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Based on pair functional potentials, Cauchy–Born rule and slip mechanism, a material
model assembling with spring-bundle components, a cubage component and slip compo-
nents is established to describe the elasto-plastic damage constitutive relation under finite
deformation. The expansion/shrink, translation and distortion of yield surfaces can be cal-
culated based on the hardening rule and Bauschinger effect defined on the slip component
level. Both kinematic and isotropic hardening are included. Numerical simulations and pre-
dictions under tension, torsion, and combined tension–torsion proportional/non-propor-
tional loading are performed to obtain the evolution of subsequent yield surfaces and
elastic constants and compare with two sets of experimental data in literature, one for a
very low work hardening aluminum alloy Al 6061-T6511, and another for a very high work
hardening aluminum alloy annealed 1100 Al. The feature of the yield surface in shape
change, which presents a sharp front accompanied by a blunt rear under proportional load-
ing, is described by the latent hardening and Bauschinger effect of slip components. Fur-
ther, the evolution law of subsequent yield surfaces under different proportional loading
paths is investigated in terms of their equivalence. The numerical simulations under
non-proportional loading conditions for annealed 1100 Al are performed, and the subse-
quent yield surfaces exhibit mixed cross effect because the kinematic hardening and iso-
tropic hardening follow different evolution tendency when loading path changes. The
results of non-proportional loading demonstrate that the present model has the ability
to address the issue of complex loading due to the introduction of state variables on slip
components. Moreover, as an elasto-plastic damage constitutive model, the present model
can also reflect the variation of elastic constants through damage defined on the spring-
bundle components.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Most sheet metal forming processes involve anisotropic behaviors with finite plastic deformation. Springback is a serious
problem in sheet metal forming. It requires a comprehensive understanding of loading and unloading processes and deter-
mination of elastic constants to know the amount of springback for a given forming process. Therefore, it needs precise
determination of subsequent yield surfaces. Researchers are focused on the evolution of yield surfaces either experimentally
or analytically.

There are numerous investigations found in determination of yield surfaces for small (<5%) prestrains including the ones
by Naghdi et al. (1958), Ivey (1961), Michael and Findley (1976), Phillips and Ricciuti (1976), Moreton et al. (1981), Ascione
. All rights reserved.
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et al. (1982), Phillips and Das (1985), Stout et al. (1985), Wu and Yeh (1991), Ishikawa (1997) and Gil et al. (1999). At the
finite (>5%) prestrains level, subsequent yield surfaces were determined by Mair and Pugh (1964), Williams and Svensson
(1970, 1971), Shiratori et al. (1973), Tozawa (1978), Helling et al. (1986) and Khan and Wang (1988, 1993).

The expansion/shrink, translation, distortion, and rotation of the subsequent yield surfaces strongly depend on the mate-
rials, the loading paths, the probing paths, the magnitude of prestrains, as well as the definition of yielding. The definition of
yielding is a key point for determining the subsequent yield surfaces. When the relatively large offset definition of yield is
used, such as 0.2%, the subsequent yield surfaces expand in size. When the relatively small offset definition of yield is used,
such as 5–10 le, the subsequent yield surfaces will undergo significant kinematic hardening and distortion. In between these
two extremes, investigators have used 10-1000 le definition of yield where different mixes of kinematic and isotropic hard-
ening are observed. Now with the development of experimental technique, a small offset definition of yield (<10 le) is often
used by researchers.

Recently, Khan et al. (2009, 2010a,b) have done a series of experiments on the evolution of subsequent yield surfaces for
two kinds of work hardening materials with finite strains. Besides determining the evolution of subsequent yield surfaces,
Khan et al. (2009, 2010a,b) also studied the degradation of elastic constants with finite plastic deformation.

In order to study the evolution of subsequent yield surfaces, more advanced models should capture the distortion of the
yield surface, as mechanical behavior and failure are very sensitive to small changes in the yield surface (Rousselier et al.,
2009). Therefore, describing the evolution of subsequent yield surfaces accurately becomes a comprehensive examination
of plasticity models on their predictability of mechanical behaviors in the plastic range. Numerous efforts have been made
with the goal of more closely representing the behavior of subsequent yield surfaces, such as Rees (1984), Helling and Miller
(1987, 1988), Gupta and Meyers (1992), Wegener and Schlegel (1996), Kowalsky et al. (1999), Kalidindi and Schoenfeld
(2000), Francois (2001), Chiang et al. (2002), Mollica and Srinivasa (2002), Wu (2002, 2003b), Zattarin et al. (2004), Suprun
(2006), Yeh and Lin (2006b) and Feigenbaum and Dafalias (2007, 2008). The analytical works can be categorized into two
approaches (Wu et al., 1995), the algebraic approach and the geometric approach. In the algebraic approach, the yield func-
tion is generally defined in terms of an anisotropic material tensor, such as Ortiz and Popov (1983), Voyiadjis and Foroozesh
(1990) and Feigenbaum and Dafalias (2007, 2008). In the geometric approach, the subsequent yield surface is described by a
mapping technique that divides the yield surface into the forward and rear parts, such as Chiang et al. (2002), Yeh and Lin
(2006a) and Fu et al. (2010).

On the other hand, the development of continuum damage mechanics expedites the elasto-plastic damage models. Most
of the elasto-plastic damage constitutive models in the framework of continuum mechanics can be categorized into two ap-
proaches. One is based on the strain equivalence, stress equivalence or energy equivalence, such as Simo and Ju (1987), Lu
and Chow (1990) and Souchet (2005), and another one is based on the fictitious undamaged configuration, such as Murakami
(1988), Voyiadjis and Park (1999) and Brünig (2003). In the continuum model, the introduction of energy potential is essen-
tial. However, choosing appropriate energy potentials to account for the damage induced anisotropy and the issue of com-
plex loading is a key problem for continuum models (Krajcinovic, 2000). Recently, an increasing number of researchers have
concentrated efforts on developing continuum models incorporating information obtained from the microscopic level and
therefore combining the advantages of continuum models and physical models.

Although some elasto-plastic damage models can describe the evolution of subsequent yield surfaces or elastic constants,
the success and usefulness of these models are still limited due to the following reasons:

(1) The physical significance of model parameters. Some phenomenological models based on plastic potential which is
expressed as a function of stress components and internal variables usually involve excessive model parameters which
lack of physical significance.

(2) The distortion of subsequent yield surfaces. The common feature of the subsequent yield surfaces is a ‘nose’. How to
capture the distortion of subsequent yield surfaces is a key problem for most advanced models. It should be noticed
that there are models with the capacity to describe the distortion of yield surfaces under proportional loading, such as
Chiang et al. (2002), Yeh and Lin (2006a) and Feigenbaum and Dafalias (2007). However, the distortion of yield surface
will complicate the evolution of yield surfaces, especially in the case of non-proportional loading and finite
deformation.

(3) The evolution of subsequent yield surfaces under non-proportional loading. Due to lack of information about the
plastic strain history, some yield surface models cannot be applied to non-proportional loading conditions, such as
Voyiadjis and Foroozesh (1990), Chiang et al. (2002) and Yeh and Lin (2006a).

(4) The evolution of subsequent yield surfaces under finite deformation. While most experiments are conducted in the
case of infinitesimal deformation, most of the plasticity models and investigations on evolution of yield surfaces
are also limited to infinitesimal deformation. Wu (2003a) extended the classical flow theory of plasticity to the large
strain range and used it to predict the initial and subsequent yield surfaces, in which mixed hardening was used and
distortion of subsequent yield surfaces could not be considered.

(5) The degradation of elastic constants. While polycrystalline models usually focus on the plastic deformation induced
anisotropy, most of them do not take the damage and damage induced anisotropy into account.

A physical mechanism based model called component assembling model has been formulated in small stain range by
Deng et al. (2006, 2007) and Zhang et al. (2008). Liu et al. (2010) extends it into the condition of finite deformation. There
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are three kinds of components in the model, the spring-bundle, cubage and slip components. The spring-bundle and cubage
components are abstracted from pair functional potentials, and the elasto-damage constitutive relation can be obtained by
formulating the mechanical responses of these two kinds of components with damage reflected by the response function of
spring-bundle components. Considering that slip is the main plastic deformation mechanism of polycrystalline metals, the
slip component has been proposed by extending the slip system in single crystal to polycrystalline level. The plastic
constitutive relation can be obtained by formulating the responses of slip components. Assembling these three kinds of
components, based on the decomposition of total deformation into elastic deformation and plastic deformation, the
elasto-plastic damage constitutive relation has been formed.

In this paper, the component assembling model established in the finite stain range is followed. The yield surface is deter-
mined by the positive and negative critical resolved shear stresses of all slip components which evolve under the hardening
rule or Bauschinger effect. The self hardening, latent hardening and isotropic hardening are introduced in the hardening rule
of the present model to reflect the different evolution of subsequent yield surfaces. Numerical simulations and predictions
using the present model are performed to obtain the evolution of yield surfaces and elastic constants during tension, torsion,
and combined tension–torsion proportional/non-proportional loading paths and compare with two sets of experimental
data by Khan et al. (2009, 2010a), one for a very low work hardening aluminum alloy Al 6061-T6511, and another for a very
high work hardening aluminum alloy annealed 1100 Al. The expansion/shrink, translation and distortion characterized by
subsequent yield surfaces will be explained based on the hardening rule and Bauschinger effect defined on the slip compo-
nent level. The variation of elastic constants will be determined based on the damage defined on the spring-bundle compo-
nent level.

