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ABSTRACT Hybrid molecule/cluster statistical thermodynamics (HMCST) method is an effi-
cient tool to simulate nano-scale systems under quasi-static loading at finite temperature. In this
paper, a self-adaptive algorithm is developed for this method. Explicit refinement criterion based
on the gradient of slip shear deformation and a switching criterion based on generalized Ein-
stein approximation is proposed respectively. Results show that this self-adaptive method can
accurately find clusters to be refined or transferred to molecules, and efficiently refine or trans-
fer the clusters. Furthermore, compared with fully atomistic simulation, the high computational
efficiency of the self-adaptive method appears very attractive.

KEY WORDS self-adaptive, slip shear deformation, particle method approximation, refinement
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I. INTRODUCTION
The advent of nanotechnology has necessitated a better understanding of how microstructural changes

at the atomic level would affect the macroscopic properties of materials. However, our ability to model
the material performance is quite limited. On nanometer scale, the most direct and popular simulation
approach is the molecular dynamics (MD) method[1]. An appealing feature of MD is that it follows
the actual dynamical evolution of all atoms, but, for realistic systems, it is practically impossible to
track all atoms by solving the equations of motion[1]. More importantly, to resolve individual motion of
atoms requires a time step of approximately femtoseconds, so that even on the most advanced massively
paralleled computers, to simulate a process lasting microseconds is very difficult. Although a number of
multi-scale methods have been proposed to link MD to meso- or macro-scale simulation approaches[2–9],
the inherent short time scale limitation of MD remains a stubborn problem.
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Motivated by these facts, Tadmor et al.[10,11] and Shenoy et al.[12,13] proposed the quasi-continuum
(QC) method to simulate the quasi-static deformation at 0K. The key idea of QC is kinematic slavery in
which by virtue of finite element method(FEM), the positions of the majority of atoms are entirely con-
strained and determined only by the displacements of those nodes (repatoms or representative atoms)
tied to the element that includes the atoms. The positions of all nodes at 0 K can be obtained by mini-
mizing the coarse-grained potential energy of the system. They also applied the idea of kinematic slavery
to MD simulation at finite temperature and proposed finite-temperature quasi-continuum method[7].
It is shown that although the simulation can be considerably sped up at finite temperature, the total
simulation time is usually limited to nanoseconds.

On the other hand, based on the statistical thermodynamics formulation of Helmholtz free energy of
molecules and its minimization, Hu et al.[14] and Wang et al.[14,15] proposed a group of statistical ther-
modynamics methods, that is, molecule statistical thermodynamics (MST) method, cluster statistical
thermodynamics (CST) method; and the hybrid molecule/cluster statistical (HMCST) method. The
basic idea of these methods is that each molecule of a system is considered as oscillator and particle
simultaneously based on statistical thermodynamics theory[16]. Due to their ‘seamlessness’ or consis-
tency in the underlying atomistic models in all regions of molecules and clusters, these methods can
avoid the ghost force in the simulation. In addition, compared with conventional MD simulations, their
high computational efficiency appears very attractive. However, in the proposed method, the regions of
molecules and clusters are partitioned prior to the simulation, which hinders the further improvement
of computational efficiency.

In this paper, we develop a self-adaptive molecule/cluster statistical thermodynamics method for
quasi-static deformation at finite temperature. With the self-adaptive method, a cluster can be auto-
matically refined when the criterion exceeds a prescribed value. And finally, when the size of cluster
gets smaller than the cut-off distance of molecular interaction, the cluster will be automatically changed
into molecules. We prove the effectiveness and the efficiency of the self-adaptive scheme with the 2-
dimensional simulation of one-axial compression.

