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Molecule Statistical Thermodynamics Simulation of Nanoindentation of Single
Crystal Copper with EAM Potential *
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3School of Physics and Nuclear Energy Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191

(Received 13 January 2011)
The quasistatic nanoindentation process of a spherical indenter in a single crystal copper is investigated with the
molecular statistical thermodynamics (MST) method based on the embedded atom method (EAM) potential.
The indentation modulus obtained in the MST simulation is 129.9GPa, which agrees well with the theoretical
prediction (129GPa). In the elastic regime, the obtained maximum displacement of the indenter is two times
the contact depth and the contact area is qualitatively proportional to the contact depth, which agrees well with
Hertzian elastic theory of contact. The MST simulation can reproduce the nucleation of dislocation as well.
Moreover, the efficiency of the MST method is about 8 times higher than that of traditional MD simulations.

PACS: 62.20 F−, 62.25.−g DOI: 10.1088/0256-307X/28/4/046201

Nanoindentation is a powerful tool to investigate
the nano- and micro-scale mechanical properties of
materials, and has been widely used in material and
mechanical engineering.[1,2] Due to the inherent com-
plexity of the nanoindentation process, complemen-
tary molecular dynamics (MD) simulations have been
carried out by many researchers in order to assess
the dislocation nucleation mechanism and propaga-
tion during indentation.[3,4] An appealing feature of
MD is that it follows the actual dynamical evolution
of all atoms. However, for realistic systems, it is prac-
tically impossible to track all atoms by solving the
equations of motion.[5] More importantly, to resolve
the individual motion of atoms requires a time step of
approximately femtoseconds. Hence, the length and
time scales that can be probed using MD are still fairly
limited, even on the most advanced massively paral-
leled computers.

To manage the computational burden and estab-
lish a reliable computational scheme, Hu and Wang
et al.[6−8] presented an inter-atomic potential based
method, the molecular statistical thermodynamics
(MST) method, to simulate the quasi-static deforma-
tion of materials at finite temperature. However, as
a prototype study, the simulation in Ref. [8] is based
on the Lenard–Johns potential, which has deficits
in modeling metallic matrials. In this Letter, the
MST method simulation of quasi-static nanoindenta-
tion based on embedded atom method (EAM) is per-
formed on a single crystal copper under nanoindenta-
tion. We compare the data obtained for simulation
in the elastic stage with the Hertzian elastic theory of

contact. Also, the dislocation structure and the com-
putational cost are analyzed.

The basic idea of the MST method is particle-
oscillator duality, that is, we treat atoms as particles
with determined equilibrium positions when we exam-
ine the mechanical deformation of the atomic lattice;
while treating atoms as oscillators with various fre-
quencies when we examine the influence of the ther-
mal oscillations of atoms on mechanical deformation.
By assuming the oscillators to be local harmonic ones,
the Helmholtz free energy[9,10] of a solid can be repre-
sented as

𝐴 = Φ + 3𝑘𝑇

𝑁∑︁
𝑖=1

ln

(︂
~|𝐷𝑖|1/6

𝑘𝑇

)︂
, (1)

where Φ is the static lattice energy (potential energy),
𝑇 is the temperature, 𝑘 is the Boltzmann constant, ~
is the Planck constant, 𝑁 is the total number of atoms
in system, |𝐷𝑖| is the determinant of the local dynam-
ical matrix of atom 𝑖, whose element is defined as

𝐷𝜁𝜂
𝑖 =

1

𝑚𝑖

𝜕2Φ

𝜕𝑥𝑖𝜁𝜕𝑥𝑖𝜂
, (2)

where 𝑚𝑖 is the mass of atom 𝑖, and 𝑥𝑖𝜁 is the 𝜁th
coordination of atom 𝑖.

We assume that the indenter is a rigid sphere,
whose interaction with atoms in the sample can be
represented by a repulsive potential as:[11]

𝑉 =

{︂
𝐴(𝑅0 − 𝑟)3, for 𝑟 < 𝑅0,

0, for 𝑟 ≥ 𝑅0,
(3)
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where 𝐴 is a force constant, 𝑅0 is the radius of the
spherical indenter and 𝑟 is the distance from the cen-
tre of atom to the center of the spherical indenter. In
our simulation, 𝐴 = 3.3084 eV/Å3, 𝑅0 = 15 Å.

In this simulation, the sample is single crystal cop-
per with dimensions 75.9 × 75.9 × 61.5 , containing
32358 atoms. The top surface of the sample is the
(001) crystal plane and the other side surfaces are
(100) and (010) planes, respectively. The top surface
is traction free, while two atom layers at both the bot-
tom and the side surfaces are fixed. The temperature
is kept constant at 300K during the entire simulation
time.