2. Material model

The component assembling model was proposed by Deng et al. (2006, 2007) in the infinitesimal deformation. Liu et al.
(2010) extended it into the condition of finite deformation. In this investigation, the derivation process of the material model
under finite deformation is followed.

2.1. Elasto-damage constitutive relation

Pair functional potentials describe the energy of materials in terms of atomic bonds and atom embedding interactions.
According to the theory of pair functional potentials, the total energy of materials is divided into two parts. One part is pair
potential u(r(a,b)) representing the Coulombic repulsive interactions among atomic nucleus and depending only on the atom-
ic spacing r(a,b). The other is embedding potential F(q(a)) modeling the interaction of that atoms embedded into the ‘‘electron
sea’’, which is a function of the local electron density q(a). The total energy is expressed as
Etot ¼ EC þ EV ¼
1
2

X
ða;bÞ

/ðrða;bÞÞ þ
X

a
FðqðaÞÞ ð1Þ
The deformation of the atomic bond can be defined as
kða;bÞ ¼ ln
rða;bÞ

rða;bÞ0

ð2Þ
where rða;bÞ0 is the initial distance between atoms a and b. Using the deformation rate of atomic bond, the time rate of pair
potential can be expressed as
_EC ¼
1
2

X
ða;bÞ

~f ðkða;bÞÞ _kða;bÞ ð3Þ
where ~f ðkða;bÞÞ is regarded as the atomic bonding force response function,
~f ðkða;bÞÞ ¼ @/

@kða;bÞ
¼ @/
@rða;bÞ

rða;bÞ0 ekða;bÞ ð4Þ
Analogously, the volumetric deformation of electron gas can be defined as
hðaÞ ¼ ln
qðaÞ0

qðaÞ
ð5Þ
where qðaÞ0 is the initial electron density at atom a. Using the volumetric deformation of electron gas, the time rate of embed-
ding potential is given by
_EV ¼
X

a

~pðhðaÞÞ _hðaÞ ð6Þ
where ~pðhðaÞÞ is regarded as the volumetric force response function,
~pðhðaÞÞ ¼ @F

@hðaÞ
¼ � @F

@qðaÞ
qðaÞ0 e�hðaÞ ð7Þ
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By combining Eqs. (3) and (6), the time rate of total energy is
_Etot ¼
1
2

X
ða;bÞ

~f ðkða;bÞÞ _kða;bÞ þ
X

a

~pðhðaÞÞ _hðaÞ ð8Þ
We define the initial undeformed state as reference configuration and the deformed state as current configuration. Con-
sidering a material element with unit volume in reference configuration, the deformation work is expressed as
We ¼ Etotjdef � Etotjundef ð9Þ
where Etotjdef and Etotjundef denote the total energy of current and reference configurations respectively. Herein, We refers to
the elastic part, and the decomposition of the total deformation will be presented in Section 2.2. Using Eq. (8), the deforma-
tion work rate is given by
_We ¼ _Etot

���
def
¼ _We

C þ _We
V ¼

1
2

X
ða;bÞ

~f ðkða;bÞÞ _kða;bÞ þ
X

a

~pðhðaÞÞ _hðaÞ ð10Þ
It can be seen from Eq. (10) that the calculation of rate of pair potential _We
C needs to run over all atomic bonds and that of

rate of embedding potential _We
V needs to run over all atoms. Since the material element consists of a huge number of atoms,

the number of kinematic degree of freedom is too large.
For solid materials, Cauchy–Born rule (Ericksen, 1984) builds a bridge between microscopic movements and macroscopic

deformations. It asserts that atoms in a material subject to a homogeneous deformation move according to a single mapping
from the undeformed to the deformed configuration.

As to the atomic bond between atoms a and b, the deformation of this atomic bond is kða;bÞ. Let n be the direction of atomic
bond and kðnÞ be the macroscopic deformation in this direction. Then, according to Cauchy–Born rule, it holds that
kða;bÞ ¼ kðnÞ ð11Þ
Above equation indicates that the atomic bonds in the same direction follow the same deformation history which is identical
to the macroscopic deformation in this direction. Therefore, it is feasible to group atomic bonds according to their directions.

Considering a unit volume element in the reference configuration, the deformations of atomic bonds in the neighborhood
of a little solid angle ðDXÞðsÞ0 around N(s) direction are assumed to be the same as the deformation in the N(s) direction. The
contributions of atomic bonds in this neighborhood to the deformation work rate is
_WeðsÞ
C ¼ 1

2

X
Nða;bÞ==NðsÞ

~f ðkða;bÞÞ _kða;bÞ ¼ f ðkðsÞÞ _kðsÞ ð12Þ
where the sum symbol denotes summing over atomic bonds in ðDXÞðsÞ0 neighborhood of N(s) direction, and f ðkðsÞÞ denotes the
summation of atomic bonding forces in this neighborhood,
f ðkðsÞÞ ¼ 1
2

X
Nða;bÞ==NðsÞ

~f ðkða;bÞÞ ¼ 1
2

X
Nða;bÞ==NðsÞ

@/
@rða;bÞ

rða;bÞ0 ekða;bÞ ð13Þ
Therefore, the atomic bonds in the ðDXÞðsÞ0 neighborhood of NðsÞ direction follow the same deformation history and can be
grouped together. All the atomic bonds in the ðDXÞðsÞ0 neighborhood of NðsÞ direction can be represented by a spring-bundle
component. The summation of atomic bonding forces in this neighborhood corresponds to the force of this spring-bundle
component, and the deformation of atomic bonds corresponds to the deformation of this spring-bundle component. Since
the pair potential changes with atomic distances only, spring-bundle component only bears tension or compression being
decomposed into the direction of this component. Its force response function f ðkðsÞÞ is expressed by Eq. (13).

All directions in space can be divided into neighborhoods of n discrete representative directions, and each direction cor-
responds to a spring-bundle component. Consequently, the part of the deformation work rate _We

C originating from pair po-
tential can be expressed as the summation of contributions of all spring-bundle components,
_We
C ¼

Xn

s¼1

_WeðsÞ
C ¼

Xn

s¼1

f ðkðsÞÞ _kðsÞ ð14Þ
The dimension of material element is much larger than that of atom with statistically uniform property. It is assumed that
the electron density is homogeneous within the material element. Accordingly, the volumetric deformation of electron gas
and volumetric force response function are also the same for every atom. In continuum deformation field, the volumetric
deformation is taken as h. According to Cauchy–Born rule, there is
hðaÞ ¼ h ð15Þ
Therefore, the other part of the deformation work rate _We
V originating from embedding potential can be simplified as
_We
V ¼

X
a

~pðhðaÞÞ _hðaÞ ¼ pðhÞ _h ð16Þ
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where p(h) denotes the summation of volumetric forces in unit reference volume,
pðhÞ ¼
X

a

~pðhðaÞÞ ¼ �
X

a

@F
@qðaÞ

qðaÞ0 e�hðaÞ ð17Þ
Consequently, _We
V has only one generalized degree of freedom h, and the atom embedding interaction can be represented by

a cubage component. The deformation of the cubage component is volumetric deformation h, and its force p(h) is expressed
by Eq. (17). Since the embedding potential only responds to the volumetric deformation, the cubage component only bears
hydrostatic stress.

By combining Eqs. (14) and (16), the total deformation work rate can be described as
_We ¼
Xn

s¼1

f ðkðsÞÞ _kðsÞ þ pðhÞ _h ð18Þ
Thereby, a material model composed of spring-bundle components and a cubage component is established.
Once the deformation work rate is obtained, the derivation of constitutive equations will follow the similar derivation

process of traditional continuum models. In Eq. (18), the deformation work rate is described by the deformation rates of
spring-bundle and cubage components. The relations between the deformation rates of two kinds of components and the
macroscopic deformation rate will be set up below, so that the deformation work rate can be expressed as a function of
the macroscopic deformation rate.

Similar to the deformation of atomic bond, we define the deformation of material line element in the direction of N as
k ¼ ln l ¼ 1
2

lnðn � nÞ ¼ 1
2

lnððN� NÞ : ððFeÞT � FeÞÞ ð19Þ
where l denotes the length of material line element after deformation, n represents the unit vector N after deformation, and
Fe refers to the elastic deformation gradient. The time rate of k is
_k ¼ ðn � nÞ
�

2n � n ¼ e�2kðn� nÞ : Le ¼ e�2kðn� nÞ : De ð20Þ
where Le is the velocity gradient, and De is the symmetric rate of stretching tensor.
Similar to the volumetric deformation of electron gas, we define the volumetric deformation of material volume element

as
h ¼ ln J ¼ lnðdet FeÞ ð21Þ
where J is the ratio of volume in the current configuration to that in the reference configuration. Then, the time rate of h is
_h ¼ 1
J

_J ¼ 1
J
ðJI : DeÞ ¼ I : De ð22Þ
where I denotes the second-order identity tensor.
The deformation rates of spring-bundle and cubage components can be expressed by Eqs. (20) and (21), respectively.

Then, the deformation work rate can be expressed as
_We ¼
Xn

s¼1

f ðkÞe�2kðn� nÞ : De þ pðhÞI : De ð23Þ
For the sake of clarity, the superscript(s) of spring-bundle components is omitted.
Let r denote the Cauchy stress, the work rate per unit reference volume can be expressed as
_We ¼ Jr : De ð24Þ
According to Eqs. (23) and (24), the Cauchy stress should be expressed as
r ¼ 1
J

Xn

s¼1

f ðkÞe�2kðn� nÞ þ pðhÞI
 !

