
Journal of Computational Physics 230 (2011) 3479–3499
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An immersed boundary method based on discrete stream function
formulation for two- and three-dimensional incompressible flows

Shizhao Wang, Xing Zhang ⇑
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
a r t i c l e i n f o

Article history:
Received 7 June 2010
Received in revised form 24 January 2011
Accepted 31 January 2011
Available online 24 February 2011

Keywords:
Immersed boundary method
Discrete stream function formulation
Incompressible flow
Navier–Stokes equations
Parallel computing
0021-9991/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.jcp.2011.01.045

⇑ Corresponding author. Tel.: +86 10 82543929; f
E-mail address: zhangx@lnm.imech.ac.cn (X. Zha
a b s t r a c t

An immersed boundary method is proposed in the framework of discrete stream function
formulation for incompressible flows. In order to impose the non-slip boundary condition,
the forcing term is determined implicitly by solving a linear system. The number of
unknowns of the linear system is the same as that of the Lagrangian points representing
the body surface. Thus the extra cost in force calculation is negligible if compared with that
in the basic flow solver. In order to handle three-dimensional flows at moderate Reynolds
numbers, a parallelized flow solver based on the present method is developed using the
domain decomposition strategy. To verify the accuracy of the immersed-boundary method
proposed in this work, flow problems of different complexity (decaying vortices, flows over
stationary and oscillating cylinders and a stationary sphere, and flow over low-aspect-ratio
flat-plate) are simulated and the results are in good agreement with the experimental or
computational data in previously published literatures.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The immersed boundary (IB) method is a numerical technique for solving flow problems by removing the mesh conform-
ability condition on the body surfaces [1,2]. This technique has gained popularity recently in the community of computa-
tional fluid dynamics due to the great simplification of mesh-generation procedure for complex geometries. Although the
IB method was originally aimed at biological flows (laminar and incompressible), now its area of application has expanded
to turbulent and supersonic flows.

The IB method was first introduced by Peskin [3] to simulate blood flow interacting with the heart and heart valves. In his
IB method, the elastic (fibre-like) boundary was replaced by Lagrangian points connected by springs. Using this technique,
the complicated Fluid Structure Interaction (FSI) problem with moving internal boundaries was reformulated as the problem
on a regular and stationary fluid domain with an external forcing term [4]. This method was latter extended to handle rigid
boundary by increasing the spring rigidity [5] or using a feedback control [6,7]. However, the above methods suffered from
very severe time-step restriction due to the stiffness of the system. To avoid this restriction, Mohd-Yusof [8] first proposed to
extract the forcing from the numerical solution itself and impose the velocity boundary condition directly. The method was
subsequently used by Fadlun et al. [9], Iaccarino and Verzicco [10], and others. This ‘direct forcing’ IB method can be further
categorized into two subtypes: (a) computing the force and imposing the boundary condition through a local velocity recon-
struction [8–17]; and (b) evaluating and distributing the force using the regularized delta function [18–21]. In the latter sub-
type, the usage of a regularized delta function can be regarded as an attribute inherited from the method of Peskin.
. All rights reserved.

ax: +86 10 82543977.
ng).

http://dx.doi.org/10.1016/j.jcp.2011.01.045
mailto:zhangx@lnm.imech.ac.cn
http://dx.doi.org/10.1016/j.jcp.2011.01.045
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

3480 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
Theoretically speaking, IB method can be incorporated into almost any existing numerical schemes for solving flow
problems. So far, most successful implementations are in combination with conventional approaches for solving the
Navier–Stokes equations, such as the finite difference or finite volume method which is of second-order-accurate in spacial
discretization. For the sake of simplicity and efficiency, regular Cartesian grid is usually used in the implementation of IB
methods. However, researches are also being in process towards the combination of IB method with other numerical meth-
ods, e.g. the finite element method [22], Lattice Boltzmann Methods (LBM) [23] and Smoothed Particle Hydrodynamics (SPH)
[24]. IB methods on more complicated grid systems can also been found in the literatures, such as the semi-structured grid
with local mesh refinement [25], curvilinear grid [26,27] and even unstructured grid [28,29]. There are also development
efforts in combining IB method with high order schemes, such as the spectral method [8] and compact scheme [30,31].

In IB methods for incompressible flows, most frequently used Navier–Stokes formulation is the primitive-variable type.
A segregated procedure is usually involved in solving the equations, such as the projection method or SIMPLE-like methods.
The stream function–vorticity formulation is seldom used in conjunction with the IB method. Calhoun [32] and Russell and
Wang [33] proposed the method that utilized the discontinuity conditions on the stream function and vorticity to impose the
non-slip boundary condition. However, these two Cartesian grid methods are conceptually akin to the immersed interface
method introduced by LeVeque and Li [34] rather than the immersed boundary method. More recently, Wang et al. [35]
presented a IB method based on the vorticity–velocity formulation. However, due to the limitation of the stream func-
tion–vorticity formulation itself, the methods above can only be applied to two-dimensional flows. Colonius and Taira
[36] proposed a method that combines the IB method with the discrete stream function (null space) approach to solve
the Navier–Stokes equation on irregular domains. It should be noted that although this formulation shares some similarities
with the stream function–vorticity one, it is valid in both two- and three-dimensional situations.

In this paper, we proposed an alternative implementation of IB method based on the discrete stream function approach.
In the method of [36], the standard projection method is reformulated to include the non-slip condition on the Lagrangian
points. The projection steps finally result in a Poisson-like equation for the force on these Lagrangian points and a ‘nested
iteration’ is required to solve it. Due to the fact that the size of the linear system to be solved in the inner iteration block is
equivalent to that of the original flow problem, the force computing becomes very time-consuming. We simplified this pro-
cedure by applying a forcing technique that is similar to that proposed by Su et al. [19]. It significantly reduces both the
algorithm complexity and the computational cost. In the present IB method, to determine the force, we only need to solve a
small linear system where the number of unknowns is the same as that of the Lagrangian points. Thus the extra compu-
tational cost is negligible if compared with that for solving the Navier–Stokes equations. Furthermore, we also explored the
utilization of locally refined meshes (with hanging nodes) and domain-decomposed parallel computing to reduce compu-
tational time. Some canonical cases are used to test the validity of the forcing strategy proposed in this paper. Numerical
results indicate that the method proposed in the paper is sufficiently accurate in imposing the non-slip boundary
condition.

The outline of the paper is as follows. The numerical methodology is presented in Section 2 where four subsections are
included. In the first subsection, the governing equations are given, followed by a brief introduction of the discrete stream
function approach. The third subsection describes the implementation of the IB method that is proposed in this work. The
fourth subsection briefly describes the parallel implementation of the present method. Some validation cases are presented
in Section 3 in the order of increasing complexity. These testing cases are: the decaying-vortex problem, flow over stationary
and oscillating cylinders, flow over a sphere and flow over a low-aspect-ratio flat-plate. Finally, the conclusions are drawn in
Section 4.
2. Numerical methodology

2.1. Governing equations

We consider the incompressible Navier–Stokes equations
@u
@t
þr � ðuuÞ ¼ �rpþ 1

Re
r2uþ f; ð1Þ

r � u ¼ 0; ð2Þ
where u is the velocity vector, p the pressure and Re the Reynolds number. f is the Eulerian body-force that is used to mimic
the effects of the immersed body on the flow. The Reynolds number is defined as Re = UL/m, where U, L and m are the reference
length, reference velocity and kinematic viscosity, respectively.

The immersed boundary is represented by Lagrangian points where the Lagrangian force is defined. The Eulerian and
Lagrangian forces are related to each other through a regularized delta function. The mathematical formulation is
fðx; tÞ ¼
Z

S
FðXðsÞ; tÞdðx� XðsÞÞds; ð3Þ
where x and X are the position vectors of the Eulerian and Lagrangian points; f and F are the Eulerian and Lagrangian forces,
respectively.