II. HYBRID MOLECULE/CLUSTER THERMODYNAMICS METHOD
The hybrid molecule/cluster thermodynamics method is a combination of molecule statistical method

(MST) and cluster statistical method (CST). At nonzero temperature, the atoms in a solid merely
oscillate about their equilibrium positions when no external load is applied. If an external load is
applied, the equilibrium positions of atoms will alter, resulting in the deformation of the solid. In
MST method, each atom is considered as oscillator and particle simultaneously, that is, when we
investigate the detail of lattice deformation, the atom is treated as particle with determined equilibrium
position; when we examine the contribution of thermal oscillation to the mechanical deformation of the
atomic lattice; the atom is regarded as oscillator with various frequencies. In addition, three important
assumptions are adopted in MST method: (1) the oscillations of atoms in a solid are harmonic[17]; (2)
classical limit is satisfied; (3) the coupling of oscillations of different atoms is negligible (local harmonic
approximation)[18]. Hence, the Helmholtz free energy of system is

A = Φ0 + 3kT ln

[(
h̄

kT

)N

|D|1/6

]
(1)

where A is Helmholtz free energy of system, and Φ0 is sum of inter-atomic potential energies, k is
Bolzmann’s constant, T is the temperature, h̄ is Planck’s constant, and D is the local dynamical matrix
of all the atoms in the system, which can be expressed as

D
ξη
ij =

1√
mimj

∂2Φ

∂xiξ∂xjη
(2)

where mi is the mass of atom i, xiξ is the ξth coordinate of atom i.
In case of large system, the MST method still has the limitation of data storage requirement since too

many atoms need to be dealt with. In order to reduce the degrees of freedom, we develop a coarse-grained
MST method, which is cluster statistical thermodynamics method (CST). In CST method, the system
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is partitioned into several atomic clusters and each cluster is treated by statistical thermodynamics
as subsystem of finite atoms. The Helmholtz free energy A of the whole system is supposed as the
summation of the free energy Aα of cluster α, i.e.

A =

Nc∑
α

Aα (3)

where Nc is the total number of clusters. In addition, according to the generalized Einstein appro-
ximation[18], we assume that all atoms in the cluster have the same oscillating frequencies and contribute
equally to the cluster. The Helmholtz free energy Aα of cluster α is expressed as

Aα = Φα + 3NαkT ln

(
h̄ |Dαh|1/6

kT

)
(4)

where Φα is the total inter-atomic potential of the cluster, Nα is the number of atoms within the cluster,
and |Dαh| is the determinant of the local dynamical matrix of atom h. Since the equilibrium position
of atom in cluster is determined by the corresponding nodes of cluster, the degrees of freedom of the
system are significantly reduced to the total number of nodes. However, CST method is unable to resolve
atomic details of deformation.

Obviously, both MST and CST have intrinsic limits in simulation. It is reasonable to couple MST and
CST, that is, MST method is used in regions with heterogeneous deformation, while CST is used in regions
that deform uniformly. We named this multi-scale simulation technology as hybrid molecule/cluster
statistical thermodynamic (HMCST) method.

In HMCST method, we divide the whole region into three parts: local region, non-local region, hand-
shaking region, as shown in Fig.1. In
non-local region, the MST method
is applied, each molecule in this do-
main is treated as nodes (namely,
non-local node). In local region,
CST method is applied, and the
nodes within is named as local node.
We assume that local nodes only in-
teract with molecules in clusters. In
the region between local nodes and
non-local nodes, the node will inter-
act with molecules in both non-local
and local domains; hence, we name
this region as hand-shaking region,
and the node in this region is either
local or non-local node. Hence, the
free energy of the system in HMCST

Fig. 1 Schematic figure of local, non-local, handshaking regions and nodes
partition. The small hollow circles represent atoms, while the big solid and
hollow circles are non-local and local nodes respectively[15].

can be formulated as

Atot = ALC
({

x
LC
})

+ ANL
({

x
NL
})

+ ASH
({

x
SH
})

(5)

where Atot is the total free energy of the whole system, and ALC, ANL and ASH the free energy in local
region, non-local region and hand-shaking region, respectively. Simulation in Ref.[15] demonstrates that
the ghost force can be avoided in the HMCST method due to the unified formulation of Helmholtz free
energy in local, nonlocal and hand-shaking regions.

III. SELF-ADAPTIVE ALGORITHM
The key issue in a self-adaptive algorithm is the refinement criterion, i.e., a standard to judge whether

a cluster should be refined or not. As we know, dislocation is the most common defect in crystalline
solids. The details of dislocation structures, mechanism of their nucleation and motion can profoundly
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affect the macroscopic response of the material. Hence, the refinement criterion we propose in this paper
is designed for this kind of defects.