ð25Þ
The above expression sets up the relations between the forces of spring-bundle and cubage components with the mac-
roscopic stress field. On the other hand, the deformations of these two kinds of components are related to the macroscopic
deformation field by Eqs. (19) and (21). Therefore, it is feasible to transform the strain-stress relations in 6-dimensional
space to the force response functions of two kinds of components with only one degree of freedom. That is to say, the com-
plex macroscopic response of materials can be obtained through assembling the simple responses of two kinds of
components.

Based on the relation between Kirchhoff stress s and Cauchy stress r, the Kirchhoff stress is given by
s ¼ Jr ¼
Xn

s¼1

f ðkÞe�2kðn� nÞ þ pðhÞI ð26Þ
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Correspondingly, the Jaumann rate of Kirchhoff stress is expressed as
s
r
ðWeÞ ¼ _sþ s �We �We � s ¼

Xn

s¼1

ðf 0ðkÞ � 2f ðkÞÞe�4kððn� nÞ : DeÞðn� nÞ

þ
Xn

s¼1

f ðkÞe�2kðDe � ðn� nÞ þ ðn� nÞ � DeÞ þ p0ðhÞðI : DeÞI ð27Þ
The Jaumann rate of Kirchhoff stress is objective, so that the constitutive equation can be written as
s
r
ðWeÞ ¼ Ce : De ð28Þ
where Ce is the tangent stiffness tensor. Its components are expressed as
Ce
ijkl ¼

Xn

s¼1

ðf 0ðkÞ � 2f ðkÞÞe�4kninjnknl þ
1
2

Xn

s¼1

f ðkÞe�2kðnjnldik þ ninkdjl þ njnkdil þ ninldjkÞ þ p0ðhÞdijdkl ð29Þ
In microscopic level, damage and fracture are related to the breaking of atomic bonds which are represented by the
spring-bundle component. When atomic debonding emerges, the corresponding spring-bundle component will change its
mechanical properties. Therefore, the Eqs. (28) and (29) describe the elasto-damage constitutive relation of materials.

2.2. Elasto-plastic damage constitutive relation

The above elasto-damage constitutive relation is based on pair functional potentials. However, due to not changing the
length of atomic bonds, atomic movement perpendicular to atomic bond, such as dislocation introduced by Taylor (1934),
changes the lattice structure and therefore the energy of materials hardly. Therefore, the pair functional potentials cannot
reflect the energy change in the process of dislocation slip.

As the main plastic deformation mechanism of most metals, dislocation slip is investigated both experimentally and the-
oretically. The well-known experimental evidence is that the earliest-appearing slip lines in polycrystalline metals are al-
ways parallel to the plane with the largest shear stress exerted. Therefore, in polycrystalline aggregate, a close
approximation was obtained by Martin (1975) to assume that the slip can occur along all planes in a homogeneously loaded
element. In the previous works of Deng et al. (2007), crystal plasticity is extended to polycrystalline, and the slip component
is proposed to describe the macro characteristics of slip systems in different crystals which have the same orientation tensor.
Analogous simplification can be traced back to the 1940s when Batdorf and Budiansky (1949) proposed a simple slip theory,
in which each grain has only one slip system. Martin (1975) assumed that slip can occur along all planes in materials. Wang
(1991) proposed a macro slip theory, in which four independent slip systems are used for polycrystalline solids. Liang et al.
(1998) proposed a meso elastoplastic constitutive model based on equivalent slip systems, in which the tiny slip systems
distributing randomly between crystal slices in micro-grains or on grain boundaries are replaced by macro equivalent slip
systems. Khan and Cheng (1996) proposed an anisotropic elastic-plastic constitutive model in which slip systems are distrib-
uted randomly. In the previous works of Deng et al. (2007), the slip component has been proposed to describe plastic defor-
mation in the case of infinitesimal deformation. Liu et al. (2010) describes the response of slip component under finite
deformation similar to crystal plasticity (Asaro, 1983). In this section, the response of slip component is also described within
the framework of finite deformation, and then the corresponding plastic constitutive relation in the case of finite deforma-
tion is obtained.

In a crystalline solid, an increment of deformation is imagined to occur in two steps. The first, starting from the reference
state, occurs by a process of simple shears on slip systems. The deformation gradient in this step is called plastic deformation
gradient and denoted by Fp. Plastic deformation via dislocation slip deforms and rotates the material, but does not affect the
lattice structure. Following this is a process of lattice deformation, the deformation gradient in this step is called elastic
deformation gradient and denoted by Fe. The material and lattice deform and rotate together under Fe. The basic kinematic
scheme is shown in Fig. 1. Thus, the deformation gradient is decomposed as
F ¼ Fe � Fp ð30Þ
More sophisticated kinematic approaches are investigated by Voyiadjis and Park (1999), Brünig (2003). It should be no-
ticed that though the above simple decomposition is used in the present paper, it can be extended to a more sophisticated
approach if the elastic deformation is further decomposed into an elastic part and a damage part. The further decomposition
will not be discussed here in detail.

The response of plastic deformation based on slip components is similar to that of crystal plasticity theory. Let S(a) and
N(a) be the unit vectors in the slip direction and the normal of slip plane on slip component a in the reference configuration.
Since the plastic deformation does not change the structure of lattice, the slip direction and normal of slip plane are not
changed after plastic deformation, as shown in Fig. 1. After elastic deformation, the slip direction and the corresponding nor-
mal on slip component a become to s(a) and n(a) which satisfy
sðaÞ ¼ Fe � SðaÞ ð31Þ



Fig. 1. Kinematic model of elasto-plastic deformation in crystalline media.
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and
nðaÞ ¼ NðaÞ � ðFeÞ�1 ð32Þ
respectively.Accordingly, we introduce second-order symmetric tensor P(a) and antisymmetric tensor Q(a) as
PðaÞ ¼ 1
2

sðaÞ � nðaÞ þ nðaÞ � sðaÞ
� �

ð33Þ
and
Q ðaÞ ¼ 1
2

sðaÞ � nðaÞ � nðaÞ � sðaÞ
� �

ð34Þ
respectively.
The kinematic and kinetic variables of the slip component a are shearing deformation c(a) and resolved shear stress s(a)

respectively. The resolved shear stress is computed using Schmid law,
sðaÞ ¼ Jr : PðaÞ ¼ s : PðaÞ ð35Þ
where r is Cauchy stress and s is Kirchhoff stress. The time rate of s(a) is
_sðaÞ ¼ _s : PðaÞ þ ðs �We �We � sÞ : PðaÞ þ ðQ ðaÞ � s� s � Q ðaÞÞ : De ð36Þ
In the theory of crystal plasticity, the symmetric and antisymmetric parts of plastic velocity gradient have following relation-
ship with second-order tensors P(a) and Q(a),
Dp ¼
Xm

a¼1

_cðaÞPðaÞ ð37Þ

Wp ¼
Xm

a¼1

_cðaÞQ ðaÞ ð38Þ
where _cðaÞ is the slip shearing deformation rate on slip component a. Substituting Eq. (37) into Eq. (36), according to the elas-
to-damage constitutive equation (28), Eq. (36) can be expressed as
_sðaÞ ¼ ðPðaÞ : Ce þ Q ðaÞ � s� s � Q ðaÞÞ : De ¼ kðaÞ : D�
Xm

a¼1

_cðaÞPðaÞ
 !

ð39Þ
where
kðaÞ ¼ PðaÞ : Ce þ Q ðaÞ � s� s � Q ðaÞ ð40Þ
According to the generalized Schmid’s law, the resolved shear stress s(a) of the a slip component must reach its critical
value sðaÞ�cr , the slip component is said to be the potentially active or critical component. Otherwise, it is said to be the non-
critical component. For the slip component a remaining active, s(a) must increase to and remain at the critical value sðaÞ�cr ,
_sðaÞþcr ¼ _sðaÞ; _cðaÞ > 0 if _sðaÞ > 0
_sðaÞ�cr ¼ _sðaÞ; _cðaÞ < 0 if _sðaÞ < 0

(
ð41Þ
For a noncritical or inactive slip component a, there is
sðaÞ�cr < sðaÞ < sðaÞþcr ð42Þ
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and
_cðaÞ ¼ 0 ð43Þ
During the slipping process, considering latent hardening, it is assumed that the rate of critical resolved shear stress is
linearly related to the shearing deformation rates on slip components. If only kinematic hardening is considered, the rate
of critical resolved shear stress on the slip component a is given by
_sðaÞþcr ¼
Pm
b¼1

hab _cðbÞ; _sðaÞ�cr ¼ b _sðaÞþcr
Pm
b¼1

hab _cðbÞ > 0

_sðaÞ�cr ¼
Pm
b¼1

hab _cðbÞ; _sðaÞþcr ¼ b _sðaÞ�cr
Pm
b¼1

hab _cðbÞ < 0

8>>><
>>>:

ð44Þ
Herein hab is the hardening modulus matrix, a = b denotes the self-hardening moduli and a – b denotes the latent hardening
moduli. b is the Bauschinger effect parameter. When

Pm
b¼1hab _cðbÞ > 0, the positive critical resolved shear stress changes due

to hardening, and the negative one changes through Bauschinger effect, i.e. _sðaÞ�cr ¼ b _sðaÞþcr , and vice versa.
For the active slip component, Eq. (41) holds. Substituting Eqs. (39) and (44) into Eq. (41), we obtain
kðaÞ : D�
Xm

a¼1

_cðaÞPðaÞ
 !