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3481
At the Lagrangian points, the non-slip boundary condition should be satisfied. Using the regularized delta function again,
this condition can be expressed as
Z

V
uðx; tÞdðx� XðsÞÞdx ¼ UbðXðsÞ; tÞ; ð4Þ
where Ub is the velocity of the Lagrangian point. In the case of prescribed motions, this velocity is specified as a given value;
while in more complicated FSI problems, it is computed by the dynamics of the body.

2.2. Discrete stream function approach

The discrete stream function approach proposed by Perot and coworkers [37–40] is a numerical method for solving
incompressible Navier–Stokes equations. This method is valid for both two- and three-dimensional flows and can be applied
to both structured and unstructured meshes. As that pointed out in [38], the divergence-free condition is satisfied to
machine precision in this method and there are no splitting errors associated with it. It outperforms the classic fractional
step methods in computational efficiency. Although it shares some similarities with the stream function–vorticity methods,
the discretization procedure and imposition of boundary conditions are quite different.

The discrete stream function approach uses a staggered mesh to discretize the Navier–Stokes equations. The discretized
form of Eqs. (1) and (2) can be expressed by a matrix form as
A G
D 0

� �
qnþ1

p

" #
¼

rn

0

� �
�

bc1

bc2

� �
þ

~f

0

" #
; ð5Þ
where q, p, and ~f are the discrete velocity flux, pressure, and body force, respectively. The discrete velocity u, can be related to
q by multiplying the cell face area. A, G and D are the implicit operator, gradient operator and divergence operator respec-
tively. A is a square matrix, but G and D are not. In addition, the negative transpose of the divergence operator is the gradient
operator, G = �DT. rn is the explicit right-hand side of the momentum equation. bc1 and bc2 are the boundary condition vec-
tors for the momentum and continuity equations.

In the discrete stream function approach, a discrete stream-function s is defined, such that
q ¼ Cs; ð6Þ
where C is the curl operator (which is a non-square matrix). This matrix is constructed in such a way that D and C enjoy the
following relation
DC ¼ 0: ð7Þ
The definition in Eq. (6) together with the relation in Eq. (7) guarantee the discrete incompressibility. In the discrete
stream function approach, another type of curl operator, the rotational operator R, is also defined such that matrix R and
matrix C enjoy the following relation
R ¼ CT : ð8Þ
By pre-multiplying the momentum equation with R, the pressure can be eliminated from the system. This can be easily
seen in the identity equation
RG ¼ �CT DT ¼ �ðDCÞT ¼ 0: ð9Þ
Thus the system of (5) is reduced to a single equation for s at each time step
CT ACsnþ1 ¼ Rðrn � bc1Þ þ R~f ¼ Rr0n þ R~f : ð10Þ
All of the matrices aforementioned (and those in the next subsection) are sparse. They are never explicitly formed but just
programmed as operators that perform vector–matrix multiplications. The representations of these operators are given in
Appendix A. As to the time advancement, the diffusion term is implicit, the convection term is treated explicitly and a
three-step, second-order, low storage, Runge–Kutta scheme is used [40]. The formulation of this scheme is given in Appendix
B. We note that no time step superscript is assigned to the forcing term in (10), the update of ~f will be discussed in the next
section.

The matrix CTAC is symmetric, positive-definite and thus can be solved using the Conjugate Gradient (CG) method. A brief
introduction of this iterative method, including the pre-conditioner and convergence criterion, is given in Appendix C. After
solving (10), the velocity components can be recovered through (6). Although pressure is eliminated in this approach, if it is
required, it can still be obtained through a postprocessing step which is independent of the solution procedure for the
velocity field.

3482 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
2.3. Immersed boundary method in framework of discrete stream function formulation

In the work by Colonius and Taira [36], Eq. (10) and the constraint on velocities (non-slip boundary condition) are refor-
mulated into the form of a Karush–Kahn–Tucker (KKT) system; where ~f appears as a set of Lagrangian multiplier. The LU
decomposition (as that in standard fractional step method) is then used to derive an equation for ~f . This equation is of Pois-
son-type where (CTAC)�1 appears in the modified Laplacian operator and a ‘nested iteration’ is needed in order to solve it.

In this paper, we propose to employ a forcing strategy that is simple and straightforward. The implementation of this
strategy is also very easy. Within one step of time advancing (from time index n to n + 1), this procedure can be summarized
as follows:

(a) A ‘predicted’ stream function is computed with the force components of time step n,
RACs� ¼ R~r0n þ R~f n: ð11Þ
Here the convection term is treated explicitly and the diffusion is solved implicitly using trapezoidal method. Note that at
this stage, this equation is solved only once and no Runge–Kutta sub-steps are performed for the time advancement.

(b) The discrete velocity vectors are reconstructed using the ‘predicted’ stream function aforementioned,
~u� ¼ PCs�: ð12Þ
Here P is an interpolating operator that is used to construct the velocity vectors at cell centers from its components (scalars)
on the face centers.

(c) A force correction is applied to the velocity such that the desired velocity on the boundary is achieved,
~unþ1 �~u�
Dt

¼~f 0: ð13Þ
(d) The forcing term is updated using the correction,
~f nþ1 ¼ ~f n þ Q~f 0: ð14Þ
Here Q is the an interpolating operator which is used to obtain the scalars at the faces from vectors at cell centers. By con-
struction, P and Q enjoy the relation Q = PT. The representations of P and Q are given in Appendix A.

(e) The stream function at time step n + 1 is computed with the updated forcing term,
RACsnþ1 ¼ R~r0n þ R~f nþ1: ð15Þ
Here a three-step, second-order, low storage Runge–Kutta scheme is used for the time advancement. Within each sub-step of
the Runge–Kutta scheme, the diffusion term is solved implicitly using trapezoidal method and the convection is treated
explicitly. Note that the forcing term ~f is fixed in the three sub-steps of the Runge–Kutta scheme.

The procedure of (a)–(e) is repeated until the terminating time is reached.
The crux of this algorithm is to evaluate the force correction vector in Eq. (13) so as to satisfy the constraints on velocities

at the Lagrangian points. In this paper, we follow a similar procedure as that in [19] to determine the force correction.
First, both sides of Eq. (13) are interpolated to the Lagrangian point by using a regularized Delta function dh,
X
x

~f 0ðxÞdhðx� XkÞh3 ¼
~Unþ1ðXkÞ � ~U�ðXkÞ

Dt
; ð16Þ
where ~Unþ1 and ~U� are the desired velocity and predicted velocity at the Lagrangian points respectively. h is the size of the
Eulerian grid. ~U� is evaluated by
~U�ðXkÞ ¼
X

x

~u�ðxÞdhðx� XkÞh3
: ð17Þ
Now we define a force correction vector ~F 0 on the Lagrangian points. It is related to~f 0 by
~f 0ðxÞ ¼
XM

j¼1

~F 0ðXjÞdhðx� XjÞDs; ð18Þ
where Ds is the surface area associated with each Lagrangian point. For all cases in this study, Ds is approximately equivalent
to h2. By substituting Eq. (18) into Eq. (16), the equation for ~F 0 can be then derived and written in the following form
XM

j¼1

X
x

dhðx� XjÞdhðx� XkÞDsh3

 !
~F 0ðXjÞ ¼

~Unþ1ðXkÞ � ~U�ðXkÞ
Dt

: ð19Þ
From Eq. (19), it is seen that to determine the forces, we only need to solve a small linear system in which the number of
unknowns is the same as the number of the Lagrangian points. Thus its computational cost is negligible when comparing

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3483
with that in solving the Navier–Stokes equations. After obtaining the force vector at the Lagrangian points,~f 0 is then com-
puted by spreading it to the surrounding Eulerian points using Eq. (18).

