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Scaling of maximum strength with grain size in nanotwinned fcc metals
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Engineers usually face the difficulty of making careful choices between one good and another in terms
of strength, ductility, and electrical conductance in nanostructured metals. The emergence of polycrystalline
Cu with ultrafine grains and the included nanotwins supplies an ideal solution because such materials owe
high strength, high electrical conductance, and intermediate ductility. We answer in this Brief Report where
the strength of such materials maximizes and how it depends on grain size. Based on the competitive plastic
deformation mechanisms—the strengthening mechanism by inclined dislocations (with respect to twin planes)
and detwinning-induced softening—we find that the critical twin thickness where the strength maximizes is
proportional to d1/2 and the maximum strength is proportional to d−1/2.
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Commonly seen polycrystalline metals are aggregates of
small grains and the resultant grain boundaries (GBs) play
a central role in determining the physical properties of such
materials. Mechanically, GBs block the motion of dislocations,
and the consequence of this is described by the well-known
Hall-Petch strengthening.1,2 Along with the gain in strength in
polycrystals as their grain sizes reduce, their other properties
like deformability and thermal and electric conductivities
are known to decrease.3–5 The situation becomes worse
in nanostructured materials because of the presence of a
significant volume fraction of disordered GBs. Now the
question arises: Do we have to make careful choices between
one good and another in terms of strength, ductility, thermal
conductivity, and electrical conductivity in nanostructured
metals? Recent success in synthesizing dense nanotwins in
ultrafine grains,4,6–11 let us expect more. In comparison to
conventional coarse-grained Cu, such nanotwinned Cu has
high strength, intermediate ductility, and almost no change in
electrical conductivity.4 Lu et al. further revealed12 that there
exists a maximum strength in nanotwinned samples with fixed
grain size d ≈ 500 nm when twin thicknesses λ vary from
90 nm down to 4 nm. The maximum strength occurs in the
sample with λ ≈ 15 nm. The deformation mechanisms for
the subsequent strength softening in nanotwinned Cu as λ

decreases from 15 to 4 nm are different from what happens in
general nanocrystalline metals as their grain sizes reduce from
about 10 nm. For the latter, excessive GB volume as grain size
reduces can facilitate GB diffusion13 and GB sliding,3,14–16

which weakens materials when their grain sizes reduce to
some point.17–21 In nanotwinned Cu, however, softening by
GB-associated deformation can be ruled out since the average
grain sizes of the samples are almost the same while their
twin thicknesses change. Large-scale molecular dynamics
(MD) simulations22 and theoretical analysis,22,23 show that the
strengthening to softening transition as twin thickness reduces
originates from the competition between dislocations inclined
to twin boundaries (TBs) with those parallel to TBs. Partial
dislocations in samples with narrow twins are predominantly
residing in twin planes and moving parallel to twin planes
(Fig. 1(a)), and we will refer to them as twinning partials
hereafter. Inclined partial dislocations are observed to be the
primary plastic carrier in samples with wide twins (Fig. 1(b)).

Twinning partials mediated detwinning, which accounts for
the strength softening.22 The work in Refs. 22 and 23 also
showed that the critical twin thickness λT where the strengths
of the nanotwinned metals maximized depends on grain size.
We show in this work that the transitional twin thickness
follows λT ∝ d1/2, and the corresponding maximum strength
is proportional to d−1/2.

Since GB deformation can be excluded for the strength
softening in nanotwinned Cu, the critical twin thickness
is believed to be in the regime when the primary plastic
deformation carriers change from the inclined dislocations to
detwinning as twin thickness reduces. We start to formulate
the respective critical shear stresses to activate the two types
of dislocation activities. The detwinning process mediated by
twinning partials is regarded as a shear transformation in an
ellipsoid with a characteristic shear strain eT = 0.707 in fcc
metals. We use Eshelby’s shear transformation idea24 to ap-
proximate the increment in strain energy by detwinning, which
differs from the microscopic methodology of computing the
increasing strain energy by summing the self-energies from all
discrete twinning partials as well as their interaction energies in
the detwinned region. The singular stress/strain fields induced
by twinning partials are homogenized and the collective strain
field from dislocations is replaced by a uniform shear transfor-
mation in the detwinned region. This treatment circumvents the
difficulty to calculate the interaction energy between twinning
partials within the distance comparable to their Burger’s vector
in the microscopic discrete dislocation approach. A similar
idea has been applied to martensitic phase transformation25–27

and precipitate twinning.28 Based on the energy criterion, the
required critical resolved shear stress to detwin is related to
twin thicknesses and grain sizes as23