¼
Xm

b¼1

hab _cðbÞ ð45Þ
Then,
kðaÞ : D ¼
Xm

b¼1

ðhab þ kðaÞ : PðbÞÞ _cðbÞ ¼
Xm

b¼1

gab _cðbÞ ð46Þ
where
gab ¼ hab þ kðaÞ : PðbÞ ð47Þ
Consequently, for an active slip component a, the shearing deformation rate can be expressed as
_cðaÞ ¼
Xm

b¼1

ðgabÞ
�1kðbÞ : D ð48Þ
Using Eqs. (28) and (48), the Jaumann rate of Kirchhoff stress based on the continuum spin W is
s
r
¼ _sþ s �W�W � s ¼ _sþ s �We �We � sþ s �Wp �Wp � s ¼ Ce : ðD� DpÞ �

Xm

a¼1

_cðaÞðQ ðaÞ � s� s � Q ðaÞÞ ¼ Ce

: D�
Xm

a¼1

_cðaÞðCe : PðaÞ þ Q ðaÞ � s� s � Q ðaÞÞ ¼ Ce : D�
Xm

a¼1

_cðaÞkðaÞ ð49Þ
Substituting Eq. (48) into above expression, the resulting constitutive law is expressed as
s
r
¼ Cepd : D ¼ Ce �

Xm

a¼1

Xm

b¼1

ðgabÞ
�1kðaÞ � kðbÞ

 !
: D ð50Þ
where the sum runs over the active slip components, Cepd is the elasto-plastic damage stiffness tensor, and Ce is the elasto-
damage stiffness tensor with components determined by Eq. (29).

To sum up, the spring-bundle and cubage components describe the elasto-damage constitutive relation and bear the
stress together. Under the same stress condition, the slip components produce corresponding plastic deformation. Therefore,
the plastic deformation is an attached one without influence on stress state. The coupling between plasticity and damage is
excluded in above derivations. The model assembling with these three kinds of components describes the elasto-plastic
damage constitutive relation under finite deformation and is called component assembling model. Different from traditional
continuum models, the basic research element of this model is component rather than representative volume element, and
the mechanical property of materials is described on components rather than on the representative volume element for
expressing the strain-stress relations. The mechanical behavior of materials is obtained by assembling the responses of these
three kinds of components.

3. Yield surface of the proposed model

In this section, the proposed model is used to illustrate the evolution of yield surfaces. Theoretically, the proposed model
can be applied in any six-dimensional stress space, while most experimental yield surfaces found in the literature were
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determined in two-dimensional case. For the sake of clarity in discussion and verification of the proposed model, we shall
restrict it in the axial-torsional stress space.

The number of slip systems in single crystal is determinate and invariant. However, the number of slip components is
variant, depending on the accuracy. In the present paper, we use 30 independent slip components scatter in the first and
second quadrants as shown in Fig. 2. The slip components can slip along the positive and negative directions.

The yield definition used in the present model is the absolutely proportional limit. When the resolved shear stress of a slip
component reaches its critical value, this slip component actives, and then yield occurs. For the a slip component, the yield
function can be expressed as
f ðaÞ ¼ sðaÞ � sðaÞ�cr ¼ s : PðaÞ � sðaÞ�cr ¼ 0 ð51Þ
In the axial-torsional stress space, Eq. (51) can be rewritten as
s11PðaÞ11 þ 2s12PðaÞ12 ¼ sðaÞ�cr ð52Þ
It should be noted that yield surfaces are usually determined in Cauchy stress space. For most metals with finite plastic
deformation, the elastic strain is much smaller relative to the total strain, and Cauchy stress is close to Kirchhoff stress. Eq.
(52) can be approximately expressed by Cauchy stress as
r11PðaÞ11 þ 2r12PðaÞ12 ¼ sðaÞ�cr ð53Þ
The derivation of yield surface from Eq. (53) is shown in Fig. 3. It can be seen from Fig. 3 that the two state variables (the
two critical resolved shear stresses, sðaÞ�cr and sðaÞþcr) on slip component a determine two critical lines. Then, running over all slip
components, we can obtain a group of critical lines, and the yield surface is formed by the constraint that it is tangent to
x

y

( )αs

( )αn

Fig. 2. The planar discrete slip directions and normal directions of slip components.

Fig. 3. A typical example of yield surface predicted by the proposed model.



Fig. 4. The initial yield surface predicted by present model.
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every critical line. Therefore, if the critical resolved shear stresses of all the slip components are determined, the yield surface
is then obtained.

3.1. The initial yield surface (IYS)

When the critical resolved shear stresses on every slip component are equal to the initial values s0
þcr or s0

�cr (s0
�cr ¼ �s0

þcr),
the initial yield surface is obtained and shown in Fig. 4. Obviously, it represents the Tresca yield surface. The initial critical
shear stress s0

þcr can be determined by the axial yield stress rs or the shear yield stress ss
s0
þcr ¼

rs

2
ors0

þcr ¼ ss ð54Þ
3.2. The subsequent yield surface (SYS)

There are many factors that affect the evolution of critical resolved shear stresses sðaÞ�cr . In the present paper, we mainly
consider hardening and Bauschinger effect of the slip components. For an active slip component, the active critical resolved
shear stress changes due to the self hardening, while for a non-active slip component, the active critical resolved shear stress
changes due to the latent hardening. For all slip components, the passive critical resolved shear stresses change due to
Bauschinger effect.

In this work, the geometric approach is used to describe the subsequent yield surface with the help of a mapping tech-
nique that divides the yield surface into the forward and rear parts. The forward part is determined by the active critical
resolved shear stresses which change due to hardening, while the rear part is determined by the passive critical resolved
shear stresses which change according to the Bauschinger effect. Fig. 5 is a representation of the subsequent yield surface
in axial-torsional stress space based on present model.

3.2.1. Hardening rule
The hardening matrix hab has a crucial role in physical phenomena like cross hardening and distortion of yield surfaces.

The investigation of work hardening rules has attracted the interest of many researchers. There are many kinds of hardening
rules (Khan and Cheng, 1996). Considering experimental observation and theoretical study, the hardening rule in the present
paper includes isotropic and kinematic hardening, and it is defined as
hab ¼ hisignðPðaÞ : PðbÞÞ þ hða;bÞkl PðaÞ : PðbÞ þ ðhðaÞks � hða;bÞkl ÞdabPðaÞ : PðbÞ ð55Þ
where hða;bÞi ¼ hisignðPðaÞ : PðbÞÞ represents isotropic hardening, hða;bÞk ¼ hða;bÞkl PðaÞ : PðbÞ þ ðhðaÞks � hða;bÞkl ÞdabPðaÞ : PðbÞ represents
kinematic hardening, where hðaÞks and hða;bÞkl denote self and latent hardening parameters of the kinematic hardening part
respectively, and dab is the Kronecker delta.

The above hardening rule includes self and latent hardening. The self hardening modulus is
haa ¼ hi þ hðaÞks PðaÞ : PðaÞ ð56Þ
The latent hardening modulus is
hab ¼ hisignðPðaÞ : PðbÞÞ þ hða;bÞkl PðaÞ : PðbÞ ða–bÞ ð57Þ



Fig. 5. Representation of the subsequent yield surface in axial-torsional stress space.

F. Liu et al. / International Journal of Plasticity 27 (2011) 1355–1383 1365
Similar to the exponential law of macroscopic strain-stress curve, the isotropic hardening parameter hi follows an expo-
nential law expressed as
hi ¼ 2cimiðjepj þ e0Þmi�1 ð58Þ
where ep is the equivalent plastic strain, ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp

11Þ
2 þ 4

3 ðE
p
12Þ

2
q

, where Ep is the Green strain. ci and mi are the isotropic hard-
ening parameters of the model, and e0 is related to the initial critical resolved shear stress by
e0 ¼
s0
þcr

ci

� � 1
mi

ð59Þ
Similarly, the self hardening parameter hðaÞks is a function of shearing deformation of slip component a, and it is expressed
as
hðaÞks ¼ 2ckmkðjcðaÞj þ c0Þ
mk�1 ð60Þ
where ck and mk are the kinematic hardening parameters of the model, and c0 can be determined by
c0 ¼
s0
þcr

ck

� � 1
mk

ð61Þ
Considering the symmetry of the hardening matrix and that the earlier active slip components affect the later ones, the
latent hardening parameter hða;bÞkl can be expressed as
hða;bÞkl ¼ q minðhðaÞks ; h
ðbÞ
ks Þ ð62Þ
where q is the latent hardening parameter.
In order to illustrate the physical meaning of the model parameters, the influence of the latent hardening, Bauschinger

effect, the isotropic hardening and self hardening of kinematic hardening part is investigated in terms of subsequent yield
surfaces.
3.2.2. The latent hardening
The influence of latent hardening parameter q on subsequent yield surfaces under uniaxial tension is shown in Fig. 6. In

this illustration, the isotropic hardening is not included, and b = 1. It can be seen that the latent hardening parameter q
mainly affects the forward part of subsequent yield surfaces. When q = 0, there is no latent hardening in the kinematic hard-
ening part, and the subsequent yield surface exhibits a sharp corner with highest extent. q = 1 corresponds to the maximum
latent hardening, and classic kinematic hardening is obtained. In general, 0 6 q 6 1, and the subsequent yield surfaces can be
described to have a sharp front. Therefore, the model can describe the front part of the subsequent yield surface as a corner
with varying degrees according to the different values of latent hardening parameter q.