The regularized Delta function used in the present study is defined as:
dhðx� XÞ ¼ 1

h3 /
x� X

h

� �
/

y� Y
h

� �
/

z� Z
h

� �
: ð20Þ
Here / is in the form of a piecewise function that is proposed in [1].
/ðrÞ ¼

1
8 3� 2jrj þ

ffi
1þ 4jrj � 4r2

p� �
; jrj 6 1;

1
8 5� 2jrj �

ffi
�7þ 12jrj � 4r2

p� �
; 1 6 jrj 6 2;

0; 2 6 jrj:

8>>><
>>>:

ð21Þ
2.4. Implicit forcing vs. explicit forcing in immersed boundary methods

In variants of immersed boundary method that make use of the delta-function to handle rigid boundaries, the forcing
strategy can be categorized into two types: ‘implicit’ and ‘explicit’, based on whether a linear system needs to solved to
determine the force. The explicit forcing is very straightforward and less time-consuming; while the implicit forcing can en-
hance the accuracy in imposing the no-slip boundary condition. Discussion on this issue in more detail and more depth is
presented in this subsection.

Firstly, we can show that an explicit forcing (such as that proposed in [18]) fails to accurately impose the no-slip bound-
ary condition at time level n + 1. A brief exposition of this is given as follows. Suppose we compute the Lagrangian force
‘explicitly’ by (instead of using Eq. (19))
~F 00ðXkÞ
Ds

¼
~Unþ1ðXkÞ � ~U�ðXkÞ

Dt
: ð22Þ
Similar to Eq. (18), the Eulerian force can be obtained through the following formula
~f 00ðxÞ ¼
XM

j¼1

~F 00ðXjÞdhðx� XjÞDs: ð23Þ
This is then followed by a correction step on velocity at Eulerian points
~u�� �~u�
Dt

¼~f 00: ð24Þ
By interpolating both sides of Eq. (24) to the Lagrangian points, we can get
~U��ðXkÞ � ~U�ðXkÞ
Dt

¼
X

x

~f 00dhðx� XkÞh3 ¼
X

x

XM

j¼1

~F 00ðXjÞdhðx� XjÞDs

 !
dhðx� XkÞh3

¼
XM

j¼1

~F 00ðXjÞ
Ds

X
x

dhðx� XjÞdhðx� XkÞDs2h3

 !
–
~F 00ðXkÞ

Ds
: ð25Þ
Comparing Eq. (25) with Eq. (22), it is easily seen that
~U��ðXkÞ– ~Unþ1ðXkÞ: ð26Þ
Secondly, the non-slip condition can be rigorously imposed at time level n + 1 only if the entire discretizing procedure for
solving the NS equation is taken into consideration in formulating the equation for Lagrangian forces. Examples of such type
of forcing can be found in [20] (in the framework of projection method), [36] (in the framework of discrete stream-function
approach) and [41] (in the framework of immersed interface method). In this sense, this type of forcing strategy can be
termed as ‘fully’ implicit. However, it suffers from the drawbacks of high complexity in implementation and high cost in
computation.

Thirdly, as a compromise between accuracy and cost, a ‘partially’ implicit forcing (such as Eq. (19)) cannot guarantee the
satisfaction of non-slip condition at time level n + 1 either. Taking the method of Su et al. [19] as an example, the inaccuracy
in the boundary condition is incurred by the following two factors: (1) the implicit treatment of the diffusive term in the
momentum equation and (2) the pressure correction step in the projection method. In the method proposed in this paper,
the sources of inaccuracy are attributed to: (1) the implicit nature of the equation for stream-function and (2) the multi-step
time advancement (i.e. the 3-step Runge–Kutta scheme). It should be noted that due to the elimination of pressure, no veloc-
ity correction step is needed in the present method.

Finally, for the explicit or ‘partially’ implicit forcing, the inaccuracy in boundary condition can be rectified through an iter-
ative procedure. Recently, this idea was implemented in [42] as an improved version of the IB method of Uhlmann [18]. Here

3484 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
a similar solution is proposed in the framework of the present scheme. In between steps (c) and (e) in Subsection 2.3, extra
‘force for correction’ can be added iteratively until the desired accuracy of boundary condition is achieved. In this ‘inner’ iter-
ation, the only modification to the original scheme is that the ‘predicted’ velocity ~u� in Eq. (13) is now replaced by a ‘tenta-
tive’ velocity at time level n + 1. It is seen that this iterative scheme is computationally quite expensive. Within a single
iteration, Eq. (15) for the stream function is solved thrice; the linear system for the Lagrangian forces equation (19) has
to be solved once; furthermore, both the velocity interpolation (Eq. (17)) and force spreading (Eq. (18)) have to be performed
once. In Section 3.2.2, the iterative scheme will be further investigated using a real simulation – laminar flow over a station-
ary cylinder. The boundary condition errors associated with the forcing strategy will be quantified. The necessity and effec-
tiveness of the proposed iterative scheme are also discussed.
2.5. Local mesh refinement and hanging nodes

Despite the fact that the use of Cartesian grid in conjunction with immersed boundary method has many attractive fea-
tures, the limitation of this combination is also evident. Either uniform or stretched grid can results in a waste of mesh points
in the far-field where coarse resolution is sufficient. To reduce the total mesh number while keeping a fine resolution near
the immersed boundary, a locally-refined mesh is highly desirable in immersed boundary solvers. One notable feature of the
locally-refined mesh is the presence of cells with hanging nodes. The locally-refined mesh can be handled using a hierarchi-
cal tree structure or a fully unstructured approach. It is obvious that a code implemented on a structured mesh (with tree
structure) executes faster and requires less memory than that on an unstructured mesh [43]. In the present work, the
unstructured approach is adopted for the following reasons: (1) cells with hanging nodes are inherently supported (without
any special treatment) on an unstructured mesh in the framework of the discrete stream function approach; (2) it easily
allows an anisotropic mesh refinement; and (3) a load-balanced mesh partitioning for parallel computing is easily
achievable.

In the present method, the cells around hanging nodes as treated as polygons (2D) or polyhedrons (3D). Fig. 1 shows one
example of irregular dual cells near a hanging node in a 2D locally-refined mesh. Although the degradation of accuracy is
found locally at the hanging nodes, since the number of hanging nodes is very small, the overall accuracy is not affected.
Furthermore, in practical simulations, the cells with handling nodes are usually located at places that are far away from
the regions that we are interested in (e.g. boundary layer or near wake), thus their influence on the final results is quite lim-
ited. The effectiveness of the locally-refined mesh in reducing the total mesh points can be clearly manifested in the simu-
lation of flow over a sphere (see Section 3.4.1). In one simulation of Re = 300, keeping the same resolution near the sphere,
the use of a locally-refined mesh (with hanging nodes) reduces the number of mesh points from nearly 9 million to only
1.2 million.
2.6. Parallel implementation

When dealing with three-dimensional flows in complex geometries, even in the laminar regime where the Reynolds
number is in the range of 102 � 103, meshes with several million nodes are often required. When the turnover time of
the simulation is worthy of concern, feasible computations are still severely limited by current computing power. Thus par-
allel processing is now an indispensable part in the development of an efficient flow solver. In this work, the code is parall-
elized using domain decomposition methodology and ported to a computer cluster with distributed-memory architecture. A
well-known graph partitioning software, METIS [44], is used to partition the grid in the preprocessing stage. Message Passing
Interface (MPI) library routines are used for data communication in a master–slave algorithm that is designed for the code
parallelization. The slave processes solve the flow field within the partition. The flow variables at the partition boundaries are
exchanged among the neighboring partitions at each time step. The master process performs the input–output, time step
control and computation of Lagrangian forces. The technical details regarding the parallel implementation of the present
Fig. 1. Example of a 2D locally-refined mesh with hanging-nodes. (a) Mesh used in the simulation of flow over a cylinder. (b) Irregular dual cells near a
hanging node. Symbols: open circle – regular node; black square – hanging node; black circle – node on the interface between two different mesh
resolutions.

