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Anomalous scaling for Lagrangian velocity structure functions in fully developed turbulence
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A hierarchical structure model is developed for anomalous scaling of the Lagrangian velocity structure functions
in fully developed turbulence. This model is an extension of the Eulerian hierarchical structure model of She and
Leveque [Phys. Rev. Lett. 72, 366 (1994)] to the Lagrangian velocity structure functions, where the straining
and sweeping hypotheses are used to build up the relationship between the singular scalings of Lagrangian and
Eulerian intermittent structures. The Lagrangian scaling exponents obtained from the straining hypothesis are in
good agreement with the experimental results of the Bodenschatz group.
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The Kolmogorov 1941 theory [1] (hereafter referred to as
K41) proposes that universal scaling behaviors exist for small-
scale fluctuations in fully developed turbulence. The K41
theory can be presented in either the Eulerian or Lagrangian
frames. Previous work [2] focused on the scaling exponents
of the Eulerian velocity structure functions (VSFs). Only
recently has the interest grown in the scaling exponents of
Lagrangian VSFs [3] due to two groups’ experiments [4,5].
The experiments found that strong intermittency exists in the
Lagrangian VSFs [6], which leads to the large deviations of
the Lagrangian scaling exponents from the K41 theory [7,8].
The deviations call for a theoretical description. An exact
expression for Lagrangian scaling exponents deduced from
the Navier-Stokes equations is still unavailable. Hence, it
is necessary to develop a phenomenological model for the
correction to Kolmogorov’s prediction based on the physics
of the Navier-Stokes equations. In this Rapid Communication,
we will develop such a simple model to analytically predict
the Lagrangian scaling exponents.

Since both Lagrangian and Eulerian statistical quantities
are determined by the same turbulent flows, there must exist
a relationship between these quantities. In the multifractal
formulism, a multifractal dimension spectrum uniquely de-
termines the scaling exponents and vice versa. Borgas [9]
formulates a relationship between the Eulerian and Lagrangian
multifractal dimension spectra. The relationship can be used
to calculate the Lagrangian multifractal dimension spectra
from the Eulerian ones and yield the Lagrangian scaling
exponents. The Lagrangian scaling exponents thus obtained
are in good agreement with the experimental measurements
for lower orders but less good agreement with them for high
orders [7]. Recently, Beck [10] has developed a superstatistical
model for Lagrangian scaling exponents, and Zybin et al. [11]
have calculated the Lagrangian scaling exponents using the
vortex filaments. Using the multifractal formalism, the She and
Leveque (SL) model [12] introduces a Eulerian hierarchical
structure to describe the Eulerian scaling exponents with its
successes. The present work introduces a Lagrangian hierarchy
structure to develop a simple model for the Lagrangian scaling
exponents without any adjustable parameters.
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We consider the Lagrangian VSFs of positive integer
order p:

Sp(τ ) = 〈[vi(t + τ ) − vi(t)]
p〉 ≡ 〈(δτ v)p〉, (1)

where vi (i = x,y,z) are the velocity components along a sin-
gle particle path and the repeated indices imply a summation.
The ensemble averages are defined as the summation of all
samples of particle trajectories. Due to the stationarity and
homogeneity in fully developed turbulence, the Lagrangian
VSFs are only dependent on time increment τ . The K41 theory
implies that the Lagrangian VSFs are solely determined by the
average energy dissipation rate ε and the time increment τ in
the inertial subrange. A dimensional analysis yields the normal
scaling Sp(τ ) ∼ τ ζp with ζp = p/2. Recent experiments [4,8]
and direct numerical simulations (DNSs) [6,7] found that there
strong intermittency exists in Lagrangian statistics; that is to
say, Lagrangian statistics is largely deviated from Gaussian
statistics. The fourth-order local scaling exponents obtained
from the experiments and DNS collapse into one curve with a
plateau of the slope smaller than 2 [6], while the K41 theory
predicts ζ4 = 2. Xu et al.’s experiment [5] found that the
Lagrangian scaling exponents at high orders are deviated from
the K41 prediction; that is, ζp �= p/2.

A number of phenomenological models have been proposed
to address the intermittency. Among them, the SL model
is particularly powerful for predicting the Eulerian scaling
exponents. The SL model is based on the following three
hypotheses [12,13].