The sharp front can be explained in terms of the critical lines determined by the active critical resolved stresses of active
slip components. When q < 1, there is usually several active slip components. For an active slip component a, there is



Fig. 6. The effect of latent hardening parameter q on subsequent yield surfaces under uniaxial tension
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sðaÞþcr ¼ sðaÞ ¼ Jr0 : P; _sðaÞ > 0

sðaÞ�cr ¼ sðaÞ ¼ Jr0 : P; _sðaÞ < 0

(
ð63Þ
where r0 denotes the stress at the loading point. Then, the active critical line of the active slip component a becomes
r11PðaÞ11 þ 2r12PðaÞ12 ¼ r0
11PðaÞ11 þ 2r0

12PðaÞ12 ð64Þ
That is to say, the critical lines determined by the active slip components all intersect at the loading point ðr0
11;r0

12Þ, as
seen in Fig. 7. Then, the subsequent yield surface determined by the critical lines will form a sharp corner at the loading
point. The smaller the value of q is, the larger the number of active slip components is, and the sharper the front of subse-
quent yield surface becomes.

3.2.3. Bauschinger effect
Bauschinger effect refers to that an increase of the tensile yield strength may result in a decrease of the compressive yield

strength. In the present model, Bauschinger effect is defined on the slip component. It refers to that an increase of active
critical resolved shear stress may result in a decrease of passive critical resolved shear stress.

Since the hardening rule in the present model is composed of two parts, the active critical resolved shear stress rate can
also be divided into two parts as
Fig. 7. An explanation of sharp front and blunt rear of subsequent yield surface in terms of critical lines.
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_sðaÞþcr ¼
Pm
b¼1
ðhða;bÞi þ hða;bÞk Þ _cðbÞ ¼ _sðaÞþcrðiÞ þ _sðaÞþcrðkÞ;

Pm
b¼1

hab _cðbÞ > 0

_sðaÞ�cr ¼
Pm
b¼1
ðhða;bÞi þ hða;bÞk Þ _cðbÞ ¼ _sðaÞ�crðiÞ þ _sðaÞ�crðkÞ;

Pm
b¼1

hab _cðbÞ < 0

8>>><
>>>:

ð65Þ
where _sðaÞ�crðiÞ ¼
Pm

b¼1hða;bÞi
_cðbÞ and _sðaÞ�crðkÞ ¼

Pm
b¼1hða;bÞk

_cðbÞ represent critical resolved shear stress rates originating from isotropic
and kinematic hardening part respectively. For slip component a, when

Pm
b¼1hab _cðbÞ > 0, the positive critical resolved shear

stress sðaÞþcr is the active one, and the negative critical resolved shear stress sðaÞ�cr is the passive one. When
Pm

b¼1hab _cðbÞ < 0, the
negative critical resolved shear stress becomes the active one, and the positive critical resolved shear stress corresponds to
the passive one.

In the present model, Bauschinger effect is defined on the kinematic hardening part of the slip component as the passive
critical resolved shear stress rate of the kinematic part divided by the active one
b ¼
_sðaÞ�crðkÞ
_sðaÞþcrðkÞ

;
Pm
b¼1

hab _cðbÞ > 0

b ¼
_sðaÞþcrðkÞ
_sðaÞ�crðkÞ

;
Pm
b¼1

hab _cðbÞ < 0

8>>><
>>>:

ð66Þ
When
Pm

b¼1hab _cðbÞ > 0, the positive critical resolved shear stress sðaÞþcr of a slip component changes due to hardening, then the
Bauschinger effect parameter b is equal to the rate of negative critical resolved shear stress of the kinematic part divided by
the rate of positive one, and vice versa.

Therefore, the passive critical resolved shear stress can be expressed as
_sðaÞ�cr ¼ _sðaÞ�crðiÞ þ _sðaÞ�crðkÞ ¼ � _sðaÞþcrðiÞ þ b _sðaÞþcrðkÞ;
Pm
b¼1

hab _cðbÞ > 0

_sðaÞþcr ¼ _sðaÞþcrðiÞ þ _sðaÞþcrðkÞ ¼ � _sðaÞ�crðiÞ þ b _sðaÞ�crðkÞ;
Pm
b¼1

hab _cðbÞ < 0

8>>><
>>>:

ð67Þ
Generally speaking, the active critical resolved shear stress changes due to hardening as Eq. (65), and the passive one
changes through Bauschinger effect as Eq. (67). The critical resolved shear stresses on all slip components determine the
yield surface.

Theoretically, the Bauschinger effect parameter b on slip components depends on the slip shearing deformation history,
and it is different for each slip component. For simplicity, b is considered to be an identical constant for all slip components
in this paper.

The influence of Bauschinger effect parameter b on subsequent yield surfaces under uniaxial tension is shown in Fig. 8. In
this illustration, isotropic hardening is also not included, and q = 0.3. There is no Bauschinger effect when b = 0, while b = 1
denotes the classical kinematic hardening.

Under the Bauschinger effect, the subsequent yield surfaces have a blunt rear. This can be explained by the reason that the
rear part of subsequent yield surface is determined by the passive critical resolved shear stresses of active slip components
which change more than those of the inactive slip components.
Fig. 8. The effect of Bauschinger effect parameter b on the subsequent yield surfaces under uniaxial tension.



Fig. 9. Combined effect of latent hardening and Bauschinger effect on the subsequent yield surfaces under uniaxial tension (q = 0.5).
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3.2.4. Combined effect of latent hardening and Bauschinger effect
When Bauschinger effect parameter b is greater than 1 and the latent hardening parameter q is smaller than 1, the sub-

sequent yield surfaces show slight negative cross effect in the case of finite deformation because of the combined effect of
latent hardening and Bauschinger effect. When q = 0.5, the subsequent yield surfaces under tension with different values of
Bauschinger effect are shown in Fig. 9.

3.2.5. The isotropic hardening
Compared to kinematic hardening, the isotropic hardening is equivalent to have a constant Bauschinger effect with value

�1 on slip component. That is to say, the isotropic hardening leads to that an increase of the active critical resolved shear
stress may result in a same increase of passive critical resolved shear stress if only isotropic hardening is included in the
hardening rule. Therefore, the isotropic hardening makes the size of subsequent yield surface increase. The subsequent yield
surfaces under tension with different values of isotropic hardening are shown in Fig. 10, in which q = 0.3, b = 2.0, and
ci = ck = 1. As isotropic hardening takes up larger proportion of the total hardening matrix, the subsequent yield surfaces be-
come larger and show apparent positive cross effect. The expansion of the rear part of subsequent yield surfaces is very
noticeable, while the isotropic hardening has little effect on the front of the subsequent yield surfaces.

When q = 1, b = 1, the classic isotropic hardening is obtained when hk = 0, the classic kinematic hardening is obtained
when hi = 0, and combined isotropic and kinematic hardening is obtained when two kinds of hardening both exist, as shown
in Fig. 11.

3.2.6. The self hardening of kinematic hardening part
Since the strain-stress curve is determined by the hardening rule, the self hardening parameters ck and mk, latent hard-

ening parameter q of the kinematic hardening part, and isotropic hardening parameters ci and mi all have influence on the
Fig. 10. The effect of isotropic hardening on the subsequent yield surfaces under uniaxial tension (q = 0.3, b = 2.0, and mi = mk = 1).



Fig. 11. The classic hardening models obtained by the present model under tension (q = 1, b = 1, and mi = mk = 1)
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strain-stress curve. Considering that the isotropic hardening makes the subsequent yield surfaces inflate, it is possible to dis-
tinguish between the isotropic hardening and kinematic hardening from their influences on the cross effect of subsequent
yield surfaces. Once the isotropic hardening parameters and latent hardening parameter q are determined, the self hardening
parameters ck and mk can be determined by fitting the strain-stress curve.

3.2.7. Non-proportional loading
The calculation of non-proportional loading is an important issue in plasticity and damage mechanics. How to reflect the

phenomenon that material response depends on its deformation history is difficult for many phenomenological models. In
the present model, the state variables on slip components (the positive and negative critical resolved shear stresses, sðaÞþcr and
sðaÞ�cr) are naturally different according to their different orientations. Since the subsequent yield surface is determined by the
positive and negative critical resolved shear stresses on all slip components, the different critical resolved shear stresses on
different slip components would create anisotropy for the material in a natural manner. Moreover, the evolution of the state
variables records the loading history of material, which makes the proposed model have the potential to address the issue of
complex loading. The subsequent yield surfaces under five different loading paths ((a) tension followed by torsional loading;
(b) tension, unloading to the center of the yield surface followed by torsional loading; (c) combined tension–torsion propor-
tional loading; (d) torsion followed by tensile loading; (e) torsion, unloading to the center of the yield surface followed by
tensile loading) with the same loading point are shown in Fig. 12, in which classic kinematic hardening rule is used, i.e. q = 1,
b = 1, and hi = 0. It can be seen from Fig. 12 that different subsequent yield surfaces are obtained under different loading
paths.
Fig. 12. The effect of loading path on the subsequent yield surfaces.