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3485
method, such as the data layout for MPI communication, overlapping of communication and computation, ‘gathering-
and-scattering’ strategy for computing Lagrangian forces, and parallel performance, will be summarized and published in
a separate paper.
3. Validations

In this section, the validations are arranged in the increasing order of complexity. We first test the order of accuracy of the
proposed scheme using the problem of decaying vortices (with an ‘artificially’ created interior boundary). To validate the
method in handling two-dimensional geometries, we then test the solver by simulating laminar flows over a stationary
and oscillating cylinder. Finally, the capability of solver in dealing with three-dimensional geometries are tested using
laminar flows over a sphere and a low-aspect-ratio flat-plate.

3.1. Decaying vortices: test on the order of accuracy

The exact solution of the decaying vortices problem is given by
Fig. 2.
immers
u ¼ � cosðpxÞ sinðpyÞe�2p2 t
Re

v ¼ sinðpxÞ cosðpyÞe�2p2 t
Re

p ¼ �1
4
ðcosð2pxÞ þ cosð2pyÞÞe�4p2 t

Re

s ¼ 1
p

cosðpxÞ cosðpyÞe�2p2 t
Re :

ð27Þ
This problem is solved numerically on a computational domain (jxj 6 1.5, jyj 6 1.5). The immersed boundaries are denoted
by the thick lines shown in Fig. 2. These lines are produced by rotating a square (jxj = 1; jyj = 1) 22.5� anticlockwise. The
immersed boundaries are then represented by equally spaced Lagrangian points and the desired velocities on these points
are set to the exact solutions. The initial velocity condition at t = 0 and the velocities at the boundaries of the computa-
tional domain (jxj = 1.5; jyj = 1.5) in time are provided from the exact solution, although only the solution inside the ro-
tated square is of concern. The computations are performed on six uniform quadrilateral meshes with different number
of partitions on each side of the computational domain, i.e. 24, 48, 96, 192, 384, and 768. The number of Lagrangian points
is adjusted accordingly to ensure that the inter-distance equals the mesh size. In all the computations with different mesh
size, the maximum CFL number at t = 0 is kept the same as 0.24 by varying the time steps. For all the computations, the
Reynolds number Re in Eq. (27) is set to 100. Fig. 3 shows the maximum and L2-norm of error in u (inside the immersed
boundary) at t = 6.0 as a function of mesh size h. As shown in this figure, the second-order spacial accuracy of the present
method is verified.
X

Y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Computational domain and immersed boundaries for the problem of decaying vortices. The computational domain is (jxj 6 1.5, jyj 6 1.5). The
ed boundaries denoted by the thick lines are produced by rotating a square (jxj = 1; jyj = 1) 22.5� anticlockwise.

h

Er
ro
ri
n
u

10-3 10-2 10-1
10-5

10-4

10-3

10-2

10-1

100

maximum
L2-norm
slope 2

Fig. 3. The maximum and L2-norm error in u at t = 6.0. Only the errors inside the immersed boundaries are calculated.

3486 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
3.2. Flow over a stationary cylinder

In this section, two-dimensional laminar flows over a stationary cylinder are simulated using the proposed immersed
boundary method. Three cases with different Reynolds numbers (based on the free-stream velocity U and diameter D),
40, 100 and 200 are studied.

The simulations are performed in a rectangular domain of 60D � 40D. In the case of Re = 40, the grid size in the vicinity of
the cylinder (a region of 2D � 2D) is 0.033D. For the case of Re = 100 and 200, the grid size in the vicinity of the cylinder
(a region of 1.5D � 1.5D) is 0.02D. In all three cases, the grids are stretched to the boundaries with an expansion factor of
1.05 and the maximum grid size is 0.5D. The Lagrangian points are evenly distributed along the circumference of the circular
cylinder such that the inter-distance equals the local size of the Eulerian grid approximately.

Uniform free-stream velocity is prescribed at the inlet and the fixed pressure condition is applied at the outlet. On the top
and bottom boundaries, slip-wall condition is used. The specification of boundary condition is not very straightforward due
to use of s as the primary unknown. For the technical details regarding these boundary conditions in the discrete stream
function approach, please refer to the paper by Wang et al. [38]. The non-slip boundary condition on the surface of the cyl-
inder is realized using the immersed boundary method proposed in Section 2.3. The boundary conditions aforementioned
are also used in the case of flow over oscillating cylinders in uniform flow (Section 3.3.2) and flow over three-dimensional
objects (Section 3.4).

The drag and lift coefficients are computed by
CD ¼ �
XM

j¼1

FxðXjÞDs

 !
1
2
qU2D

� �	
; ð28Þ

CL ¼ �
XM

j¼1

FyðXjÞDs

 !
1
2
qU2D

� �	
; ð29Þ
where Fx and Fy are the Lagrangian forces in the horizontal and vertical direction respectively; U is the free-stream velocity
and q the density of the fluid.

3.2.1. Flow field and hydrodynamic forces
At Re = 40, the flow is steady and a recirculation zone has developed behind the cylinder. The streamlines are shown in

Fig. 4. The recirculation zone is characterized by the stream-wise length l, distance from the back of the cylinder to the vortex
center a, vertical distance between two vortex centers b, and separation angle h, as defined in Fig. 4. The results of the present
computation and the data from the literatures are listed in Table 1. The characteristic dimensions and drag coefficients com-
puted in the present work are in excellent agreement with the experimental and computational results previously reported
in the literatures.

At Re = 100 and 200, the flow is characterized by alternating vortex shedding from the upper and lower side of the cyl-
inder. The instantaneous vorticity contours at Re = 100 and 200 are shown in Fig. 5. The time history of the drag and lift coef-
ficients for Re = 100 and 200 is shown in Fig. 6. The comparisons of the present results (drag and lift coefficients and Strouhal
number) with those from the literatures are summarized in Table 2. For both cases, the numerical results from the present
simulations are in good agreement with those from the literatures.

θ

a

l

b

Fig. 4. Streamlines for flow around a cylinder at Re = 40. l is the length of the recirculation zone: (a) the stream-wise distance from the cylinder back to the
center of one vortex; (b) the gap between the centers of two vortices; h the separation angle.

Table 1
Drag coefficient and characteristic dimensions of the recirculation zone for flow past a cylinder at Re = 40.

Case l/D a/D b/D h (�) CD

Present 2.36 0.72 0.6 53.8 1.54
Coutanceau and Bouard [45] 2.13 0.76 0.59 53.8 –
Dennis and Chang [46] 2.35 – – 53.8 1.52
Linnick and Fasel [47] 2.28 0.72 0.6 53.6 1.54
Taira and Colonius [20] 2.33 0.72 0.6 53.7 1.54

Fig. 5. Instantaneous vorticity contours for flow around a cylinder at (a) Re = 100 and (b) Re = 200.

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3487
3.2.2. Inaccuracy in non-slip boundary condition
According to the discussions in Section 2.4, the forcing strategy proposed in Section 2.3 can lead to inaccurate boundary

condition at time level n + 1. In this subsection, the errors at the boundary are quantified in the real simulations of flow over
a stationary cylinder. We choose the unsteady case of Re = 100 to study the deviation of velocity from the value of zero on the
Lagrangian points. Through numerical experiments, it is found that the occurrence of the largest deviation coincides with the

3488 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
phase of zero lift in a vortex-shedding period. Thus the L2-norm velocity errors at the Lagrangian points are computed at this
phase for all testing cases.