(1) The first is the Eulerian version of the Kolmogorov
refined similarity hypothesis (KRSH). Kolmogorov’s 1962
refined similarity hypothesis (K62) introduces a locally aver-
aged energy dissipation rate ε� to account for intermittency of
small-scale fluctuations, that is, 〈(δ�u)p〉 ∼ 〈εp/3

� 〉�p/3, where
δ�u is the Eulerian velocity difference across a distance �.

(2) In the hierarchical structure hypothesis, for each ε�, the
pth-order normalized moment ratio, [〈εp+1

� 〉/〈εp

� 〉]/〈ε∞
� 〉, is

related to the next order ratio by
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where 〈ε∞
� 〉 = limp→∞[〈εp+1
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� 〉] describes the most inter-
mittent structures, βE is a symmetry parameter independent
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of p, and AE
p is a constant independent of �. The superscript

E denotes the symbols for the Eulerian quantities.
(3) For the most intermittent structure hypothesis, the limit

of the moment ratio can be scaled as 〈ε∞
� 〉 ∼ �−hE

, where hE =
2/3 is the singular scaling for the most intermittent structures.

These hypotheses on energy dissipation rates propose an
interesting picture for fully developed turbulence: small-scale
fluctuations exhibit a scale-invariance so that their moment
ratios satisfy the hierarchy structures with two ends: the
mean field 〈ε�〉 and the most intermittent structures 〈ε∞

� 〉. The
moment ratio specifies the geometric difference between two
successive moments and is further normalized by the limit of
moment ratios. This normalization leads to a geometric series,
given by
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The geometric relation (3) suggests the same scaling relation as
Eq. (2) does, although it ignores the constant AE

p . This picture
is supported by the energy cascade process and supposed to
be held for Lagrangian statistics. We propose the Lagrangian
version of these hypotheses as follows.

(1) For the Lagrangian version of KRSH, Sp(τ ) ∼
〈εp/2

τ 〉τp/2, where ετ (t) is a local temporal average of energy
dissipation rate defined by ετ (t) = 1

τ

∫ t+τ/2
t−τ/2 ε(s) ds. If we

denote 〈εp
τ 〉 ∼ τ zp , then ζp = p/2 + zp/2.

(2) For the hierarchical structure hypothesis, for each ετ ,
the pth-order normalized moment ratio, 〈εp+1

τ 〉/[〈εp
τ 〉〈ε∞

τ 〉], is
related to the next order ratio by
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where 〈ε∞
τ 〉 = limp→∞[〈εp+1

τ 〉/〈εp
τ 〉] is the limit of moment

ratios and β is a symmetry parameter independent of p.
(3) The singular scaling for the limit of moment ratios is

〈ε∞
τ 〉 ∝ τ−h, where 〈ε∞

τ 〉 ∼ τ−h, where h is constant.
The physical picture behind KRSH is that turbulent kinetic

energy is transferred from large-scale eddies to small-scale
ones in a cascade process. The Lagrangian KRSH describes its
temporal aspect, while the Eulerian KRSH describes its spatial
aspect. Both of them are determined by a unique dynamics of
the energy cascade process. Therefore, the Eulerian statistics
can be transformed to the Lagrangian statistics. The trans-
formation can be obtained using dimensional analysis: δ�u ∼
δτ v, ε� ∼ ετ , and � ∼ τδτ v. Substituting those dimensional
relations into Kolmogorov’s second universality assumption,
δ�u ∼ (ε��)1/3, leads to its Lagrangian version δτ v ∼ (ετ τ )1/2.
The same arguments can be made to obtain the Lagrangian
hierarchical structure hypothesis (4) and its singular scaling
〈ε∞

τ 〉 ∼ τ−h. Recent DNSs have shown strong evidence to
support the Lagrangian KRSH [14–16]. Another approach to
derive Eq. (4) is to assume that both ε� and ετ obey a joint
log-Poisson distribution, which leads to a joint hierarchical
structure. A joint hierarchical structure was proposed for the
scalars and velocity dissipation rates, which yields a scaling
exponent model for passive scalars with a good prediction of
experimental data [17]. The possibility has been explored to

replace the dissipation rate in the KRSH and Eq. (4) by the
enstrophy, without significant outputs, since the dissipation
and enstrophy have the same asymptotic behaviors at infinite
Reynolds numbers [18].

