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Abstract

In this work three dimensionless parameters are introduced in the debate concerning hard contact models.
These parameters are related to the overall adhesive contact area, curved surface contribution and surface
interaction forces outside the contact region. With the variations of these three parameters, the relations
and transitions between the different hard contact models such as Hertz, Bradley, Johnson—Kendall-Roberts
(JKR), Derjaguin-Muller-Toporov (DMT) and Maugis—Dugdale (MD) models are presented in a systematic
way. The combination of the three parameters provides a new hybrid model. The influence of these three
parameters on the contact between spheres has been studied. By analyzing the pressure profiles of contact
region, two new instability jumps are proposed. The instability jumps together with the three parameters are
used to explain some recent experimental and numerical observations which deviate more or less from those
predicated by the classical hard contact models.
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1. Introduction

In 1882, Hertz [1] worked out the famous contact theory relating to the contact
of two elastic spheres. In 1932, Bradley [2] found that the amount of external
force required to pull off two rigid spheres is —4mwy R (where y is the work of
adhesion, R = R1R2/(R1 + R3), and R, R; are the radii of the two spheres). In
1934, Derjaguin [3] gave a more general form for the pull-off force of two spheres
separated with varying separation distance by using the approximation known as
the Derjaguin approximation [4]. In 1971, Johnson, Kendall and Roberts of Cam-
bridge University developed their famous adhesive contact model known as the
JKR model [5]. In 1975, Derjaguin, Muller and Toporov [6] of Soviet Union Acad-
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emy of Sciences developed a model known as the DMT model. Heated debates
over the merits of the JKR and DMT models have been exchanged for years be-
tween the English school [7, 8] and the Soviet Union school [9, 10]. The major
discrepancies in the JKR model and DMT model are: (1) in the JKR contact re-
gion, there is a tensile annulus zone around the contact edge and a compressive
circular zone around the center and only a compressive Hertzian pressure exists
in the DMT contact region; (2) the DMT model considers the surface interaction
force outside the contact region and the JKR model does not; (3) the JKR model
predicts that during separation the pull-off is accompanied by an instability jump
when the external load reaches —3my R (here the negative value stands for tensile
force) and the DMT model predicts a continuous separation until the point contact
with the corresponding pull-off force of —4my R. In 1977, Tabor [11] noticed the
neck formation during contact and the neck height, held the keys to differentiating
the applicability ranges of the JKR and DMT models. Tabor defined a dimension-
less number p = [Ry?/(E 218)]1/ 3 (where zg is the equilibrium separation of two
half-spaces; 1/E = (1 — vlz)/El +1- v%)/Ez, where E7 and E are the Young’s
moduli of the two contacting bodies; and vy, v, are their Poisson’s ratios). Physi-
cally, the Tabor number u indicates the ratio of (the order of) neck height to zo [11].
In 1979 and 1980, two similar methods: the ‘soft’ contact method by Hughes and
White [12] and the self-consistent method by Muller, Yushchenko and Derjaguin
(MYD) [13] were independently proposed. The fundamental difference between
the ‘soft’/self-consistent methods and the classical ‘hard’ contact model is as fol-
lows: in ‘soft’ contact theory, the key concept of perfect flatness over a well-defined
contact region in ‘hard’ contact theories is replaced by the physically consistent
surface force [12]; the self-consistent method takes into account the dependence of
molecular surface forces of attraction and repulsion on the distance between bodies
[14]. In 1983, Muller, Yushchenko and Derjaguin conducted a computation using
the Lennard—Jones (LLJ) force law to describe the molecular surface interaction and
the smooth transition of the pull-off force from the DMT value to the JKR value,
as shown in reference [14]. In 1992, Maugis [15] used the Dugdale approximation
for the force induced by the LJ potential [16] and linear elastic fracture mechan-
ics (LEFM) approach to develop a model now known as Maugis—Dugdale (MD)
model. Unlike the JKR contact pressure approaching infinity at the contact edge,
the pressure inside the cohesive zone (an annulus around the contact edge) of the
MD model is the theoretical stress of the material (o0p), i.e., the maximum attrac-
tive stress due to the LJ potential. A dimensionless number called elastic number,
A (A =1.6u), was used in the MD model to show the transition between the DMT
and JKR models. In 1997, Johnson and Greenwood [17] used two dimensionless
parameters: P=P /(mty R) (P: external load) and A to construct an adhesion map,
which demarcates the applicability ranges for the Hertz, Bradley, DMT, MD and
JKR models. Johnson and Greenwood’s adhesion map contains only the portion of
P > 0 and the P < 0 part of adhesion map as given by Yao et al. [18]. Zhang’s
analysis on the contact pressure profile inside the contact region and the surface
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interaction forces outside the contact region [19] shows the transition between the
different hard contact models. However, the curved interface effect is not included
in either of the references [18, 19].