First, we perform a test on the variation of errors with the grid sizes. Four different grid sizes ranging from 0.005 to 0.04
are employed in the test. The time step for each case is chosen such that the nominal CFL number is fixed to 0.25
(i.e. Dt = 0.25h/U1). From the results shown in Fig. 7, the convergence slope of one is clearly seen.
t

C
D
,C

L

150 160 170 180 190 200-0.5

0

0.5

1

1.5

CD
CL

a)
t

C D
,C

L
150 160 170 180 190 200-1

-0.5

0

0.5

1

1.5

CD
CL

b)

Fig. 6. Time history of CD and CL for flow around a cylinder at (a) Re = 100 and (b) Re = 200.

Table 2
Drag, lift coefficients and Strouhal numbers for flow past a cylinder at Re = 100 and Re = 200.

Case Re CD CL St

Present 100 1.33 ±0.32 0.166
Liu et al. [48] 100 1.35 ±0.32 0.164
Park et al. [49] 100 1.33 ±0.33 0.165
Uhlmann [18] 100 1.45 ±0.34 0.169
Present 200 1.32 ±0.69 0.198
Linnick and Fasel [47] 200 1.34 ±0.69 0.197
Liu et al. [48] 200 1.31 ±0.69 0.192
Taira and Colonius [20] 200 1.35 ±0.68 0.196

h

L2
-n
or
m
er
ro
r

0.01 0.02 0.03 0.04 0.0510-6

10-5

10-4

error in UBC
error in VBC
slope 1

Fig. 7. L2-norm velocity errors at the Lagrangian points on different grid sizes.

number of iteration

L2
-n
or
m
er
ro
r

20 40 60 80 100
0

1E-05

2E-05

3E-05

4E-05

5E-05

error in UBC
error in VBC

Fig. 8. L2-norm velocity error at the Lagrangian points as a function of iteration numbers.

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3489
Next, we implement the iterative scheme proposed in Section 2.4 in the case of h = 0.02 (this is the mesh resolution we
use to compute the drag and lift in the previous subsection). Fig. 8 shows the L2-norm velocity error at the Lagrangian points
as a function of iteration numbers. It is seen that the error can be reduced by one order after 50 iterations. All tests indicate
that the influences of this rectification measure on the shedding frequency, lift and drag are negligible. On this mesh reso-
lution, the error in the non-slip boundary condition is already sufficiently small (of the order of 10�5) without the iterations.
Although the iterative scheme is helpful in reducing the error associated with the boundary condition, it is not recommended
due to its high cost.

3.3. Flow over oscillating cylinder

In this subsection, we simulate the flows with in-line and cross-wise oscillating cylinders. They represent two typical
cases when the directions of the moving boundary and that of the overall flow are parallel or perpendicular to each other.
These two cases are aimed at testing the solver’s capability in handling two-dimensional moving boundaries.

3.3.1. In-line oscillating cylinder in fluid at rest
The motion of the in-line oscillating cylinder is prescribed as
xðtÞ ¼ �A sinð2pftÞ; ð30Þ
where A and f are the amplitude and frequency of the oscillation respectively. Using the maximum oscillating velocity
jUjmax = 2pAf and the diameter of the cylinder D as the reference variables, the dimensionless form of Eq. (30) can be written
as
�xð�tÞ ¼ �A sinð�t=AÞ; ð31Þ
where the barred quantities denote dimensionless variables.
The computational domain for this test is 20D � 20D, with the minimum mesh size of 0.025D in the vicinity of the

cylinder (a region of 4D � 8D). The number of Lagrangian points representing the immersed cylinder is 110. In the present
simulation, the Reynolds number based on the maximum oscillating velocity and the diameter of the cylinder, Re = (UmaxD)/
m, is 100. The Keulegan–Carpenter number, based on the maximum oscillating velocity and oscillating frequency, KC = Umax/
(fD), is 5.0. The dimensionless amplitude corresponding to these two parameters is A ¼ 5=ð2pÞ. A time step is chosen such
that the maximum CFL number is 0.5. The non-slip boundary condition is applied to all the side-walls (where the velocity is
zero) and also the surface of the cylinder (where the velocity is prescribed by taking the time derivative of Eq. (31)).

Fig. 9 shows the vorticity contours at four different phases, �t=A ¼ 0; 1
2 p; p, and 3

2 p, respectively. A periodic vortex shed-
ding is clearly seen in these pictures. (Note that the flow field inside the cylinder computed by the present IB method is not
shown for clarity.) At this Reynolds number and KC number, the flow pattern that is observed in the simulation is very
similar to that in the experimental study of Dutsch et al. [50] and that in the numerical study of Yang and Balaras [14].
Fig. 10 shows the computed profiles of stream-wise and cross-wise velocity components at four different x locations
(x = �0.6D, 0D, 0.6D and 1.2D) and three different phases (�t=A ¼ p; 7

6 p, and 11
6 p). The result of the present simulation agrees

well with the experimental data in [50].

Fig. 9. Instantaneous vorticity contours for an in-line oscillating cylinder in fluid at four different phases: (a) 0; (b) 1
2 p; (c) p; and (d) 3

2 p.

3490 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
3.3.2. Cross-wise oscillating cylinder in uniform flow
The motion of the cross-wise oscillating cylinder is prescribed as
�yð�tÞ ¼ �Asinð2p�f�tÞ: ð32Þ
Here �f is the dimensionless frequency defined as �f ¼ St ¼ ðfDÞ=U, where D is the diameter of the cylinder and U the velocity
of the uniform flow. A is the oscillating amplitude non-dimensionalized by D.

The computational domain is 30D � 20D. The distance between the center of the cylinder and the inlet is 10D. The mesh
size is 0.025D in the vicinity of the cylinder (a region of 4D � 8D). The number of the Lagrangian points representing the
immersed cylinder is 110. In the present simulation, the Reynolds number based on the free stream velocity and the diam-
eter of the cylinder, Re = (UD)/m, is 200. The dimensionless oscillating amplitude is A ¼ 0:15. The selected oscillating St num-
ber is 0.198, which is very close to the St number of vortex shedding from a stationary cylinder at Re = 200. A time step is
chosen such that the maximum CFL number is 0.5.

Fig. 11 shows the instantaneous vorticity contours after the periodicity of the flow is fully established. The von Karman
vortex street can be clearly seen in this figure. (Notice that the flow field inside the cylinder computed by the present IB
method is not shown for clarity.) The root mean square (rms) velocity magnitude fluctuation is chosen as the representative
quantity of the flow field. This quantity is recorded and compared with the experimental results of Griffin [51]. Fig. 12 shows
the rms velocity magnitude fluctuation profiles at two different stream-wise locations. Fig. 13 shows the maximum rms
velocity–magnitude fluctuation as a function of stream-wise location x. Fig. 14 shows the rms velocity–magnitude fluctua-
tion at the wake axis (y = 0). From these comparisons, it is seen that good agreement has been achieved. Thus the capability
of the present method in capturing the unsteady flow features in moving boundary problem is further demonstrated.

u

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-0.8

-0.4

0

0.4

0.8

1.2

a)
v

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-0.8

-0.4

0

0.4

0.8

1.2

b)

u

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-0.8

-0.4

0

0.4

0.8

1.2

c)
v

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-0.8

-0.4

0

0.4

0.8

1.2

d)

u

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-0.8

-0.4

0

0.4

0.8

1.2

e)
v

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-0.8

-0.4

0

0.4

0.8

1.2

f)

Fig. 10. Computed profiles of u and v respectively at four different x locations and three different phases: (a) and (b) p; (c) and (d) 7
6 p; (e) and (f) 11

6 p. Lines
denote the present results and symbols are the experimental data of Dutsch et al. [50] at: x = �0.6D (red square and red solid line); x = 0D (green delta and
green dashed line); x = 0.6D (blue diamond and blue dash-dot line); and x = 1.2D (purple circle and purple dash-dot-dot line).