The hierarchical structure implies a scaling relation

zp+2 − zp+1 + h = [zp+1 − zp + h]β, (5)

which has a general solution

zp = αβp + Bp + C. (6)

The asymptotic property, limp→∞(zp+1 − zp) = −h implies
B = −h. Introducing the boundary conditions z0 = z1 = 0,
we obtain the solution

zp = −hp + C[1 − (1 − h/C)p], (7)

which is the generation function of a log-Poisson process. In
the Eulerian hierarchical structure hypothesis, CE = 2 is taken
since it represents the codimension of the most intermittent
structures (filaments) [12]. In the present study, 〈ε∞

τ 〉 char-
acterizes the most intermittent structures along Lagrangian
trajectories. The isocontours for the moment ratios describe the
intermittent structures in turbulent flows, and the isocontours
of its limits are therefore referred to as the most intermittent
structures. It is the Lagrangian version of the most intermittent
structure in the Eulerian frame and characterizes the most
intermittent structures along the Lagrangian trajectory. In
terms of the ergodic theorem, the ensemble of Lagrangian
trajectories fills in the entire space of turbulent flows. On the
other hand, Lagrangian intermittent structures are swept, by
energetic eddies, from the corresponding Eulerian intermittent
structures at the previous time. The sweeping process is much
faster than the stretching one. Therefore, the Lagrangian
intermittent structures move down with small distortion at
the sweeping time scales. This implies that the most inter-
mittent structures in the Lagrangian frame have the same
codimension as the ones in the Eulerian frame. That is to
say, C = 2. The most intermittent structures dominate the
hierarchical structures such that the symmetry parameter β

is determined by the singular scaling h and codimension C.
The probabilistic interpretation of β offers another interesting
approach to determine those parameters; see reference [19]
for details.

There are two plausible alternatives for the singular scaling
of the most intermittent structures 〈ε∞

τ 〉: the scalings can be
obtained either by nonlocal sweeping or by local straining. The
decorrelation process in turbulent flows can be described by
velocity time correlation (VTC). A Eulerian VTC is defined
as the correlation of Eulerian velocities at two times and two
locations, while a Lagrangian VTC is defined as the velocity
correlation of two particles at two times. Kraichnan [20]
develops the sweeping hypothesis for the Eulerian VTC and
the straining hypothesis for the Lagrangian VTC. In terms
of the sweeping hypothesis, the small-scale eddies are swept
by energy-containing eddies so that the Eulerian VTC are
mainly determined by the sweeping velocity (rms of velocity
fluctuation). Tennekes [21] points out that the sweeping
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hypothesis is the stochastic form of Taylor’s frozen-flow
hypothesis. The straining hypothesis implies that the small-
scale eddies are internally stretched and thus the Lagrangian
VTC is determined by enstrophy. The DNS data verify both
the sweeping hypothesis [22] and the straining hypothesis [23].
The extension of the sweeping hypothesis to passive scalars
is also made and verified [24]. Recently, the time correlation
models for turbulent shear flows have also been developed
[25–28]. The sweeping hypothesis is challenged by the
renormalization group (RNG) theory [29] and the experiments
[30,31] on large Reynolds number flows. It was found later
in [32] that the RNG results discard the sweeping effect at
the outset and do not demonstrate inhibition of sweeping.
The experiments [30,31] show some evidence against the
statistical independence of the energy-containing range and
inertial range eddies. This issue is related to the sweeping
hypothesis but is not equivalent to the sweeping hypothesis
itself. The statistical correlation may be due to the finite
Reynolds number effect and possibly decrease with increasing
the Reynolds numbers. However, due to the limitation of cur-
rently available Reynolds numbers, the conclusion is difficult
to make.