1370 F. Liu et al. / International Journal of Plasticity 27 (2011) 1355–1383
4. Iteration procedure

The responses of spring-bundle and cubage components which describe the elasto-damage constitutive relation are
determined by the elastic deformation gradient Fe, while the responses of slip components which describe the plastic defor-
mation behavior are controlled by the elastic deformation gradient Fe and Kirchhoff stress s. Therefore, the realization of the
elasto-plastic damage constitutive relation needs iteration. On the other hand, the determination whether the slip compo-
nents are active or not also needs iteration. The whole calculation procedure is presented with the condition that the nom-
inal stress is given:

1. The nominal stress S at the increment n is given, and the elasto-plastic damage stiffness tensor (Cepd)(n�1), the elasto-
damage stiffness tensor (Ce)(n�1)and elastic deformation gradient (Fe)(n�1) at the increment (n � 1) are known and set
as the initial iteration values of corresponding parameters at the increment n. The spin tensor of the elastic part We is
set as zero;

2. Calculate Kirchhoff stress according to s = Fe � S;
3. Calculate the Jaumann rate of Kirchhoff stress based on the lattice spin We:
s
4
ðWeÞ ¼ DFe � Sþ Fe � DSþ s �We �We � s
4. Compute the elastic deformation rate according to De ¼ ðCeÞ�1 : s
4
ðWeÞ;

5. Compute the increment of elastic deformation gradient DFe = (De + We) � Fe, and the new total elastic deformation gra-
dient Fe ¼ DFe þ Fðn�1Þ

e ;
6. Compute the direction vector of every spring-bundle component after deformation according to n(s) = Fe � N(s) and its

deformation kðsÞ ¼ 1
2 lnðnðsÞ � nðsÞÞ. According to the response curve of the spring-bundle component, the force f ðkðsÞÞ and

stiffness HðkðsÞÞ of every spring-bundle component are determined;
7. Compute the deformation of the cubage component h = ln(det Fe), according to the response curve of cubage compo-

nent, the force p(h) and stiffness K(h)of the cubage component are determined;
8. Compute the Kirchhoff stress according to Eq. (26) and elasto-damage stiffness tensor Ce according to Eq. (29);
9. Using Kirchhoff stress, the nominal stress is calculated by ~S ¼ ðFeÞ�1 � s;

10. A condition kS� ~Sk 6 d (d is a small value dependent on the calculation precision) comparing the computed nominal
stress and the given one is used to verify the convergence of the iteration. If the condition is satisfied, proceed to the
next step, otherwise, assign the value DSþ ðS� ~SÞ to DS. Go back to step 3 using the updated variables obtained in
above iteration process;

11. Compute the slip direction and the corresponding normal of every slip component after deformation according to Eqs.
(31) and (32), respectively. Compute second-order symmetric tensor P(a), antisymmetric tensor Q(a) and second-order
tensor kðaÞ ¼ PðaÞ : Ce þ Q ðaÞ � s� s � Q ðaÞ;

12. According to the hardening rule of the slip component, the hardening matrix hab is determined. Compute
gab ¼ hab þ kðaÞ : PðbÞ;

13. Calculate the resolved shear stress of every slip component according to Eq. (35). For every slip component, according
to the relation between the resolved shear stress and the critical resolved shear stresses at the last increment step, try
to determine whether it is active or not:

(a) If sðaÞ > ðsðaÞþcrÞðn�1Þ, the slip component is regarded to be active and slip along the positive direction, the increment

of critical resolved shear stress is computed by D~sðaÞcr ¼ sðaÞ � ðsðaÞþcrÞðn�1Þ;
(b) If sðaÞ < ðsðaÞ�crÞðn�1Þ, the slip component is regarded to be active and slip along the negative direction, the increment

of critical resolved shear stress is computed by D~sðaÞcr ¼ sðaÞ � ðsðaÞ�crÞðn�1Þ;
(c) Otherwise, the slip component is regarded to be inactive, and D~sðaÞcr ¼ 0;
14. According to the hardening matrix hab and the trial value of increment of critical resolved shear stress D~sðaÞcr , the shear-
ing deformation rate of an active slip component a is computed by D~cðaÞ ¼

Pn
b¼1ðhabÞ�1D~sðbÞcr , while D~cðaÞ ¼ 0 for inac-

tive slip component;
15. Compute the trial values of the active critical resolved shear stresses of slip components according to the following

rule P P

(a) If m

b¼1habDcðbÞ > 0, then ~sðaÞþcr ¼ ðsðaÞþcrÞðn�1Þ þ m
b¼1habDcðbÞ;

(b) If
Pm

b¼1habDcðbÞ < 0, then ~sðaÞ�cr ¼ ðsðaÞ�crÞðn�1Þ þ
Pm

b¼1habDcðbÞ;

16. For every slip component, determine whether the conditions D~sðaÞcr D~cðaÞ P 0 and ~sðaÞ�cr < sðaÞ < ~sðaÞþcr are satisfied. If the

two conditions are both satisfied for all slip components, proceed to the next step, otherwise

(a) If the condition ~sðaÞ�cr < sðaÞ < ~sðaÞþcr is satisfied for every slip component, the slip component with the minimal abso-

lute increment of critical resolved shear stress is regarded to be inactive. Let the increment of critical resolved
shear stress of this slip component be zero, D~sðaÞcr ¼ 0, and go back to step 14;

(b) If the condition ~sðaÞ�cr < sðaÞ < ~sðaÞþcr is not satisfied for slip component a, this slip component is regarded to be active.
Let the increment of critical resolved shear stress of this slip component returns to its original value computed in
step 13, and go back to step 14;
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17. Compute the increments of critical resolved shear stresses which are composed of the isotropic hardening part
DsðaÞ�crðiÞ ¼

Pm
b¼1hða;bÞi DcðbÞ and the kinematic hardening part DsðaÞ�crðkÞ ¼

Pm
b¼1hða;bÞk DcðbÞ. The positive and negative critical

resolved shear stresses are calculated:P

(a) If m

b¼1habDcðbÞ > 0, the positive critical resolved shear stress is calculated by sðaÞþcr ¼ ðsðaÞþcrÞðn�1Þ þ DsðaÞþcrðiÞ þ DsðaÞþcrðkÞ,
while the negative critical resolved shear stress is calculated by sðaÞ�cr ¼ ðsðaÞ�crÞðn�1Þ � DsðaÞþcrðiÞ þ bDsðaÞþcrðkÞ;

(b) If
Pm

b¼1habDcðbÞ < 0, the negative critical resolved shear stress is calculated by sðaÞ�cr ¼ ðsðaÞ�crÞðn�1Þ þ DsðaÞ�crðiÞ þ DsðaÞ�crðkÞ,
while the positive critical resolved shear stress is calculated by sðaÞþcr ¼ ðsðaÞþcrÞðn�1Þ � DsðaÞ�crðiÞ þ bDsðaÞ�crðkÞ;
18. Compute the shearing deformation of every slip component by cðaÞ ¼ ðcðaÞÞðn�1Þ þ DcðaÞ, plastic deformation gradient by
Fp ¼ Iþ

Pn
a¼1cðaÞS

ðaÞ �NðaÞ, total deformation gradient by F = Fe � Fp and elasto-plastic damage stiffness tensor by
Cepd ¼ Ce �

Pn
a¼1

Pn
b¼1ðgabÞ

�1kðaÞ � kðbÞ;
19. Update the state variables on spring-bundle components (maximum and minimum deformations experienced by

spring-bundle components) and slip components (positive and negative critical resolved shear stresses).
20. If the strain or stress reaches to the prestrain or prestress at which the subsequent yield surface is given, according to

the critical resolved shear stresses on all slip components, the subsequent yield surface is determined.

5. Results and discussion

In this section, numerical simulations and predictions by the present model are performed to compare with two sets of
experimental data by Khan et al. (2009, 2010a), one for a very low work hardening aluminum alloy Al 6061-T6511, and an-
other for a very high work hardening aluminum alloy annealed 1100 Al. Plane stress condition is assumed in the simulations
and predictions.

The experiments were conducted on the thin-walled cylindrical hollow specimens. The subsequent yield surfaces were
determined during tension, torsion, and combined tension–torsion proportional/non-proportional loading paths with yield
defined by 10 le deviation from linearity.

5.1. Calibration of model parameters

The Young’s and shear moduli of Al 6061-T6511 and annealed 1100 Al are 70.55 MPa, 25.86 MPa and 70.49 MPa,
25.84 MPa, respectively.

In the present model, the basic research element is the three kinds of components, and the mechanical property of mate-
rial is described on components. Therefore, the calibration of model parameters is the calibration of three kinds of compo-
nents actually.

5.1.1. Calibration of spring-bundle components
Since damage is reflected by the response functions of spring-bundle and cubage components, the variation of elastic con-

stants can be determined by the damage defined on these two kinds of components. For simplicity, the damage of cubage
component is not considered in this simulation. Therefore, the evolution of elastic constants is only influenced by the re-
sponse curve of spring-bundle components. Considering that the stiffness of spring-bundle component decrease exponen-
tially, the response of the spring-bundle component can be expressed as
f ¼
H0k0 þ H0k 1� e

�kþhþk0
k

� 	� 	
k

kþh
kþh > k0

�H0k0 � H0k 1� e
k�hþk0

k

� 	� 	
k

k�h
k�h < �k0

H0k �k0 6 k�h 6 k0

8>>><
>>>:

ð68Þ
where H0 is the initial stiffness of spring-bundle component, k�h is the deformation history of a spring-bundle component
with initial value k0 or �k0, and k is a parameter which determines the rate of damage development of spring-bundle com-
ponent. The response curve of spring-bundle component is shown in Fig. 13.

The initial stiffness of a spring-bundle component representing the atomic bonds in a little solid angle of DX is
H0 ¼ hDX ð69Þ
where h is the stiffness of spring-bundle component in a unit solid angle. In plane stress condition, the stiffnesses of spring-
bundle components and cubage component are related to the initial Young’s and shear moduli through the comparison be-
tween the present model and the generalized Hooke’s law, and they are expressed as
h ¼ 8
p G

B ¼ 3E�8G
4G�E G

(
ð70Þ
The parameter k0 is determined by the strain at which the elastic constants begin to decrease, while k determines the
descending rate of elastic constants. Therefore, k0 and k can be determined by the evolution of Young’s modulus under
tension.