Except for the Bradley model, the above classical ‘hard’ contact models all have
a flat contact areas [19]. Flattening is not permitted in the Bradley model of rigid
spheres which allows no elastic deformation [20]. A direct impact of the contact
area flatness is on the calculation of the adhesion energy, which together with the
elastic energy of deformation determines the final contact state [19, 21]. The ex-
periments by Rimai et al. [22, 23] show that for some small particles, the 2/3 JKR
power-law dependence of contact radius on particle radius is violated and an anom-
alous 3/4 power-law is found. Rimai et al. ruled out the plastic deformation causing
the anomalous power-law [22, 23]. Rimai et al. ascribed this anomalous power-
law to the curved contact interface effect [23]. From the viewpoint of the LJ force
law, the contact region cannot be exactly flat because it is incommensurate with
the variation of contact pressure across the area [12]. The numerical computations
using the LJ potential also show the nonflatness of surface profiles in the contact
region [25-27]. In 1965, Goodman and Keer [28] studied the contact of a sphere
with a spherical cavity. Their computational and experimental results deviate sig-
nificantly from Hertzian one due to the curved contact interface effect. However,
the contact of a sphere with a spherical cavity studied by Goodman and Keer [28]
is a type of conforming contact in which the sphere and spherical cavity fit closely
together without any deformation [21]. The classical hard contact models including
the Hertz, DMT, MD and JKR study the nonconforming contact, in which two bod-
ies have dissimilar surface profiles [21]. In this paper two dimensionless parameters
are introduced to incorporate the curvy contact interface effects of nonconforming
contact.

According to Johnson and Greenwood’s adhesion map [17], the JKR model ap-
plies to cases with large Tabor numbers, i.e., u > 5 (with large compliant spheres
with large adhesion energy) while the DMT/Bradley model applies to case with
small Tabor numbers of u < 0.1 (i.e., small hard spheres with small adhesion
energy) and the MD model applies to an intermediate range of Tabor numbers.
However, the following observations are found in experiments and self-consistent
computations for a system with a fixed Tabor number. (1) Israelachvili ef al. [29]
found that the JKR model provides a better description of surface deformation in
contact before pull-off; however, the DMT model is more accurate in predicting the
pull-off force. (2) Greenwood [30] found from his self-consistent numerical simula-
tion using the LJ force law that the force-separation curves with the relatively large
fixed Tabor numbers (u > 2) are better approximated by the JKR model when the
approach distance is positive (two bodies are pressed together) or slightly negative;
whereas, when the negative approach distance is relatively large (i.e., with large ten-
sile load), the curves are better approximated by the DMT/Bradley model. During
separation the surfaces of the contacting bodies are found to experience a dramatic
deformation in a small range of the approach distance changing sign [25, 26]. The
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surface profile change results in the variations of both the total surface energy inside
the contact region and surface interaction forces outside the contact region. The in-
troduction of the three dimensionless parameters is an effort to capture and explain
the above observations.