τ − τl = α
π

8
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λ

d
μeT + ψ

γtb

λ eT
, (1)

where τl is the lattice resistance to the motion of twinning
partials in a twin plane, α is a coefficient on the order of
unit, ν and μ are the Poisson’s ratio and the shear modulus,
respectively, γtb is the energy of a twin boundary, and ψ is
a coefficient, ψ = −2 for the complete detwinning of a TB,
ψ = 2 for the formation of a TB, and ψ = 0 for the thickening
or thinning of a TB. In the circumstance that plasticity is
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FIG. 1. (Color online) Planar view of typical nucleated partial
dislocations in nanotwinned fcc metals from molecular dynamics
simulations (gray: atoms in fcc lattice; orange: atoms of other type).
Snapshots are abstracted from MD simulations on polycrystalline
nanotwinned Cu reported in Ref. 22, where details about those
simulations could be found. (a) A twinning partial (indicated by the
arrow in the cycle) residing in twin planes and moving parallel to
the twin planes in a sample with narrow twins; (b) inclined partial
dislocations (with respect to twin planes) in a sample with wide twins.

exclusively accommodated for by detwinning, Eq. (1) predicts
that the strength in nanotwinned metals softens as the twin
thickness λ decreases, which qualitatively agrees with the
tensile experiments.12 The puzzling inverse size effect that a
higher population of deformation twins occur in bigger grains
in nanocrystalline materials29 can be readily explained using
Eq. (1).23 We note that the kinetics model22 and energetic
model23 for detwinning in nanotwinned Cu are not necessarily
two different viewpoints, but rather refer to the nucleation
and growth aspects of the whole deformation process. It is
desirable to consider these two aspects for detwinning in
nanotwinned Cu since nucleation of twinning partials and the
resultant detwinning by their propagation are naturally coupled
processes. By using the energetic model alone, we essentially
neglect the possible strain rate effects in nanotwinned Cu.

Dislocations inclined to TBs are usually generated by
emissions from GBs, via the cross slip, or through the in-
teractions between dislocations with twin planes.30 It is found
that the type of emitted dislocations, in general, depends on
two length scales λc and l, where the former is determined by
material constants and the latter is a microstructure-dependent
distance. Typically, l is the characteristic distance between
the dislocation nucleation sites to their front barrier (e.g.,
other dislocation walls, precipitates, and grain boundaries).
When l < λc, nucleated dislocations are primarily of a partial
type and complete dislocations dominate if l > λc. For
nanocrystalline metals, l approximates to the average grain
size; in nanotwinned metals l ≈ λ. When λ < λc, the critical
resolved shear stress τs needed to trigger the nucleation of
partial dislocations is31–34 given as

τs = 1

n

(
γsf

b
+ μb(c)

3λ

)
, (2a)

where n is a geometrical parameter, b and b(c) are the
magnitudes of the Burger vectors of partial and complete
dislocations, respectively, and γsf is the stacking fault energy.
If λ > λc, corresponding τs to nucleate complete dislocations
is given as

τs = μb(c)

nλ
. (2b)

It is easy to see that λc can be obtained by comparing
Eq. (2a) to Eq. (2b). Based on the estimate given by Asaro and
Suresh,33 λc is about 40 nm for Cu. We hence use Eq. (2a) to fit
the strengthening regime of nt-Cu as λ changes from about 50
to 15 nm. The applications of Eqs. (1) and (2a) to the existing
experimental data12 give α = 0.4 and n = 1.8, respectively, as
seen in Fig. 2. We note that the same α and n obtained here
will be applied to discussions hereafter.

Equations (1) and (2a) are derived under the assumptions
that either twinning partials or dislocations inclined to TBs are
the exclusive plastic deformation mechanism, which may not
be true for compatible deformation in individual grains. Based
on Taylor’s least work hypothesis,35 Chin et al.36 suggested
that during the accommodation of constrained deformation
in fcc metals by slip and twinning, the operation of slip and
twinning systems is found by minimizing the orientation factor