Fig. 13. The response curve of spring-bundle component.

Table 1
Parameters for simulations of the evolution of the yield surfaces and elastic constants (Al 6061-T6511).

k0 k s0
þcr ð=MPaÞ ci (MPa) mi ck (MPa) mk q b

0.0029 0.0017 60.8 / / 143.9 0.08 0.4 2.15

Table 2
Parameters for simulations of the evolution of the yield surfaces and elastic constants (annealed 1100 Al).

k0 k s0
þcr ð=MPaÞ ci (MPa) mi ck (MPa) mk q b

0.00065 0.0012 3.8 18.4 0.2 23.6 0.2 0.5 2.3
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The parameters of Al 6061-T6511 and annealed 1100 Al are listed in Tables 1 and 2, respectively. Using the same param-
eters, the evolution of Young’s modulus under other loading conditions is predicted.

5.1.2. Calibration of cubage component
The damage of cubage component is not considered in this application, so there is only one parameter on cubage com-

ponent, the stiffness B which is related to the initial elastic constants by Eq. (70).

5.1.3. Calibration of slip components
The parameters of slip components are determined by the strain-stress curve, the initial yield surface and subsequent

yield surfaces under tension. In view of the different evolution tendencies of subsequent yield surfaces for two kinds of al-
loys, the hardening rules for two alloys are somewhat different. For low work hardening aluminum alloy, considering that
the subsequent yield surfaces shrink in size, only kinematic hardening is included in the hardening rule, i.e. in Eq. (55), hi = 0.
Therefore, there are only 5 model parameters on slip components for low work hardening aluminum alloy, the initial critical
resolved shear stress s0

þcr , the latent hardening parameter q, the Bauschinger effect parameter b and the kinematic hardening
parameters ck and mk. For high work hardening aluminum alloy, considering that the subsequent yield surfaces inflate, the
isotropic hardening is included as well as kinematic hardening, so there are two more parameters for high work hardening
aluminum alloy, the isotropic hardening parameters ci and mi. The calibration process is

(1) The initial critical resolved shear stress s0
þcr is determined by the initial yield surface.

(2) According to the sharp extent of the front part of subsequent yield surface, the latent hardening parameter q is
determined.

(3) For the high work hardening aluminum alloy annealed 1100 Al, isotropic hardening parameters ci and mi are deter-
mined by the inflation of subsequent yield surfaces, while isotropic hardening is not included for the low work hard-
ening aluminum alloy Al 6061-T6511.

(4) For the low work hardening aluminum alloy Al 6061-T6511, according to the translation of rear part relative to that of
forward part, the Bauschinger effect parameter b is determined. For the high work hardening aluminum alloy annealed
1100 Al, the Bauschinger effect parameter b is also determined according to the translation of rear part. However,
unlike Al 6061-T6511, the Bauschinger effect parameter of annealed 1100 Al needs to consider the isotropic hardening
which also influences the translation of rear part.



Fig. 14. The response curve of a continuously active slip component (q = 0, hi = 0).

F. Liu et al. / International Journal of Plasticity 27 (2011) 1355–1383 1373
(5) The self hardening parameters of the kinematic part, ck and mk, are determined by fitting the strain-stress curve.

In fact, the competition between isotropic hardening and kinematic hardening determines the size of subsequent yield
surfaces. Moreover, these two kinds of hardening both influence the strain-stress curve. Therefore, for annealed 1100 Al,
the calibration of isotropic hardening and kinematic hardening parameters needs to take both the cross effect of subsequent
yield surfaces and the strain-stress curve into account.

All model parameters of Al 6061-T6511 and annealed 1100 Al are listed in Tables 1 and 2, respectively.
If there is only one slip component active in the whole plastic deformation process, or q = 0, and that the isotropic hard-

ening is not included, the response curve of this continuously active slip component can be seen in Fig. 14. For real materials,
the response curves of slip components are different from one to another due to the influence of latent hardening and acti-
vation state.

Using these parameters, the evolution of subsequent yield surfaces under torsion and combined tension–torsion propor-
tional loading for Al 6061-T6511 and annealed 1100 Al and non-proportional loading for annealed 1100 Al are predicted by
the present model.

5.2. The initial yield surface

The results of the initial yield surfaces of Al 6061-T6511 and annealed 1100 Al are shown in Fig. 15(a) and (b), respec-
tively. The theory which leads to the Tresca initial yield surface is compared with the experimental data. Although the
von-Mises yield surface is closer to the experimental results than Tresca yield surface, the result predicted by the present
model is also very good when we properly choose the initial resolved shear stress of slip component determined by the
macro yield stress.

5.3. The subsequent yield surfaces of proportional loading

5.3.1. The tensile case
The subsequent yield surfaces of Al6061-T6511 under tensile loading are shown at 2%, 4% and 6% true tensile strains in

Fig. 16(a), and those of annealed 1100 Al are shown at 2%, 8% and 16% true tensile strains in Fig. 16(b). Comparisons of sim-
ulations and experimental results exhibit satisfactory agreement.

Prestrain loading is applied in all loading cases. According to the prestrain of the subsequent yield surface, the stress is
obtained through the stress–strain relation, and this stress corresponds to the stress point at the front of the subsequent
yield surface.

5.3.2. The torsional case
The subsequent yield surfaces of Al6061-T6511 under torsional loading predicted by the present model using parameters

listed in Table 1 are shown at 4%, 8% and 16% shear strains and compared with experimental results in Fig. 17(a), and those of
annealed 1100 Al using parameters listed in Table 2 are shown at 4%, 10% and 20% shear strains and compared with exper-
imental results in Fig. 17(b).

5.3.3. The combined tension–torsional case
The subsequent yield surfaces of Al6061-T6511 under combined tension–torsional loading predicted by the present mod-

el using parameters listed in Table 1 are shown at 2%, 4% and 8% equivalent von-Mises strains and compared with experi-



Fig. 15. Comparisons of the initial yield surfaces between the simulations of the model and experimental data.
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mental results in Fig. 18(a), and those of annealed 1100 Al using parameters listed in Table 2 are shown at 2%, 8% and 16%
von-Mises strains and compared with experimental results in Fig. 18(b).

It can be seen from Fig. 16–18 that the model can characterize the evolution of subsequent yield surfaces of Al 6061-
T6511 and annealed 1100 Al which showed a distinct ‘‘nose’’ in the loading direction for all three proportional loading paths.
This can be explained by the reason that the forward part of subsequent yield surface exhibits a sharp corner because of la-
tent hardening and the rear part forms a blunt region because of Bauschinger effect, which makes the subsequent yield sur-
faces exhibit a ‘‘nose’’. Similar nose-shaped yield surfaces are obtained by Ortiz and Popov (1983), Voyiadjis and Foroozesh
(1990), Chiang et al. (2002), Yeh and Lin (2006a) and Feigenbaum and Dafalias (2007).

From Figs. 16(a)–18(a), it can be seen that the subsequent yield surfaces of Al 6061-T6511 exhibit negative cross effect for
all three proportional loading paths. The shrinkage in size is because of the combined effect of latent hardening and Bausch-
inger effect as explained in Section 3.3.4. Unlike Al 6061-T6511, the size of subsequent yield surfaces of annealed 1100 Al
increases, and positive cross effect is observed with plastic deformation, as shown in Figs. 16(b)–18(b). This is because of
the isotropic hardening of annealed 1100 Al.

5.3.4. Discussion of the evolution rule of yield surface under proportional loading
For any stress state on a proportional loading path, it is possible to transform it to a stress state in the principal stress

space. Further, if the hydrostatic pressure is assumed to not influence the plastic deformation behavior, any proportional
loading can be equivalent to a tensile case.

For a proportional loading path with loading point (r0, s0), its two principal stresses are
r1 ¼
r0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0

4
þ s2

0

r
; r2 ¼

r0

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0

4
þ s2

0

r
ð71Þ



Fig. 16. Comparison of the subsequent yield surfaces after tensile loading between the simulation of the model and experimental data.
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Since hydrostatic pressure is not considered in this illustration, the above stress state can be transformed to a tensile case by
subtracting the hydrostatic pressure with value r2, and the equivalent tensile stress value becomes to
r01 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0

4
þ s2

0

r
ð72Þ
If the two principal directions are set as the new coordinate axes, the stress point (r11, r12) on the original subsequent yield
surface with preloading point (r0, s0) can be transformed to
r011 ¼ r11 cos2 hþ r12 sin 2h

r012 ¼ � 1
2 r11 sin 2hþ r12 cos 2h

r022 ¼ r11 sin2 h� r12 sin 2h

8><
>: ð73Þ
where h is the angle of the first principal direction with respect to the original x axis.
Similarly, a hydrostatic pressure with value r022 is subtracted from the above stress state, and the new subsequent yield

surface is formed by the new yield point
~r11 ¼ r11 cos 2hþ 2r12 sin 2h

~r12 ¼ � 1
2 r11 sin 2hþ r12 cos 2h

(
ð74Þ
In the present model, for slip component with slip direction a, its corresponding second-order symmetric tensor P(a) has its
initial components



Fig. 17. Comparison of the subsequent yield surfaces after torsional loading between the prediction of the model and experimental data.
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P11 ¼ �
1
2

sin 2a; P22 ¼
1
2

sin 2a ð75Þ
If elastic deformation is not considered in the deformation of slip components, i.e. the tensor P(a) does not change, the
resolved shear stress on each slip component is zero according to Eq. (35) under hydrostatic pressure. Therefore, the assump-
tion that hydrostatic pressure doesn’t influence the plastic deformation behavior holds in the present model, and any pro-
portional loading can be transformed to an equivalent tensile case. Further, the subsequent yield surface under any
proportional loading can be transformed to that under an equivalent tensile loading, and the transformed subsequent yield
surface coincides with that obtained directly by tensile loading.