Another issue is the instability separation process called jump-off. In the JKR
model, the contact radius of a = (9mty R? /4E)1/ 3 becomes zero all of sudden at
P = —3nyR. In the MD model which is based on linear elastic fracture mechanics
(LEFM) [15], there is a peripheral annulus zone called cohesive zone where the in-
terface separation/failure occurs. This failure occurs by crack propagation from the
contact periphery towards the center. Barenblatt [31] argues that the cracked sur-
faces separate continuously (as predicted by the Hertz and DMT models). It needs
to be pointed out that the JKR model which uses the approach of energy balance [5,
21], according to Hui et al. [32], is also LEFM-based. Physically, jump-off means
that the whole contact interface fails all at once rather than in a continuous way with
the crack propagation. Recent theories show that when the radius of the hemispher-
ical tip of a cylinder is small enough, the cylinder tip/substrate interface will reach
strength saturation [24], i.e., become flaw-insensitive [32, 33]. Once the interface is
in the flaw-insensitive regime and the external load reaches a critical tensile value,
the entire interface will fail instantly, i.e., jump-off occurs. Our analysis shows that
when the contact radius reduces to a critical value, the JKR/MD contact pressure
distribution pattern of the peripheral tensile annulus zone and inner compressive
circular zone, can no longer exist. Instead of jumping to a total separation, we pro-
pose the following two jump scenarios: (1) the JKR curve jumps to the DMT curve
and the whole contact pressure thus becomes compressive. The separation then pro-
ceeds continuously, i.e., the failure mode of crack propagation holds. (2) The jump
causes the whole contact pressure to become tensile and the flaw-insensitive failure
mode of jump-off [24, 32, 33] will then lead to the final total separation.

The classical hard contact models (Hertz, Bradley, DMT, MD and JKR) in
essence are all approximate ones and each model only applies to a certain range.
Each model has its own assumptions to simplify the contact problem. The fact that
the contact solution is insensitive to the nature, or say, the functional form of surface
interaction provided that og and 2y are accurately given [15, 34] also justifies such
simplification. However, some important assumptions used in the hard contact mod-
els are incommensurate with the self-consistent method [35], which yields wrong
predictions in hard contact models (for example, the surface force calculated by
the thermodynamic approach in hard contact [36]). The thermodynamic approach
[35], or say, the energy approach, is to calculate the total energy (elastic deforma-
tion energy plus the total surface energy) and then differentiate it to obtain the total
surface force/tensile pressure. In the calculation of the total surface energy, for ex-
ample, in the JKR model, the flatness of contact area is explicitly assumed [19, 21].
Therefore, the JKR varying contact pressure profile (also including the DMT and
Hertz ones) inside a flat contact region are incompatible with the LJ force law. On
the other hand, the force approach [35, 36] directly sums the local surface forces
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over a gap having a preset fixed configuration, which is also the one used in the
Bradley model [2]. Because surface interaction forces induce deformation (and de-
formation then changes the surface interaction forces), the force approach violates
the self-consistent rules by presetting a fixed configuration [35, 36]. The thermo-
dynamic approach and force approach in hard contact can lead to two different
predictions on the surface forces as demonstrated by Muller et al. [35] and Pashley
[36]. The reason causing the surface force difference calculated by the thermo-
dynamic approach and force approach in hard contact is that these two approaches
preset the different sphere surface profiles instead of allowing the system to come to
an equilibrium profile in a minimum energy configuration [35, 36]. In contrast, the
self-consistent method ignores those assumptions of presetting contact body surface
profile and offers a much more refined way of computing the contact problem by us-
ing the LJ potential. In a self-consistent method, the thermodynamic approach and
force approach give completely equivalent results [35]. However, the mathematical
handling of singular integrand, path-grabbing numerical method, the ‘appalling’
convergence rate and large amount of computation [30] required/encountered in a
self-consistent method are, by any standard, a daunting job to a researcher. The
three dimensionless parameters in this paper are introduced to: (1) capture the devi-
ations as observed in both experiments and self-consistent methods; (2) thus offer
better approximations; (3) more importantly, keep the beauty of simplicity of the
classical hard contact models.