Fig. 11. Instantaneous vorticity contours for flow around a cross-wise oscillating cylinder.

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3491

3492 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
3.4. Three-dimensional flows with immersed bodies

In this subsection, two simulations are performed to test the proposed method in dealing with three-dimensional geom-
etries. Flow over a sphere at low Reynolds numbers is a canonical test. By simulating flow over a low-aspect-ratio flat-plate,
we further validate the capability of the method in modeling infinitely thin boundaries.
3.4.1. Flow over a sphere
The simulations of flow over a sphere are performed at Re = 100 and 300, where the Reynolds number is based on the free

stream velocity U and the diameter of the sphere D. The computation is performed in the domain of 30D � 30D � 30D. For
the case of Re = 100, a mesh with uniform size of 0.025D is deployed in the vicinity of the sphere (a region of 1.5D �
1.5D � 1.5D). For the case of Re = 300, a mesh with uniform size of 0.0125D is deployed in the vicinity of the sphere (a region
of 1.25D � 1.25D � 1.25D). In both cases, the meshes are stretched to the boundaries and the total number of unknowns is
uRMS

y

0 0.1 0.2 0.3 0.40

0.5

1

1.5

2

Experimental, Griffin
present

a)
uRMS

y

0 0.1 0.2 0.3 0.40

0.5

1

1.5

2

Experimental, Griffin
present

b)

Fig. 12. Computed rms velocity–magnitude fluctuation profiles, with the experimental results of Griffin [51] at two different stream-wise locations:
(a) x = 2.5 and (b) x = 5.4.

x

u R
M
S_
m
ax

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

Experimental, Griffin
present

Fig. 13. Maximum rms velocity–magnitude fluctuation vs. stream-wise location x, with the experimental result of Griffin [51].

x

u R
M
S

0 1 2 3 4 5 6 7 8 9
0.05

0.1

0.15

0.2

0.25

Experimental, Griffin
present

Fig. 14. Computed rms velocity–magnitude fluctuation at y = 0 vs. stream-wise location x, with the experimental result of Griffin [51].

Table 3
Drag coefficient for flow past a sphere at Re = 100.

Case CD

Present 1.13
Johnson and Patel [53] 1.10
Fadlun et al. [9] 1.08

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3493
approximately 1 million for the case of Re = 100 and around 1.2 million for the Re = 300 case. The spherical surface is repre-
sented by 4063 and 16,129 Lagrangian points in the two cases respectively. To achieve an almost even distribution of the
Lagrangian points on the surface, the method suggested in [18] is used. A uniform velocity is prescribed at the inlet; the fixed
pressure condition is applied at the outlet. Due to the large number of grid points required in this case, the simulations are
performed on a computer cluster with distributed memory and 128 CPUs are used. The averaged wall-clock time for one step
of integration is approximately 3.0 s for the Re = 100 case and 4.2 s for the Re = 300 case.

The coefficients of drag, lift and side forces are defined as
CD ¼ �
XM

j¼1

FxðXjÞDs

 !,
ð0:5qU2pD2=4Þ; ð33Þ

CL ¼ �
XM

j¼1

FyðXjÞDs

 !,
ð0:5qU2pD2=4Þ; ð34Þ

CS ¼ �
XM

j¼1

FzðXjÞDs

 !,
ð0:5qU2pD2=4Þ: ð35Þ
where Fx, Fy and Fz are the Lagrangian forces in the stream-wise, cross-wise and span-wise direction, respectively.
At Re = 100, the flow is steady and axisymmetric with a separation bubble behind the sphere. The drag coefficient of the

present calculation is compared with the data from the literatures in Table 3. It is found that a fairly good agreement has
been achieved. At Re = 300, the flow exhibits unsteady characteristics such as vortex shedding and oscillation in the drag
and lift coefficients. A snapshot of vortical structure is shown in Fig. 15, where the vortical surfaces are identified using
the method by Jeong and Hussain [52]. This structure of shedding vortices is nearly the same as that in [53]. The averaged
drag and lift coefficients are shown in Table 4. It is seen that the present results agree well with those from the literatures.
3.4.2. Flow over a low-aspect-ratio flat-plate
In this subsection, we performed simulations of three-dimensional flow over a low-aspect-ratio flat-plate. We compared

our results with the numerical and experimental ones from a recent paper by Taira and Colonius [54]. It is noted that the

Fig. 15. Instantaneous vortical structure for flow past a sphere at Re = 300.

Table 4
Drag, lift coefficients and Strouhal numbers for flow past a sphere at Re = 300.

Case CD CL St

Present 0.68 0.071 0.135
Johnson and Patel [53] 0.66 0.069 0.137
Kim et al. [11] 0.66 0.067 0.134

α

C
D
,C

L

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

CD, Prsent
CL, Prsent
CD, Experimental, Taira and Colonius
CD, Numerical, Taira and Colonius
CL, Experimental, Taira and Colonius
CL, Numerical, Taira and Colonius

Fig. 16. Variations of lift and drag coefficients with angle of attack a for flow around a flat-plate of AR = 2 and Re = 100.

3494 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
immersed boundary method in the framework of projection method developed in Taira and Colonius [20] was employed in
their study.

Our first validation is the steady solution at Re = 100 (based on the chord length c). In [54], an experiment was performed
in an oil tow-tank (2.4 m � 1.2 m � 1 m). The dimensions of the rectangular plate are 82 mm � 164 mm � 3 mm (AR = 2
with a thickness of 0.037c). In both the present simulation and that in [54], the flat-plate is modeled as an object of zero
thickness (2D surface). In the present study, the computational domain is a box of dimensions 10.1c � 10c � 10c (which
is the same as that in [54]). A locally-refined mesh with the grid number of 150 � 66 � 96 is used in this study. This mesh
is generated is such a way that its resolution (h = 0.025c) near the rectangular surface is comparable with that of the
stretched Cartesian grid in [54]. The spacing of the Lagrangian points distributed on the surface is the same as the local mesh
size in the simulation.

The lift and drag coefficients are computed using Eqs. (33) and (34). We compare the lift and drag coefficients at t = 13
(after the steady state is reached) with the data in [54]. Fig. 16 shows the comparison of lift and drag coefficients for the angle

Fig. 17. A snapshot of wake vortex structure behind a flat-plate of AR = 4 at Re = 300 and a = 30�. Shown is the iso-surface of Q = 2.0.

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3495
of attack a 2 [0�,90�]. The results of the present study are in excellent agreement with the numerical one from [54]. By com-
paring with the experimental data, it is also found that in both simulations the predictions of lift and drag forces are reason-
ably good over the full range of a. The slightly larger discrepancy between numerical and experimental results in drag
coefficient is attributed to the zero-thickness model used in the computations [54].

Next, we simulate the flow over a rectangular plate with a larger aspect ratio (AR = 4) at Re = 300. At the angle of attack of
30�, a periodic solution with vortex shedding is obtained. The non-dimensional frequency (or Strouhal number defined as
St � fcsin a/U1) computed in the present study is 0.12, which is the same as the prediction in [54]. Fig. 17 shows one snap-
shot of vortical structure (characterized by iso-surface of Q-criterion). This pattern is qualitatively consistent with the wake
structure shown in [54].