For three proportional loading paths in the experiment, it is possible to transform the subsequent yield surfaces to the
equivalent tensile case according to the Eq. (74), the comparison results of two kinds of materials are shown in Fig. 19(a)
and (b), respectively.

The difference of the subsequent yield surfaces under three proportional loading paths can be attributed to the anisotropy
of materials, the different property of specimens, the deviation from the assumption that hydrostatic pressure does not influ-
ence the plastic deformation behavior for real materials, and the inevitable errors of experiments.

In the present model, the subsequent yield surfaces under three proportional loading paths coincide if they are trans-
formed to the equivalent tensile case, while those in the experiment do not coincide. Therefore, if the subsequent yield sur-
faces under tensile case agree well with experimental results, the differences under other proportional loading paths
between the prediction and experimental results are related to the differences between the transformed subsequent yield
surfaces and those obtained directly by tensile loading. For example, the size of subsequent yield surfaces under combined
tension–torsional loading in prediction results is larger than that in experiment, and it can be attributed to that the size of
the transformed subsequent yield surfaces of combined tension–torsional loading case is much smaller than those obtained
directly by tensile loading in experiment.



Fig. 18. Comparison of the subsequent yield surfaces after combined tension–torsional loading between the prediction of the model and experimental data.
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5.4. The subsequent yield surfaces of non-proportional loading

Using the same model parameters listed in Table 2, the subsequent yield surfaces of annealed 1100 Al under non-propor-
tional loading are predicted. The comparisons between predictions and experimental results are shown in Figs. 20–23. After
4% shear strain followed by tensile loading, the subsequent yield surfaces are shown at 2%, 8% and 16% tensile strains in
Fig. 20. After 10% shear strain followed by tensile loading, the subsequent yield surfaces are shown at 2% and 8% tensile
strains in Fig. 21. After 2% tensile strain followed by torsional loading, the subsequent yield surfaces are shown at 4%,
10% and 20% shear strains in Fig. 22. After 8% tensile strain followed by torsional loading, the subsequent yield surfaces
are shown at 4% and 10% shear strains in Fig. 23.

It can be seen from Figs. 20–23 that the subsequent yield surfaces after 4% and 10% shear strains followed by tensile load-
ing are smaller as compared to those obtained under tensile loading, and those after 2% and 8% tensile strains followed by
torsional loading are smaller than those obtained under torsional loading. The complex distortion of the yield surfaces is re-
lated to the activation and latent hardening of different slip components.

The subsequent yield surfaces show mixed cross effect with plastic deformation following loading path change. This can
be explained by the different evolution tendencies and different influences on subsequent yield surface of kinematic hard-
ening and isotropic hardening. As mentioned above, the kinematic hardening leads to negative cross effect, while the isotro-
pic hardening results in positive cross effect. When two kinds of hardening both exist, whether the subsequent yield surfaces
show positive or negative cross effect depends on the competition of two kinds of hardening. In the present model, the load-
ing path change involves the change of active slip components, i.e. after the loading path change, the active slip components
are different from those active in the previous loading stage. The shearing deformations of these newly active slip compo-
nents are zero when loading path begins to change. According to the self hardening rule of kinematic part which is related to



Fig. 19. Comparison of the subsequent yield surfaces under three proportional loading paths.

Fig. 20. Comparison of the subsequent yield surfaces of annealed 1100 Al after tensile strain and after 4% shear strain followed by tensile loading between
the prediction of the model and experimental data.
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Fig. 21. Comparison of the subsequent yield surfaces of annealed 1100 Al after tensile strain and after 10% shear strain followed by tensile loading between
the prediction of the model and experimental data.

Fig. 22. Comparison of the subsequent yield surfaces of annealed 1100 Al after shear strain and after 2% tensile strain followed by torsional loading between
the prediction of the model and experimental data.

Fig. 23. Comparison of the subsequent yield surfaces of annealed 1100 Al after shear strain and after 8% tensile strain followed by torsional loading between
the prediction of the model and experimental data.
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the shearing deformations on the slip components by Eq. (60), the kinematic hardening increases suddenly when loading
path changes. On the other hand, the isotropic hardening is related to the equivalent plastic strain by Eq. (58). When loading
path changes as the experiment, the equivalent plastic strain increases continuously, so the isotropic hardening decreases
continuously. Therefore, the kinematic hardening dominates the hardening rule at the beginning of the load path change,
which makes the size of subsequent yield surface decreases. As load increases, kinematic hardening decreases quickly as
the shearing deformations on the active slip components increase, while isotropic hardening decreases slower than kine-
matic hardening. Therefore, isotropic hardening exhibits its influences on the subsequent yield surfaces gradually. Once
the isotropic hardening dominates the cross effect, the size of subsequent yield surfaces increases gradually. Therefore,
the subsequent yield surfaces exhibit mixed cross effect in the case of non-proportional loading.

The agreement between predictions and experimental results on the subsequent yield surfaces under non-proportional
loading demonstrates that the present model has the ability to deal with non-proportional loading due to the state vari-
ables on slip components (the positive and negative critical resolved shear stresses, sðaÞþcr and sðaÞ�cr). They are naturally dif-
ferent according to their different orientations and are related to the resolved shear stress, latent hardening or Bauschinger
effect. Since the critical resolved shear stresses on all slip components determine the subsequent yield surface, the
applied stress would create anisotropy for the material in a natural manner. Moreover, the evolution of the state variables
records the loading history of material, which makes the proposed model have the potential to address the issue of complex
loading.

One reason that there are a few differences between the predictions and experimental results is that the yield is defined
by 10 le deviation from linearity in experiment, while the yield definition used in present paper is the absolutely propor-
tional limit.
Fig. 24. The variation of Young’s modulus of Al 6061-T6511 with finite plastic deformation.

Fig. 25. The variation of Young’s modulus of annealed 1100 Al with finite plastic deformation.
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5.5. The variation of elastic constants

In experiment, the values of Young’s and shear moduli within subsequent yield surfaces were also determined after each
prestrain. The comparisons of elastic modulus evolution of Al 6061-T6511 and annealed 1100 Al as a function of plastic
deformation between simulations and experimental results are given in Fig. 24 and 25, respectively. It can be seen that
the present model with damage defined on the spring-bundle component level has the ability to reflect the variation of elas-
tic constants or macroscopic damage.

6. Conclusions

The present work has led to the following conclusions:

(1) A material model assembling with spring-bundle components, a cubage component and slip components is estab-
lished, and corresponding elasto-plastic damage constitutive relation is derived under finite deformation. The iteration
process and the calibration procedure to realize the constitutive relation are given.

(2) The numerical simulations are performed under tension, torsion, and combined tension–torsion proportional loading
conditions for two kinds of aluminum alloys. Based on the Bauschinger effect and latent hardening of the slip compo-
nents, the subsequent yield surface can be described that the rear part deflates and the forward part inflates so that the
subsequent yield surface has a sharp front and a blunt rear. For low work hardening aluminum alloy Al 6061-T6511,
the size of subsequent yield surface decreases because of the combined effect of latent hardening and Bauschinger
effect. For high work hardening aluminum alloy annealed 1100 Al, the size of subsequent yield surface increases
because of isotropic hardening. Further, the difference between the prediction results and the experimental results
are investigated in terms of the equivalence of three proportional loading paths.

(3) The numerical simulations are performed under non-proportional loading conditions for annealed 1100 Al. The sub-
sequent yield surfaces after shear strains followed by tensile loading and those after tensile strains followed by tor-
sional loading show mixed cross effect because of the different evolution laws of kinematic hardening and isotropic
hardening when loading path change. The competition between kinematic hardening and isotropic hardening deter-
mines whether the subsequent yield surfaces show positive or negative cross effect. Kinematic hardening which is
related to the shearing deformation on active slip components increases suddenly when loading path change and
decreases quickly as load continues to increase, while isotropic hardening which is related to the equivalent plastic
deformation decreases continuously. Therefore, at the initial stage of loading path change, the kinematic hardening
dominates the hardening rule, and the subsequent yield surfaces show negative cross effect. As load increases, the iso-
tropic hardening exhibits its influences on subsequent yield surfaces gradually, and the subsequent yield surfaces
show positive cross effect.

(4) The state variables on slip components (positive and negative critical resolved shear stresses) which change according
to hardening or Bauschinger effect are different according to the different orientations of slip components, which
reflects the plasticity induced anisotropy. Moreover, the state variables are related to the applied stress and can reflect
the influence of the loading path. The prediction results under non-proportional loading conditions demonstrate that
the present model based on the state variables defined on the slip components has the ability to deal with the non-
proportional loading problem.

(5) As an elasto-plastic damage constitutive model, the present model can also reflect the variation of elastic constants
based on the damage defined on the spring-bundle components. Moreover, similar to the slip components, the state
variables on spring-bundle components (maximum and minimum deformations experienced by spring-bundle com-
ponents) are different according to the different orientations of spring-bundle components and related to the elastic
deformation, which reflects the damage induced anisotropy. Therefore, the model has the ability to address the issue
of non-proportional loading with emphasis on the description of anisotropy induced by damage as well as plastic
deformation.

(6) The proposed model incorporates the important feature of crystal plasticity, and the parameters in the present model
have their physical meaning. Moreover, the parameters are the same in all loading cases, i.e. it is not necessary to
recalibrate the model parameters under a different loading condition.
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