2. Surface Interaction Force and Derjaguin Approximation

The following derivation on the total surface interaction force is the force approach,
which gives correct force value as compared with the thermodynamic approach
[36].

If o (h) is the surface interaction force per unit area, the total surface force outside
the contact area, Pygqw, can be summed up as follows [36]:

Pvdw=/a(h)dA=/Oocr(h)d(nr2), (1)

where a is the contact radius and 4 is the separation distance. If the parabolic ap-
proximation is used for the spheres surface profiles, i.e., 1 = r%/2R, equation (1)
becomes:

o0
Pyaw =271tR / o (h)dh. 2)
Z
For the LJ force law, o (h) is given as follows [4, 25, 26, 30]:
16y {20\ (20’
h=—I|(—) — | — . 3
m=2r| () - (F) ®

Again, 2y is the work of adhesion and zg is the equilibrium separation of two
half-spaces in the LJ surface force law [37]. Here the positive value of ¢ indi-
cates attraction and the negative is repulsion. The maximum attractive o (k) is
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oo ~ 1.03 x 2y /z0 at h =~ 1.255z¢. The term oq is often referred to as the theo-
retical stress of materials or cohesive strength. Substitute equation (3) into equation

(2), we have:
4020\ 1(z20\°
o= [ (2) - (2)] 0
Z 3\ z

During the integration of equation (2), z is treated as a given fixed value [4]. There-
fore, equation (2) physically gives the interaction forces of two flat surfaces. The
Derjaguin approximation states that the interaction energy/force between small ar-
eas of (slightly) curved solids can be (accurately) approximated by the interaction
energy/force of two flat surfaces [4, 30]. Physically, the 3-9 force law of o (%) in
equation (3) is the surface force per unit area of two flat half-spaces separated by a
distance /&, which is derived from the 6-12 LJ potential law for two isolated mole-
cules [37, 38]. In many self-consistent computations [26, 27, 30], equation (3) is
used as the local pressure of a curved contact interface. So, in that sense, besides
equation (4) which expresses the total surface force, equation (3) is also referred to
as the Derjaguin approximation [38]. From the point of view of elasticity, o (k) is a
normal surface traction [37]. Instead of using the Derjaguin approximation of equa-
tion (3), Argento et al. [39] derived the surface traction by directly summing up the
body forces of molecules as given by the LJ 6-12 potential through a double vol-
ume integration. Argento et al. [39] also showed that when (at least) one contacting
body is a half-space, the Derjaguin approximation which ignores the surface profile
and is usually regarded as an approximation, in fact gives the exact total surface
force. However, Wu [38] demonstrated by using Argento’s approach [39] that when
the sphere radius is very small (comparable with zg and the commonly accepted zg
value is 0.4 nm [26]) or the Tabor number is large, the Derjaguin approximation
of equation (3) is not accurate in the contact of a rigid sphere with an elastic half-
space. While, when the sphere is very small, problems concerning the validity of
the continuum theory will arise [37].