The straining hypothesis implies that the time scale is a
local property of small-scale eddies. Therefore, a dimensional
argument 〈ε∞

τ 〉 ∼ (δv)2/τ ∼ τ−1 suggests h = 1. On the other
hand, the sweeping hypothesis implies that the time scale is a
nonlocal property of the energy-containing eddies [22,25,26].
That is to say, � ∼ V τ , where V is the rms of fluctuation
velocities. Using the result from the SL model, 〈ε∞

� 〉 ∼ �−2/3,
we obtain 〈ε∞

τ 〉 ∼ τ−2/3 and thus h = 2/3.
If the straining hypothesis is used, then h = 1. The

symmetry parameter is β = 1/2. The scaling exponent zp

becomes

zp = −p + 2[1 − (1/2)p]. (8)

Using the Lagrangian KRSH, we obtain the straining
model

ζp = p/2 + zp/2 = 2[1 − (1/2)p/2]. (9)

This model predicts ζ2 = 1 and thus the Lagrangian frequency
spectrum of energy EL(ω) ∼ ω−2. Figure 1 shows the com-
parisons of the straining model with the experimental data [5].
It can be seen that the straining model is in good agreement
with the experimental data: all scaling exponents from the
straining model are close to the experimental data within the
error bars. The straining model predicts that the Lagrangian
scaling exponents increase monotonously with order p and
approach 2 as p → ∞. It implies that the Lagrangian scaling
exponents are saturated. The saturation is due to the fact that
the linear scaling p/2 is canceled by the singular scaling −hp

when h = 1/2.
If the sweeping hypothesis is used, then h = 2/3. The

symmetry parameter is β = 2/3. The sweeping model is zp =
2p/3 + 2[1 − (2/3)p], and thus, ζp = p/6 + 2[1 − (2/3)p/2].
It is easily observed from Fig. 1 that the scaling exponents
for p � 4 are within the error bars and the exponents for
p > 4 are out of the error bars. For the same parameter
h = 2/3, ζp with smaller C can be better matched with the
experimental data. However, the model with h = 2/3 does not
saturate.
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FIG. 1. Scaling exponents ζp of the Lagrangian velocity structure
functions as a function of order.

The experimental data support the straining model rather
than the sweeping model. The straining model indicates that
the Lagrangian scaling exponents increase monotonously with
its orders and saturate at infinitely large p. Zybin et al.’s
model [11] predicts that the Lagrangian scaling exponents
decrease for p > 7, and Beck’s model [10] predicts that the
Lagrangian scaling exponents could decrease to be negative
for larger p. The decrease of Lagrangian scaling exponents at
higher orders need to be further justified, while the decrement
observed in the experiments is due to insufficient data
samples [5].

We now calculate the multifractal dimensional spectra Dst

and Dsw for the straining model and the sweeping model,
respectively, using the Legendre transform:

Dst (h) = 1 + 2

ln(2)
[(ln(ln(2)) + 1)h − h ln h], (10)

Dsw(h) = 1 − 2

ln(3/2)

[(
ln

(
ln

3

2

))
− 1

](
h − 1

6

)

− 2

ln(3/2)

(
h − 1

6

)
ln

(
h − 1

6

)
. (11)

Both dimension spectra Dst (h) and Dsw(h) are concave with
two end points. Their shapes are in agreement with the ones
obtained from the experiments [4,8].

Lumley [33] points out that the general problems of relating
Lagrangian and Eulerian statistical quantities have been
difficult to solve. In some sense, finding such a relationship
would imply that one has to solve a particular closure problem.
In the multifractal formalism, Borgas [9] develops an approach
to calculate the multifractal scaling properties of Lagrangian
statistics from the ones of Eulerian statistics. The SL model
introduces a hierarchical structure: small-scale fluctuations
are related to each other via the most intermittent structures.

025301-3



RAPID COMMUNICATIONS

GUO-WEI HE PHYSICAL REVIEW E 83, 025301(R) (2011)

The present work relates the Lagrangian most intermittent
structures with the Eulerian ones using either the straining
or the sweeping hypothesis. We assume that the Lagrangian
VSFs share the same hierarchy structures as the Eulerian
ones, but with different singular scalings. The straining
hypothesis yields a simple model that is in good agreement
with the experimental measurements; the sweeping hypothesis
yields another model that does not predict well the scaling
exponents from the experiments, especially for higher-order
moments. The former correctly describes the stretching of
small-scale eddies internally, while the latter introduces the

large-scale sweeping into small-scale eddies. We hope that the
Lagrangian hierarchical structure model can motivate further
understanding of Lagrangian intermittency in turbulence.
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