A crystalline material, which is supposed with no defect in initial configuration, consists of a regular
array of atoms, forming crystal lattice. When extra force is applied, the lattices will undergo deformation.
If the deformation is small, the response is elastic absolutely. However, when the deformation exceeds
a certain level, a dislocation appears, distorting nearby planes of atoms. During this process, shear
deformation of lattice is an important factor that results in dislocation.Therefore, properly characterizing
the shear deformation of lattice is the first step in the construction of refinement criterion.

Now, we use a two-dimensional example to illustrate how to characterize shear deformation of lattice
in CST simulation. In CST method, the crystal is partitioned into clusters represented by nodes at
vertices of each cluster. Let’s consider a particular node, whose position before deformation is x, and
after deformation x

′. The displacement of the node is given by the displacement vector u = x
′−x. The

local deformation of cluster is characterized as the gradient of the displacement, which is a two-order
tensor defined as

T = ∇u (6)

We assume the initial configuration is a prefect crystal and atomic slips only occur along the most
closely packed direction in the crystal. For a particular slip system α, a local coordinate system is
established by setting the slip direction s

(α) and the normal of the slip plane m
(α) as the base vectors.

Hence, the displacement gradient can be represented in term of their components and coordinates as

T =
∂us

∂xs
s⊗ s +

∂um

∂xm
m⊗m +

∂us

∂xm
s⊗m +

∂um

∂xs
m⊗ s (7)

In Eq.(7), the items
∂um

∂xs
represent the simple shear deformation in the slip direction, and θ =

tan−1

(
∂um

∂xs

)
, as shown in Fig.2. We define the components

∂um

∂xs
as ‘slip shear deformation’ and label

it ‘K’, which is a key quantity representing the magnitude of simple shear deformation that occurs in
slip direction.

Next,we need to calculate the gradient of slip shear deformation. InCST simulation, the displacements
of atoms in cluster are linearly interpolated by those of the nodes at vertices of cluster. As a result,
the deformation field is approximately uniform in each cluster, but discontinuous between adjacent
clusters. Hence, the computation of slip shear deformation gradient can not be obtained directly from
the derivative of the discontinuous slip shear deformation field. In our scheme, we employ the particle
method approximation[19] to generate a local continuous field for derivation.

The particle method approximation is a method of constructing local approximation field within
the range of a discrete set of known data points. As illustrated in Fig.3, the triangle with solid lines is

Fig. 2. Idealized simple shear deformation that occurs in the
slip direction. This shear deformation may result in atom-
istic slip in crystal.

Fig. 3. The triangle with solid lines is the cluster in CST
formulation, and the black solid dots, like a, b and c, is
the central of these clusters. The slip shear deformation of
point a, b, and c can be obtained from Eq.(7). The gray
hollow dot named D is an arbitrary point in the region,
whose value of slip shear deformation is determined by the
neighboring discrete black dots a, b and c.
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the cluster in CST method; and the solid black dots are known data points at the centre of cluster. The
slip shear deformation of a known point is the cluster’s value calculated from Eq.(7). The hollow circle
noted as D is an arbitrary point in computational region, and its slip shear deformation is unknown
and to be determined by those of known data points.

In particle method approximation, the slip shear deformation field can be approximated by

Kh(x) =

Nc∑
I=1

W (x− xI , h)K (xI)SI (8)

Nc∑
I=1

W (x− xI)SI = 1 (9)

where Kh (x) is the approximated local slip shear deformation field of point with coordinate x,
W (x− xI , h) is the kernel function (h is the smoothing length), K(xI) is the value of slip shear
deformation at the point of the central of cluster I, SI is the area of cluster I, and Nc is the number
of clusters in the simulation. In this paper, the Gaussian function is chosen as kernel function

W (x, h) =
1

(πh2)n/2
exp

(
−x

2

h2

)
(1 ≤ n ≤ 3) (10)

where n is the dimension of the computation. It should be noted that the kernel function attenuates
quickly over distance. Therefore, the field of slip shear deformation in a cluster is mainly affected by
the deformation of adjacent clusters. In addition, the selection of kernel function is just a smoothing
technology, which has little effect on the computational result. Actually, we tried different kernel functions
in our simulation such as cubic spline, Gaussian function, and obtained the same results.