The maximum attractive surface interaction force obtained from equation (4) is
Pygw =4n Ry at z = zp. The tensile external load required to balance the attractive
surface interaction force is thus P = — P,qw and the maximum tensile external load
is —4m Ry, which is the DMT pull-off force. Here it needs to be emphasized, that
Pyaw is the surface force outside the contact area and the equilibrium equation of
P = —P,gw can only be valid for two cases: (1) the Bradley model (there is no
contact region for two rigid spheres, i.e., a = 0. z is ‘the nearest distance between
the centers of surface molecules of the spheres’ [2], and therefore Pygw of equation
(4) is the only force for an external load to balance); (2) for the DMT model at the
point of separation (for the DMT model, the spheres separate at a = 0 and there-
fore there is no force contribution from the contact region at that critical point), the
equation of P = — Pyqw does not deal with any elastic deformation, which is also
often referred to as the Bradley model [30]. The JKR pull-off force of —3w Ry can
be obtained by setting z & 1.3z in equation (4). Although the JKR pull-force of
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—3nRy and the DMT pull-force of —4nRy differ by 33%, both imply that the
pull-off force scales linearly with y and is independent on the Young’s moduli of
contacting spheres. The linearity dependence of pull-off force on y is demonstrated,
to good approximation, by a self-consistent model [25]. However, because there is
elastic deformation in both the JKR and DMT models, the sphere pull-off forces
independence on Young’s moduli is puzzling [15]. For conical and flat-ended cylin-
der indenters, the pull-off force is dependent on the Young’s modulus [40]. Muller,
Yushchenko and Derjaguin [13, 14] and Maugis [15] showed the smooth transition
of the sphere pull-off force from —4n Ry at u =0to —3w Ry at u = oo (the differ-
ent dimensionless parameters used by Muller, Yushchenko and Derjaguin [13, 14]
and Maugis [15] are the Tabor number p with different numerical factors [30]).

To derive equation (4), the parabolic approximation of surface profile and the
Derjaguin approximation are used. These two approximations in essence violate the
self-consistent rule by presetting the surface profiles. Therefore, it is not surprising
that the larger tensile pull-off force (P < —4m Ry ) can be derived by other methods.
For example, Attard and Parker [25] show in their Fig. 7 that the pull-off force ob-
tained by a self-consistent method reaches the minimum of about 0.8 x (—4mwRy)
(their y and our y differed by a factor of 2); and their pull-off seems to increase
indefinitely with the increase of the dimensionless parameter o. The dimension-
less parameter o defined by Attard and Parker is shown to be related to the Tabor
number (1) as o = 0.543/2 [30]. However, Greenwood’s self-consistent method
together with others (in his Fig. 7) [30] shows that this —4w Ry is the upper limit
of the pull-off force.

3. Contact Pressure, Adhesion Energy and Equilibrium

The contact pressure profile in the JKR model is assumed to have the following
form [21]:

p(r) = po(1 —r2/a®)'? + pi(1 — r?/a®) 12, (5)

The first term of po(1 — r?/a*)!/? is the compressive Hertz pressure; the second
term of py (1 — r?/a*)~1/? is a tensile one, which is often referred to as the Boussi-
nesq pressure. The negative p(, value is, so far, unknown. The positive pg is found
by an elasticity approach of solving a Boussinesq problem, which has the following
expression [21]:

. 2Ea ©)
 wR’

The pressure inverse square root singularity at the contact edge (r = a) is given
by equation (5). This singularity is the Mode I characteristic of an interface crack
between an incompressible elastic solid and a rigid solid [32]. Therefore, the contact
problem is often treated as contacting bodies with circumferential cracks [15, 24].
Here Griffith’s concept of energy release rate for brittle materials [41] is applied to
find the negative tensile pressure pj,.

po
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Let y; and y» be the surface tensions of two surfaces before contact, and y;; be
the interface tension after contact. Usually, y; + y» > y12, which is to say that when
two surfaces unite to form an interface, the net free energy is reduced. This energy
reduction, often known as the Dupré work of adhesion [42], is:

2y =yv1+y2—v12. (7)

In an adhesive contact, the total free energy consists of two parts: the elastic energy
and the adhesion energy inside the contact area, i.e., Ut = Ug + Us. The elastic
energy due to deformation is calculated as follows [21]:

2.3
mea 2 5 2 >
UE=T<EPO+§pop6+p6>, (8)

where pg and p;, also have the following relation [21]:

