zo xo yo yo xo o
        z   

2 2
trans,nl 0 0 0 0

0

[( ) ( ) ]d &
2

L

x y y x o

m
T w w w w z             

2
i 2 i 2

rot,nl

0

i 2 i 2 2

[( e ) ( e )
2

 ( e e ) ]d .

L
g

xo yo yo xo

yo xo yo xo o

mr
T

z

 

 

   

     

        

      

  

 

 

From these equations, we may group the translational and 
rotational energies to rewrite  
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The phases ie   and ie   are determined in the main text.  
Strain energy expression for a beam with nonlocal elas-

ticity does not appear to have changed from that of a beam 
without NE [7], viz. nl l .V V  The NE parameter, , does 

not appear in the potential energy (PE) expression. The PE 
integral is written as: 
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B.2  The variation of kinetic and potential energies 

Carrying out integrations by parts, and according to each 
generalized coordinates, one may group terms to obtain the 
variations of the KE integrals for the spinning CNT rotor as: 
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Similarly, we carry out the same procedure as above to 
obtain the PE integrals as: 
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Hamilton’s principle leads to 
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Appendix C 

C.1  The coordinate transformation and similarity trans-                  
formation 

The sub-matrices of operator o

 
   

o o

o o

d g
D

g d
 of eq. (5) 

are written as: 
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The transformation from the floating to the fixed coordi-
nate system is written as:  
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This is accompanied by the transformations of the gener-
alized coordinates (translations & rotations) expressed re-
spectively as:  
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The negative sign for , x xo  takes the fact that a positive 

translation in y or yo will be accompanied by a negative ro-
tation about x or xo.  

C.2  Similarity transformation with complex notations 

To complete the transformation, similarity transformation 
[25] is used on oD . To simplify the mathematical proce-

dure, we use complex notations. The four-component func-
tions become two-component, rewritten as: 
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where i 1.   Eq. (5) has two parts: the structural part 
represented by od  and the gyro part by og , written as:  
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Their recombination yields 
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The coordinate transformation with 1R  is a reverse ro-
tation of the floating plane. It is written in real notations, 

and in complex notations, is equivalent to ie t   

cos i sin .t t    1R  brings things back to the fixed coor-

(c6) 
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dinate system. The similarity transformation is performed to 
complete the invariant transformation [25] written as: 
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Appendix D  Helical structure and type of 
waves 

The solutions to eq. (1) for forward in space waves [26] are 
written as:  
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where q
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  is the ratio of the bending rotation to the  

translation. For a specified k, 
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1 2 or    is the revolving speed. The transverse displace-

ment vectors from eq. (d1) can be expressed respectively as: 
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Using eqs. (d2) and (d3), the right-hand (RH) anticlockwise 
(rev-A) and left-hand (LH) clockwise (rev-C) waves can be 
illustrated in the graphs of figure D(1) below. A propagating 
wave a can be visualized as a shape like those in the exag-
gerated photo of figure D(2). From eq. (15), given the pitch, 
one obtains 
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This shows that the wave at a frequency is of two types, 
one related to the sa wave and the other to the sb wave [6]. 
One may also obtain the relation between & k  as:  
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