The gradient of slip shear deformation between two arbitrary points A and B, with coordinates xA

and xB respectively, can be represented in the form of finite difference as

G(s) =
Kh (xA)−Kh (xB)

rAB
(11)

where G(s) is the gradient of slip shear deformation, Kh (xA) and Kh (xB) are the slip shear deformation
calculated in Eqs.(8) and (9) at point A and B, respectively.

In CST method, if we select points A and B as
the intersection points of the circum-circle of the
cluster and the line through the mass center (point
O) perpendicular to slip direction (as shown in
Fig.4),we obtain the gradient of slip shear deforma-
tion between A and B from Eq.(11). If G(s) is small,
it implies that the deformation in the local region
is not very heterogeneous and the current parti-
tion of cluster can meet the accuracy requirement
in this region, and thus no refinement is needed.
However, cluster in which G(s) is greater than some
prescribed tolerance is targeted for refinement. Re-
finement then proceeds by adding three new nodes
at the mid-side of the targeted cluster.

This refinement may continuously reduce the
size of clusters. However, to ensure the validity of
the generalized Einstein approximation employed
in the Helmholtz energy calculation for clusters,

Fig. 4 The triangle with solid lines is the cluster to be inves-
tigated. Point O is the mass center of the triangle. The circle
with dashed lines is the circum-circle of this triangle. Line s

is in the direction of slip, and line m is perpendicular to it.
Both line s and line m run through point O. A and B are the
intersection points of the circum-circle and line m.

the size of cluster cannot be too small[15]. For two-dimensional simulation, the radius of inscribed circle
of cluster would be larger than the truncated distance of inter-atomic potential energy, which physically
implies that the deformation of the central atom of cluster is not affected by the atoms in other clusters.
Hence, the cluster size is restricted to larger than the truncated distance. If the size of cluster gets
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smaller than the truncated distance, the cluster will be transferred into molecules completely.
To sum up, the self-adaptive algorithm includes the following steps:
1. Calculate the slip shear deformation of every cluster.
2. Calculate the gradient of slip shear deformation G(s) of every cluster by particle method approx-

imation.
3. Refine clusters whose G(s) is greater than prescribed tolerance by adding mid-side nodes.
4. After refinement, if the size of new cluster is smaller than the truncated distance, the cluster will

be eliminated and this region is transferred into MST.

IV. EXAMPLE
In this section, we will validate the proposed adaptive algorithm by simulating a uniaxial compression

process and comparing the results obtained from self-adaptive molecule/cluster statistical thermody-
namics (SMCST), MST and CST methods respectively. For a two-dimensional single hexagonally packed
lattice of Cu, we implement a uniaxial quasi-static compressive loading at 300 K, as shown in Fig.5.
The initial dimensions of the sample are 67.3 nm×32.7 nm, containing 38077 atoms. Figure 6 shows
the initial cluster partition in SMCST and CST simulation, and the total number of cluster and node
are 120 and 72, respectively. All these clusters are equilateral triangles containing 318 atoms. For all
the three simulations, the left end is held fixed, free boundary conditions are use in two horizontal
boundaries, and right end of the sample moves 0.2 nm in each loading step. Lennard-Jones potential

e(r) = 4εp

[(r0

r

)12

−
(r0

r

)6
]

(12)

is adopted to idealize the interaction between atoms in our calculation where r0 = 2.3276 Å and
εp = 0.4912 eV are parameters, and the truncated distance rc = 7.8379 Å[20].

Fig. 5. Schematic of initial atomic configuration of a
two-dimensional hexagonally packed lattice under uniax-
ial compression. For all the simulations, the atoms on the
left end are held while those on the right end move.

Fig. 6. Initial partition of clusters in SMCST and CST sim-
ulations. There are 120 clusters with 72 nodes. Both size
and shape of these clusters are uniform.