5= (po+ pl. ©)
2FE 0

Herer § is the approach of the center of sphere with respect to the zero force position
of h = zg [30]. In conjunction with equations (6) and (9), p(/) is found to be:

p(/)= E(é _ g) (10)
m\a R

Substituting equations (6) and (10) into equation (8), the elastic energy Ug now
becomes:

a’ 28a> )
UE=E W—§7+Cl5 . (11)
For a fixed 8, dUg/da is:
dUg a 8\* n%
Te=re(G 1) =T 12

Before we start the calculation of the total surface energy inside contact region
(adhesion energy), it is necessary to have a discussion on the flatness of the contact
region. The contact region with the pressure profile given in equation (5) is flat from
an elastic point of view [19]. Here we just give a brief description. The compres-
sive Hertz pressure of po(1 —r?/a®)!/? generates a parabolic displacement and the
tensile Boussinesq pressure of p;(1 — r2/a*)~1/? generates a constant/translational
displacement. If the surface profile of an un-deformed sphere is approximated to
a parabola as given above, the parabolic displacement due to the Hertz contact
pressure will cancel exactly the curviness of the un-deformed bodies and make the
contact region flat. Because the Boussinesq pressure only generates a constant dis-
placement, the contact surface shapes of nonadhesive (Hertz) contact and adhesive
(JKR) contact should be the same. However, the fringes of equal chromatic order
(FECO) images by Israelachvili et al. [29] show differently: the surface configu-
ration of Hertz contact bifurcates more smoothly; the JKR bifurcates very sharply
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Figure 1. Schematic diagram of the contact of two elastic spheres and related parameters.

and the contact region looks flat. Muller et al. expressed their puzzlement on this
experimental observation [35]. The term p(r) of equation (5) varies monotonously
inside the contact region and physically, the pressure is induced by the LJ force
law of equation (3). The contact region thus cannot be (exactly) flat according to
the self-consistent rule because, otherwise, the contact pressure would be constant
inside a flat contact region according to equation (3).

In general, as shown in Fig. 1, the contact interface is assumed to be a curved one
rather than a flat one. Therefore, A, the area of the curved surface in contact, is
approximated to a part of a spheroid surface rather than a flat one of ma? as follows:

4R?

where A is defined as A = R — +/R2 — a2 ~ a?/2R. The total surface energy of
the curved contact area can now be written as:

2
Acs=n<a2+A2)=m2(1 +“—), (13)

2 a’

Us=-2yJAi=—-2yJ7a (1+4R2). (14)
Here J is a dimensionless number. Physically, J is the ratio of effective adhesive
contact area to A¢s. There are two major reasons for adding this J parameter. Firstly,
Acs 18 just a nominal geometric area. To have the adhesive contact area equal to the
geometric area, the surfaces of two contact bodies must be ‘molecularly smooth’
[11]. In reality, the adhesive contact area is not equal to the geometric area because
of the roughness. Secondly, A is the area of a spheroid surface part, which in
essence is used as an approximation for the real contact area. There is no mech-
anism to guarantee that the curved contact surface under different P and y will
keep the surface shape of a spheroid. As shown in Attard and Parker’s Fig. 6(a)
presented by a self-consistent method [25], the contact surface profile is almost flat
when the approach /g is negative (kg is the separation distance between two cen-
ters of contacting bodies; negative hg corresponds to positive &, which physically
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means that two bodies are pressed together [25]) though a closer view reveals that it
is not exactly flat. The flat contact area is indeed a good approximation for this sce-
nario. However, when A is positive, the contacting surface profile becomes very
curved and thus the flat contact area approximation is not appropriate any more.
From Attard and Parker’s Fig. 6(a) [25], the contact surface profile experiences
only one dramatic shape change in a narrow range of 4o changing from negative
values to positive values: a flat one of negative hy and a curved one of positive
ho. There are no obvious contact surface shape changes in both the g > O range
and the hg < 0 range. The terms A and § are dependent on the external load, for
example, a large positive & value or a large negative hg value corresponds to large
compressive external load. The sign changes of zg and § are closely related with the
compressive/tensile change of the external load. It suggests that the external load
is a dominant factor in determining J. At the same time, Young’s moduli of the
spheres may also have an influence on /. When two spheres have similar Young’s
moduli, two J values in general should be used: one for the compressive external
load case to ensure a flat contact area, i.e., JAcs = Aot = Ta?; the other for the
tensile external load case to describe the curved contact surface. However, for a
rigid glass particle in contact with the highly compliant polyurethane substrate [22,
23], only one J value should be taken into account for the curved contact interface
effect.
The equation (12) by Rimai et al. [23] is:

ddna _ R 4 (15)
= = LT, ——=ada.
cos 6 R?2 — 42

Here cos® = +/R? — a2 /R and 6 is the angle shown in Fig. 1. This equation (15) in
essence is to account for the curved contact interface effect by transforming a (dif-
ferential) flat contact area into a (differential) spheroid area, which in our case is
defined by J = 1. Once again, the parabolic approximation of un-deformed spheres
is the reason for predicting the flatness of contact area. When a/R is small, the
parabolic approximation works fine [21]. When a/R > 0.4, the parabolic approx-
imation for the sphere surface profile and linear elasticity, no longer holds [37].
The exact expression for the spherical surface profile is required for the adhesion
strength computation [24] and the large contact radius case [43]. The parabolic
approximation assumed in the JKR, DMT and MD models also results in the incor-
rect prediction that the adhesive strength can surpass the largest possible theoretical
strength as the size of sphere radii reduces [24]. Clearly in equation (13) % is a
second order term when a/R is small, which should be ignored at first. However,
keep in mind that the curved contact interface also changes J and as shown later
this curved contact interface can have a significant influence on the contact state.

For equilibrium, the Griffith criterion requires d(Ug + Us)/da to vanish, giving:

2.2 2
Teat aUs a
=2 —4qnJ 1+— . 16
E D0 da T ya< 2R2> (16)
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4JEy a?
6=— 1 . 17
Po \/ Ta ( + 2R2> 17

The minus sign is chosen to let p, be tensile.
The following amount of external load P is required to balance the force due to
elastic deformation:

Therefore:

a 2
P =/ 2nirp(r)dr = (gpo + 2p(')) na’. (18)
0

The above equation only sums the forces inside the contact region, which is the
JKR case. For the DMT case which corresponds to the small Tabor number case
and thus has small ‘neck’ height, the surface interaction force outside the contact
area cannot be ignored. The surface interaction force acts like an additional exter-
nal load [44] and equilibrium is reached when the elastic restoring force balances
the combined effect of surface force and external load [36]. Equation (18) is thus
written as follows to include the surface interaction force outside the contact re-
gion:

2
P 4 Pyw = (gp() + 2p6) na’. (19)

Here Pyqw is given by equation (1). Equation (19) also offers us a framework to
show how different classical hard contact models are related:

Bradley model: Because there is no elastic deformation for rigid spheres, pg =
P, = 0, the equation (19) recovers the Bradley model.

Hertz model: Because it involves a nonadhesive contact, Pyqw of the surface
interaction force outside the contact region and py, induced by the adhesion, are both
zero. When Pyqw = pé = 0, equation (19) recovers the Hertz model (in conjunction
with equation (6)).

DMT model: p, = 0 because in the DMT model there is no tensile pressure in-
side the contact region. Because of its short ‘neck’, the surface interaction forces
outside the contact region is accounted for. So when p6 =0 and Pyqw is taken with
the maximum value of Pygw = 4Ry, equation (19) recovers the DMT model (in
conjunction with equation (6)).