To compute the potential energy of copper, the em-
bedded atom method (EAM) developed by Daw and
Baskes[12] is employed,

Φ =
1

2

∑︁
𝑖𝑗

𝑉 (r𝑖𝑗) +
∑︁
𝑖

𝐹𝑖

⎛⎝∑︁
𝑖 ̸=𝑗

𝜌𝑗(r𝑖𝑗)

⎞⎠ , (4)

where 𝑟𝑖𝑗 is the distance between atom 𝑖 and atom 𝑗,
𝑉 is a pair-wise potential as a function of 𝑟𝑖𝑗 , 𝜌(𝑟𝑖𝑗) is
the electron density introduced by atom 𝑗 at the site
of atom 𝑖, and 𝐹𝑖 is the embedding energy of atom 𝑖
as a function of atomic electron density 𝜌. In fact, 𝑉 ,
𝐹𝑖 and 𝜌𝑖 are fitting functions based on actual experi-
mental dates, and different researchers may obtain dif-
ferent fitting functions. EAM views each atom as em-
bedded in a host lattice consisting of all other atoms,
which permits calculations employing an electron den-
sity. Since the electron density is a summation over
many atoms, usually limited by a cutoff radius, the
EAM potential is a multibody potential. An empiri-
cal potential for copper, developed by Mishin et al.,[13]

was used in the simulation.
We first compare the results from the MST simula-

tion to the solution of Hertzian elastic contact theory
for a spherical indenter. In Hertzian elastic contact
theory, the relationship between applied force 𝑃 and
indenter displacement ℎ is[14]

𝑃 =
4

3
𝐸*𝑅1/2ℎ3/2, (5)

where 𝑅 is the curvature radius of the indenter and
𝐸* is the reduced modulus. For elastically anisotropic
materials, Vlassak and Nix have shown that the re-
leationshp in Eq. (5) still holds, providing that the re-
duced modulus is re-defined as[15,16]

𝐸* =

(︂
1

𝐸
− 1 − 𝜈2𝑖

𝐸𝑖

)︂−1

, (6)

where 𝐸 is the “indentation modulus”, which is related
to the elastic constants of the sample in different di-
rections, 𝐸𝑖 and 𝜈𝑖 are Young’s modulus and Poisson’s
ratios of the indenter. In the case of a perfectly rigid
indenter, 𝐸* reduces to the indentation modulus 𝐸.

The force vs indenter displacement data obtained
from the MST simulation is plotted as round solid
dots in Fig. 1. Noticeably, the force drops abruptly
at the displacement about 5.4 Å (from point B to
point C), which indicates dislocation nucleation and
the onset of plasticity. We fit the data from point
A to point B with the solution of the Hertzian elas-
tic contact theory (Eq. (5)) and obtain the indentation
modulus of the sample as 129.9GPa, which agrees well
with the results of Vlassak and Nix (129GPa for theo-
retical prediction and 124 GPa for experiments).[15,16]

With 𝐸 = 129.9 GPa, we draw the theoretical curve
of Eq. (5) in Fig. 1. Obviously, before dislocation nu-
cleation, the simulation data overlap with the curve.
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Fig. 1. Force vs indenter displacement for the (001) cop-
per surface during the indentation of a spherical indenter.
The hollow dots are the solution of the Hertzian elastic
theory of contact with the fitted indentation modulus as
129.9GPa, while the solid dots are the result of the MST
simulation.

hc
h

Indenter

Sample

Fig. 2. Schematic diagram of the Hertzian elastic con-
tact model. Here, ℎ is the maximum displacement of the
indenter and ℎ𝑐 is the contact depth.

In Hertzian elastic contact theory, the relationship
between the maximum displacement of indenter, ℎ,
and the depth at the edge of contact, ℎ𝑐, (Fig. 2) is
ℎ = 2ℎ𝑐. In the case of the MST simulation, the
maximum displacement of the indenter is defined as
the displacement of atoms in contact with the apex of
the indenter, while the contact depth is defined as the
displacement of atoms at the perimeter of the contact
area. The ℎ𝑐 data obtained in the MST simulation are
denoted by the round solid dots in Fig. 3. Obviously,
considering of the discrete nature of the simulation,
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the simulation data (denoted by hollow dots) in the
elastic phase agree well with Hertzian elastic contact
theory. After the nucleation of dislocations, the con-
tact depth increases significantly because of the pile-
up effect.