4. Conclusions

In this paper, an immersed boundary method is developed in combination with the discrete stream function formulation
for Navier–Stokes equations. The forcing strategy proposed in this work is simple and straightforward and the implementa-
tion of this strategy is also very easy. The parallel implementation of the present method facilitates feasible three-
dimensional simulations at moderate Reynolds numbers if the turnover time is worthy of concern. The code is validated
by various problems of different complexity, such as the problem of decaying vortices, flows over stationary and oscillating
cylinders, flow over a sphere and flow over a low-aspect-ratio flat-plate. Good agreement is found between the results in the
present work and those in the literatures. This provides a strong evidence of the capability and reliability of this newly
proposed method.

Acknowledgements

This work was supported by Chinese Academy of Sciences under the Innovative Project Nos. KJCX-SW-L08 and KJCX3-
SYW-S01, National Basic Research Program of China (973 Program) under Project No. 2007CB814800, and National Natural
Science Foundation of China under Project Nos. 10702074 and 10872201. The authors also like to thank the Supercomputing
Center of Chinese Academy of Sciences (SCCAS) and Shanghai Supercomputer Center (SSC) for the allocation of computing
time.

Appendix A

The expressions for the operators used in the discrete stream function approach are given here. The definition of topo-
logical entities is shown in Fig. A.1, for both two- and three-dimensional staggered grid system.

To make the expressions clear and concise, the definitions of two unit vectors and two sign conventions are first intro-
duced.~te is the vector pointing from one node to the other sharing the same edge; similarly, ~nf is the face normal vector
pointing from one cell to the other sharing the same face (see Fig. A.1).

The sign convention at each face-cell link is defined as:
signðc; f Þ ¼
þ1 c ¼ c2

�1 c ¼ c1:

ðA:1Þ

Fig. A.1. The definition of topological entities and sign conventions on a staggered mesh system: (a) topological entities on a 2D mesh; (b) topological
entities on a 3D mesh; (c) sign conventions on a 2D mesh; and (d)sign conventions on a 3D mesh.

3496 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
The sign convention at each edge-face link is defined as:
signðf ; eÞ ¼ sign ~nf � ð~te �~rfeÞ
� �

; ðA:2Þ
where~rfe is the vector pointing from the edge center to the face center.
The normal velocity flux is defined at faces, while the velocity vector is defined at cells. The stream function component s,

which is defined at edges, actually represents an integral leð~w �~teÞ, where ~w is the stream function vector and le is the edge
length. In two dimensions, the stream function points out of the two-dimensional plane and is located at the edges (or
nodes). The schematic representation of variable locations is shown in Fig. A.2.

The discrete gradient, divergence and curl operators can be expressed as
GðpÞjc!f ¼
Xface
cells

c

signðc; f Þpc; ðA:3Þ

DðqÞjf!c ¼
Xcell
faces

f

signðc; f Þqf ; ðA:4Þ

CðsÞje!f ¼
Xface
edges

e

signðf ; eÞse; ðA:5Þ

RðrÞjf!e ¼
Xedge
faces

f

signðf ; eÞrf : ðA:6Þ

Fig. A.2. The location of variables on a: (a) 2D mesh and (b) 3D mesh. The normal velocity flux q is defined at face centers denoted by); the stream
function component s is defined at edge centers denoted by j; the velocity vector ~v , pressure p and volume force~f are defined at cell centers denoted by d.

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3497
Here a ? b indicates that an operator manipulates the variable defined at topological entity a and the result is stored at
entity b.

The interpolating and integrating operators can be expressed as
PðqÞjf!c ¼
1
Vc

Xcell
faces

f

qf~rcf ; ðA:7Þ

Q ð~uÞjc!f ¼
Xface
cells

c

�signðf ; cÞð~uc �~rcf Þ; ðA:8Þ
where~rcf is the vector pointing from the cell position to the face position; Vc is the volume of cell.
The implicit operator in Eq. (5) is defined as
A ¼ I
Dt
� 1

2
1
Re

L: ðA:9Þ
Here I is the identity matrix. L is the Laplacian operator which is defined as
LðqÞ ¼ Q � ð1=VcÞD � ðAf =lf ÞG � PðqÞ
� �
 �

; ðA:10Þ
where Af is the area of face and lf the distance between two cell centers sharing the same face.
Additionally, the convective operator which is used in computing rn of Eq. (5) can be expressed as
NðqÞ ¼ Q � 1
Vc

� �Xcell
faces

f

~uf qf

2
64

3
75;

~uf ¼
1
2
ð~uc1 þ~uc2 Þ;

~uc ¼ P � CðsÞ:

ðA:11Þ
Appendix B

The three-step, low storage, Runge–Kutta scheme that is used in this work is:
/nþ1;ð1Þ ¼ /n þ DtFð/nÞ;
/nþ1;ð2Þ ¼ /n þ 1

2 Dt Fð/nÞ þ Fð/nþ1;ð1ÞÞ
h i

;

/nþ1 ¼ /n þ 1
2 Dt Fð/nÞ þ Fð/nþ1;ð2ÞÞ

h i
:

ðB:1Þ
This scheme is of second order accurate and very easy to implement. For wave equation, the stability criterion of this artic-
ular scheme is that the CFL number based on the wave speed remains less than 2. This restriction is equivalent to require a
match between the temporal and spatial accuracy and not too tight in most cases.

3498 S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499
Appendix C

For the linear systems that are obtained as a result of the discretization of Eqs. (11) and (15), the coefficient matrices are
symmetric and positive-definite. Additionally, the linear system Eq. (19) for computing the force is also symmetric and po-
sitive-definite, providing that the inter-distance among Lagrangian points is roughly the same as the grid size used in the
Navier–Stokes solver.

In this work, the Conjugate Gradient (CG) method with a Jacobi pre-conditioner is used as an iterative solver to solve the
linear system. In the mathematical formulation, a linear system can be written as
Ax ¼ b: ðC:1Þ
To improve the rate of convergence of the iterative method, the coefficient matrix can be preconditioned as
M�1Ax ¼M�1b; ðC:2Þ
where M�1 is the left pre-conditioner and in this work M is simply constructed by
M ¼ diagðAÞ: ðC:3Þ
The pseudo-code for the preconditioned CG Method is given as follows:

Compute r(0) = b � Ax(0) for some initial guess x(0)

For i = 1,2 . . .

Solve Mz(i�1) = r(i�1)

q(i�1) = r(i�1)Tz(i�1)

If i = 1
p(1) = z(0)

Else
b(i�1) = q(i�1)/q(i�2)

p(i) = z(i�1) + b(i�1)p(i�1)

Endif
q(i) = Ap(i)

aðiÞ ¼ qði�1Þ=pðiÞ
T
qðiÞ

x(i) = x(i�1) + a(i)p(i)

r(i) = r(i�1) � a(i)q(i)

Check if convergence, continue if necessary
End

We use the following stopping criterion to check if the iteration converges
krðiÞk2
6 e2

1krð0Þk
2 þ e2

2kxð0Þk
2
: ðC:4Þ
Double precision arithmetic implementation is used for all the simulations in this work. The values of the two controlling
parameters in Eq. (C.4) for solving the equation of s are: e1 = 10�9; e2 = 10�10; while the values for solving Eq. (19) are:
e1 = 10�8; e2 = 10�9.