M = 1

εxx

(∑
i

si + β
∑

j

tj

)
,

where si and tj are the amounts of shear in the ith operative
slip system and the jth operative twinning system, respectively,
β = τ/τs is the ratio of the critical resolved shear stress for
twinning versus slip, and εxx is the imposed uniaxial strain.
Chin et al.36 obtained that when√
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FIG. 2. (Color online) Yield strength (experiments and modeling)
versus twin thickness for nt-Cu. Experimental data replotted from
Ref. 12, theoretical data from Eqs. (1) and (2b), where one parameter
has been fitted (α and n, respectively). The critical shear strengths
are multiplied by the Taylor factor of 3 to convert them to tensile
strengths.
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both twinning and the inclined dislocation slip are active.
In nt-Cu, we also suggest that the transition from inclined
dislocations to detwinning happens when the ratio of β falls
in the region given by Eq. (3) in nanotwinned Cu. Therefore
β = τ/τs can be obtained by substituting τ and τs in Eq. (3) by
Eqs. (1) and (2a), respectively. The maximum strength occurs
when both twinning and the inclined dislocation slip are active.
We hence yield the transitional twin thickness λT as

n

(
α

π

8
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1 − υ

λT

d
μ eT

)/(
γsf

b
+ μb(c)

3λT

)
≈ 1. (4)

Note that we have neglected the lattice resistance τl and the
TB energy term since both of them are on the order of 1MPa
and have the opposite sign. For nt-Cu with d < 1000 nm, we
have

γ 2
sf
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d
eT ,

and Eq. (4) can be rewritten as

λT = a0
γsf d

μ b
+ a1

√
b(c)d, (5)

with
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Using the corresponding material parameters given in
Table I for Cu, we obtain a0 = 1 and a1 = 0.8. Since a0γsf/μb
is about 3.7 × 10−4 and the first term in Eq. (5) is less than
0.5 nm if d < 1000 nm, we may neglect it without loss of
accuracy. The transitional twin thickness λT is now simplified
to be

λT = a1

√
b(c)d. (6)

We have plotted Eq. (6) against the experimental results12

and the MD simulations22 in Fig. 3. An excellent match be-
tween the model prediction and the data from both experiments
and MD simulations is seen.

TABLE I. Material constants for nanotwinned Cu and the value
of fitting parameters α and n in Eqs. (1) and (2a), respectively.
Theoretical curves in Figs. 2 to 4 are all produced by using the
same values listed here.

Description of parameter Symbol Value

Shear modulus of Cu at room temperature μ 45 GPa
Poisson’s ratio ν 0.35
Grain size d 500 nm
Transformation shear strain eT 0.707
Twin boundary energy γtb 24 mJ/m2

Stacking fault energy γsf 45 mJ/m2

Index parameter ψ −2
Transitional grain size λc ∼40 nm
Burgers vector of a partial dislocation b 1.49 nm
Burgers vector of a complete dislocation b(c) 2.58 nm
Geometrical parameter n 1.8
Geometrical factor α 0.4
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FIG. 3. (Color online) Predicted grain size versus the transitional
twin thickness where the strength nt-Cu maximizes. The prediction
by Eq. (6) that matches well with the experimental data comes from
Ref. 12 and those from MD simulations Ref. 22.

Inserting Eq. (6) into Eq. (2a), we obtain the achievable
maximum strength τmax in nanotwinned fcc metals with grain
size d,

τmax = 1

n

γsf

b
+ μ

3na1

(
b(c)

d

)1/2

. (7)

A similar relationship can be obtained if one substitutes
Eq. (6) into Eq. (1). It is noted that Eq. (7) resembles the classic
Hall-Petch strengthening relation although the corresponding
deformation mechanisms which give rise to such a relationship
are distinct. Figure 4 gives the grain size versus the maximum
strength in nanotwined fcc metals described by Eq. (7). The
prediction from the theory captures the experiments12 and the
MD simulations22 very well.
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FIG. 4. (Color online) Predicted grain size versus the maximum
strength in nt-Cu using Eq. (7) that matches well with the experimental
data comes from Ref. 12 and those from MD simulations Ref. 22.
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In summary, we show that the critical twin thickness λT

where the strength of nanotwinned fcc metals maximizes at
a given grain size d is proportional to d1/2. Such a scaling
law shows excellent agreement with available experiments
and large-scale molecular dynamics simulations where the
transitional twin thicknesses were reported. In return, the
maximum strength τmax in nanotwinned samples at a given
grain size d is found to follow τmax ∝ d−1/2. The predicted

transitional twin thickness where the strength of such material
maximizes can serve as a meaningful guidance for material
synthesis.
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