According to Hertzian elastic contact theory, for a
spherical indenter, the contact area 𝐴𝑐 is proportional
to the indenter radius 𝑅 and the indenter displace-
ment ℎ as [17]

𝐴𝑐 = 𝜋𝑅ℎ. (7)

In our simulation, the contact area is taken as the area
of the projected polygon with vertices at the centers of
the peripheral contact atoms. Figure 4 shows the con-
tact area vs indenter displacement. It is evident that
the discrete nature of the contact zone introduces a
discrete evolution of the contact area. In addition,
the relationship between the contact area and the in-
denter depth qualitatively agrees with Eq. (7) before
the nucleation of dislocations.
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Fig. 3. Contact depth vs indenter displacement. The
solid dots are the contact depths from the MST simula-
tion, which are well described by Hertzian elastic contact
solution (hollow) in the elastic regime. After dislocation
nucleation, the contact depth in the MST simulation sig-
nificantly increases, which indicates a pile-up situation.
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Fig. 4. Contact area versus indenter displacement. The
solid dots are the data obtained from the MST simulation,
and the hollow dots are the Hertzian elastic contact solu-
tion, calculated from the known tip geometry (𝑅 = 15Å)
and indenter displacement.

Knowing the contact area 𝐴𝑐and corresponding

force 𝑃 , we can calculate the mean pressure 𝑝mean,
which is equivalent to the indentation hardness 𝐻.
This hardness characterizes the material’s resistance
to elastic and plastic deformation, and is defined as

𝐻 = 𝑝mean = 𝑃/𝐴𝑐. (8)

Figure 5 demonstrates the variation of the mean
pressure (indentation hardness) with the indenter dis-
placement. The saw-tooth in the curve is due to
the discrete evolution of the contact area with the
discrete nature of the sample. It is shown that be-
fore the dislocation nucleation, the variation of mean
pressure (hardness) vs indenter displacement quanti-
tatively agrees with Hertizian elastic contact theory.
The onset of plasticity causes the dramatic drop of
hardness.
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Fig. 5. Mean pressure vs indenter displacement. The line
together with the solid dots are the data from the MST
simulation. The hollow dots are the Hertzian elastic con-
tact solution with a spherical indenter.

(a)

(b)

Fig. 6. Dislocation structure in the sample (a) at point
C in Fig. 1, ℎ = 0.56nm, and (b) at point D in Fig. 1,
ℎ = 0.71nm.

The dislocation structure in the sample can be
investigated using the centro-symmetric parameter
(CSP) method.[11] Figure 6 shows the dislocation
structure beneath the indenter from MST simulation.
In Fig. 6, the atoms are colored according to its CSP
value 𝑄, with grey for surface atoms (𝑄 ≥ 4.8); white
for stacking faults (1.6 ≤ 𝑄 ≤ 4.8); black for partial
dislocation (0.4 ≤ 𝑄 ≤ 1.6). Only atoms with 𝑄 ≥ 0.4
are shown. Figure 6(a) shows the dislocation structure
after slip at point C in Fig. 1, while Fig. 6(b) shows the
dislocation structure at the maximmun indenter dis-
placement at point D in Fig. 1. Obviously, slip occurs
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on four sets of (111) planes and terminates at (001)
plane, and the (111) plane is the dominant slip plane
in the FCC crystal. This is in good agreement with
the early results obtained in the MD simulation.[11,18]
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Fig. 7. The consuming time of each loading step in the
MST simulation.

Lastly, let us compare the computation time for
the indentation simulation by MST and the MD
method. Figure 7 shows the consuming time in each
loading step for the MST simulation. The several
time-consuming loading steps correspond to the dislo-
cation slips. The total computation time is 325min.
For the same case, it takes 2405 min on the same PC
with MD. Therefore, the neglection of atomic oscilla-
tion details in the MST simulation promotes the effi-
ciency of the method by 8 times over that of the MD
simulation.

In summary, the quasistatic nanoindentation pro-
cess of a spherical indenter in single crystal copper is
investigated with the MST method based on the EAM
potential. The indentation modulus obtained in the
MST simulation is 129.9 GPa, which agrees well with
the theoretical data of 129 GPa. In the elastic regime,

the obtained maximum displacement of the indenter
is two times the contact depth, and the contact area is
qualitatively proportional to the contact depth, which
agrees well with the Hertzian elastic theory of contact.
The MST simulation can reproduce the nucleation of
dislocation as well. Moreover, the efficiency of the
MST method is 8 times higher than that of traditional
MD simulation.
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