In order to facilitate the comparison of the results, the stress is defined as the derivative of Helmholtz
free energy with respect to the displacement of the moving boundary, that is

σ = − 1

L0

∂A

∂L
(13)

where L0 is the initial width in vertical direction and L is the current length.
We first study the stress-strain curves obtained from different simulations, as shown in Fig.7. Prior

to point D in the SMCST curve, the response is completely elastic and these curves are found to be in
excellent agreement with each other, indicating that all these methods can accurately simulate elastic
deformation in the initial phase.

The atomic configuration at points E and G are shown in Fig.8, which show dislocation slip from point
D to E, and point F to G, respectively. Hence, the stress drops in the curves of SMCST method and MST
simulationcorrespond to the sliding of dislocation. However, the CST method does not reproduce this
mechanical behavior at all. This is not surprising, because CST simulation eliminates the atomic level
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Fig. 7. Stress-strain curve obtained CST, MST, and SMCST simulation respectively.

Fig. 8. Atomic configurations of SMCST (a) and MST (b) simulations after the first slip at point E and G, respectively.

deformation details and suppresses localized deformation completely. More importantly, both MST and
SMCST demonstrate the slipping of atoms along the most closely packed direction as theoretical analysis.
Figure 8 shows the atomic configurations from MST and SMCST after their first slips, respectively.
The slip zones predicted by MST are symmetrical in both the most closely packed direction, while the
SMCST loses the symmetry. The reason is that SMCST predicted more slips in one direction compared
with MST because of interface between MST and CST. Thus it inhibited the emergence of slip in the
other direction.

Fig. 9. Nonlocal (MST) and local (CST) region at the points A, B, C and D in the strain-stress curve of SMCST . The
black zone is the nonlocal (MST) region while the white is local (CST) region. The triangles in the local region are the
clusters in simulation.
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Figures 9(A)-(D) show the region patition at points A, B, C, D in stress-strain curves, respectively.
The black zone is the nonlocal (MST) region while the white zone is the local (CST) region. The
triangles in the local region are the clusters in the simulation. Obviously, some clusters have been
refined adaptively and some even have been transferred into atoms entirely for capturing atomic level
configuration details. In addition, the nonlocal (MST) region gradually expends as the deformation
of compression increases. Finally, the MST zone forms two strips, which is slip band essentially. The
directions of the two strips make an angle of about 30 degree with the horizontal axis, which is the
most closely packed direction for the lattice. Figure 9 proves that the above-mentioned self-adaptive
algorithm can effectively find clusters to be refined and transferred to molecular simulation, and the
refinement and transferring techniques works well in the simulation.

Finally, let us compare the computing efficiency with the same PC. Figure 10 shows the computation
time consumed in MST and SMCST method, respectively. For the same simulation, the calculation
for each loading state takes about 9.78 minutes in average for SMCST, while about 130.38 minutes for
MST. Thus, the adaptive method has very high computing efficiency compared with MST by at least
13 times.

Fig. 10. CPU time consumed in the simulation of uniaxial quasi-static compression with SMCST (a) and MST (b) method,
respectively.

V. CONCLUDING REMARKS
The rapid evolution of nanotechnology necessitates novel, sophisticated, and physically based ap-

proaches to bridge the gaps between different length and time scales. In this paper, a self-adaptive
molecular/cluster statistical thermodynamics (SMCST) method for the simulation of quasi-static de-
formation at finite temperate is developed and verified. The SMCST method is based on MST and CST
methods, which couple different spatial and temporal scales in a unified framework by treating atoms as
oscillators and particles simultaneously, as well as clusters. In the self-adaptive algorithm, the gradient
of slip shear deformation is calculated and used as the criterion for cluster refinement. In addition, the
cluster is to be transferred to molecular when its size gets smaller than a critical value. The simulation
of a quasi-static uniaxial compression at 300 K proves that the self-adaptive algorithm can accurately
find the clusters to be refined or transferred to molecular, and efficiently refine or transfer the clusters.
The SMCST method has also been demonstrated to be significantly faster than the MST method.
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