References

[1] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[2] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239–261.
[3] C.S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10 (1972) 252–271.
[4] L.D. Zhu, C.S. Peskin, Simulation of a flexible flapping filament in a flowing soap film by the immersed boundary method, J. Comput. Phys. 179 (2002)

452–468.
[5] M.C. Lai, C.S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys. 160 (2000)

705–719.
[6] D. Goldstein, R. Handler, L. Sirovich, Modeling a no-slip flow boundary with an external force field, J. Comput. Phys. 105 (1993) 354–366.
[7] E.M. Saiki, S. Biringen, Spatial simulation of a cylinder in uniform flow: application of a virtual boundary method, J. Comput. Phys. 123 (1996) 450–465.
[8] J. Mohd-Yusof, Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, CTR Annual Research Briefs, NASA

Ames/Stanford University, 1997, pp. 317–327.
[9] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow

simulations, J. Comput. Phys. 161 (2000) 35–60.
[10] G. Iaccarino, R. Verzicco, Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev. 56 (2003) 331–347.
[11] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys. 171 (2001) 132–

150.
[12] Y.H. Tseng, J.H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys. 192 (2000) 593–623.
[13] E. Balaras, Modeling complex boundaries using an external force field on fixed Cartesian grids in Large-eddy simulations, Comput. Fluids 33 (2004)

375–404.

S. Wang, X. Zhang / Journal of Computational Physics 230 (2011) 3479–3499 3499
[14] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, J. Comput.
Phys. 215 (2006) 12–40.

[15] D. Kim, H. Choi, Immersed boundary method for flow around an arbitrarily moving body, J. Comput. Phys. 212 (2006) 662–680.
[16] N. Zhang, Z.C. Zheng, An improved direct-forcing immersed-boundary method for finite difference applications, J. Comput. Phys. 221 (2007) 250–268.
[17] T. Ikeno, T. Kajishima, Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations, J.

Comput. Phys. 226 (2007) 1485–1508.
[18] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys. 209 (2005) 448–476.
[19] S.W. Su, M.C. Lai, C.A. Lin, An immersed boundary technique for simulating complex flows with rigid boundary, Comput. Fluids 36 (2007) 313–324.
[20] K. Taira, T. Colonius, The immersed boundary method: a projection approach, J. Comput. Phys. 225 (2007) 2118–2137.
[21] X.L. Yang, X. Zhang, Z.L. Li, G.W. He, A smoothing technique for discrete delta functions with application to immersed boundary method in moving

boundary simulations, J. Comput. Phys. 228 (2009) 7821–7836.
[22] X.D. Wang, W.K. Liu, Extended immersed boundary method using FEM and RKPM, Comput. Meth. Appl. M. 193 (2004) 1305–1321.
[23] Z.G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems, J. Comput. Phys. 195

(2004) 602–628.
[24] S.E. Hieber, P. Koumoutsakos, An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers, J. Comput. Phys. 227

(2008) 8636–8654.
[25] M.D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, M. Napolitano, An immersed boundary method for compressible flows using local grid refinement,

J. Comput. Phys. 225 (2007) 2098–2117.
[26] D. You, R. Mittal, M. Wang, P. Moin, Computational methodology for large-eddy simulation of tip-clearance flows, AIAA J. 42 (2004) 271–279.
[27] I. Borazjani, L. Ge, F. Sotiropoulos, Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies, J.

Comput. Phys. 227 (2008) 7587–7620.
[28] F.M. Denaro, F. Sarghini, 2-D transmittal flows simulation by means of the immersed boundary method on unstructured grids, Int. J. Numer. Meth.

Fluids 38 (2002) 1133–1157.
[29] D.L. Young, Y.J. Jan, C.L. Chiu, A novel immersed boundary procedure for flow and heat simulations with moving boundary, Comput. Fluids 38 (2009)

1145–1159.
[30] S. Laizet, E. Lamballais, High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy, J. Comput.

Phys. 228 (2009) 5989–6015.
[31] Paulo J.S.A. Ferreira de Sousa, Jose C.F. Pereira, J.J. Allen, Two-dimensional compact finite difference immersed boundary method, Int. J. Numer. Meth.

Fluids (2009), doi:10.1002/fld.2199.
[32] D. Calhoun, A Cartesian grid method for solving the two-dimensional streamfunction–vorticity equations in irregular regions, J. Comput. Phys. 176

(2002) 231–275.
[33] D. Russell, Z.J. Wang, A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow, J. Comput. Phys. 191 (2003)

177–205.
[34] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31

(1994) 1019–1044.
[35] Z.L. Wang, J.R. Fan, K.F. Cen, Immersed boundary method for the simulation of 2D viscous flow based on vorticity–velocity formulations, J. Comput.

Phys. 228 (2009) 1504–1520.
[36] T. Colonius, K. Taira, A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions, Comput. Meth.

Appl. M. 197 (2008) 2131–2146.
[37] B. Perot, Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys. 159 (2000) 58–89.
[38] C. Wang, F. Giraldo, B. Perot, Analysis of an exact fractional step method, J. Comput. Phys. 180 (2002) 183–199.
[39] X. Zhang, D. Schmidt, B. Perot, Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics, J.

Comput. Phys. 175 (2002) 764–791.
[40] B. Perot, R. Nallapati, A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows, J. Comput. Phys. 184

(2003) 192–214.
[41] D.V. Le, B.C. Khoo, J. Peraire, An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries, J. Comput. Phys.

220 (2006) 109–138.
[42] W.P. Breugem, A combined soft-sphere collision/immersed boundary method for resolved simulations of particulate flows, in: Proceedings of the

ASME 2010 Third Joint US–European Fluids Engineering Summer Meeting, Montreal, Quebec, Canada, 1–5 August 2010 (FEDSM-ICNMM2010-30634).
[43] S. Kang, G. Iaccarino, F. Ham, P. Moin, Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method, J. Comput. Phys.

228 (2009) 6753–6772.
[44] G. Karypis, V. Kumar, A fast and high quality scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1999) 259–392.
[45] M. Coutanceau, R. Bouard, Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform

translation. Part 1. Steady flow, J. Fluid Mech. 79 (1977) 231–256.
[46] S.C.R. Dennis, G. Chang, Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100, J. Fluid Mech. 42 (1970) 471–489.
[47] M.N. Linnick, H.F. Fasel, A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, J. Comput. Phys.

204 (2005) 157–192.
[48] C. Liu, X. Zheng, C. Sung, Preconditioned multigrid methods for unsteady incompressible flows, J. Comput. Phys. 139 (1998) 35–57.
[49] J. Park, K. Kwon, H. Choi, Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160, KSME Int. J. 12 (1998) 1200–1205.
[50] H. Dutsch, F. Durst, S. Becker, H. Lienhart, Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers, J.

Fluid Mech. 360 (1998) 249–271.
[51] O.M. Griffin, The unsteady wake of an oscillating cylinder at low Reynolds number, J. Appl. Mech. 38 (1971) 729–738.
[52] J. Jeong, F. Hussain, On the identification of a vortex, J. Fluid Mech. 285 (1995) 69–94.
[53] T.A. Johnson, V.C. Patel, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech. 378 (1999) 19–70.
[54] K. Taira, T. Colonius, Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers, J. Fluid Mech. 623 (2009) 187–207.

http://dx.doi.org/10.1002/fld.2199

	An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows
	Introduction
	Numerical methodology
	Governing equations
	Discrete stream function approach
	Immersed boundary method in framework of discrete stream function formulation
	Implicit forcing vs. explicit forcing in immersed boundary methods
	Local mesh refinement and hanging nodes
	Parallel implementation

	Validations
	Decaying vortices: test on the order of accuracy
	Flow over a stationary cylinder
	Flow field and hydrodynamic forces
	Inaccuracy in non-slip boundary condition

	Flow over oscillating cylinder
	In-line oscillating cylinder in fluid at rest
	Cross-wise oscillating cylinder in uniform flow

	Three-dimensional flows with immersed bodies
	Flow over a sphere
	Flow over a low-aspect-ratio flat-plate

	Conclusions
	Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	References