JKR model: Because a flat contact area is formed, equation (17) is thus modified

as py = — ‘f—ay. Also because of its large ‘neck’ height, the surface interaction

force outside contact region can be ignored. So when p6 =— % and Pygw =0,

equation (19) recovers the JKR model (in conjunction with equation (6)).
The MD model is expressed by two coupled equations [15], which cannot be

recovered by equation (19). The MD pull-off force is between the JKR one and
DMT one [15, 19, 44].
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In conjunction with equations (6) and (17), equation (19) now gives the force-
contact radius curve, after some simple manipulations as:

4E(13 2 a2
P- =16nJEya®( 1+ —
( 3R ) R ( +2R2)

4JE a?
+4Tra2Pde\/ my <1 + 2R2> + P2

(20)

The equation (20) presents the P—a curve. From the viewpoint of self-consistent
method, the contact radius is an ill-defined concept [25-27]. The physical mean-
ings of contact radius for different contact models are also different, for example,
at the contact edge, the pressure of the Hertz model drops to zero and the pressure
of the JKR model goes to infinity at the contact edge [19]. In the self-consistent
method, it is the force-approach (P—§) curve that is used and that is presented in
references [25-27, 30]. Experimentally, measuring the normal displacement § is
also much easier than measuring the contact radius a [45]. However, many theo-
retical analysis [1, 5, 6, 15, 28] and experiments [5, 22, 28, 29, 46] are done using
the P—a curves. This paper adopts the P—a curve approach for comparison pur-
poses. The conversion of P—a curves to P-4 curves can be done through the é6—a
relationship given by Maugis [15].

The following two dimensionless quantities are introduced to nondimensionalize
equation (20):

a

F=—, A=—

P dc

where P, = 3nRy and a. = (9TER2)//4E)1/3 and (—P.) and a. are the pull-off

force and radius, respectively of the JKR model when P is the control parameter
[21]. The dimensionless form of equation (20) is as follows:

16 16
(F —A%?=4JA%(1 + pA?) + ?K,/J(l + BA?) + ?Kz. (22)

The dimensionless numbers 8 and « are defined, respectively, as follows:

337\ 371 y2\'"? 3737\ 2 Poaw ’

’3_4( 2) (R2E2> _4( 2) "R K Tamry P

Again, u = [Ry2 J(E 2zg)]l/ 3 in the above equation is the Tabor number. The equa-
tion (22) offers a hybrid model of accounting for the effects of both the curved
contact interface and the surface interaction forces outside the contact region. The
terms J, B and « are dependent on external load, adhesion energy, Young’s mod-
ulus, surface asperity, contact body geometry, etc. Or in other words, they are
dependent on the elastic deformation of the contacting bodies: J and § are used
to capture the curviness of the contact region, which has a direct impact on the total

surface energy; « indicates the surface interaction forces outside the contact region
and is directly related to the neck formation. Note, a large Tabor number means a

: 21




Y. Zhang / J. Adhesion Sci. Technol. 25 (2011) 1435-1464 1447

large neck height and thus a small «. In the small &g (or §) sign-changing range
accompanied by the dramatic surface profile change as observed in [25, 26], it is
possible for J, 8 and « to vary dramatically and at the same time, continuously.
How to capture these three parameters variations in that small &g (§ or external
load) sign-changing range is beyond the scope of this paper. The terms J, 8 and «
here are treated as constants to show how they influence the contact.

Once again, here we show how the different contact models are obtained with
the variations of J, 8 and « in equation (22). When J = x = 0, the Hertz model of
F = A3 is obtained. When J = 1 and 8 = « = 0, the JKR model of (F — A3)% =
4A3 is obtained. The JKR model can also be obtained by setting J = 1/(1 4+ BA?)
(B #0) and k = 0. The physical meaning of setting J =1 and 8 = « =0 is clear:
a flat contact area and zero surface interaction force outside contact region. The
physical meaning of J = 1/(1 4+ BA?) is so far not clear to us. In equation (22), the
term 4J A3 (1 + ,BAZ) + 13—6/{\/ J(1+ BA?) is due to the tensile pressure of pé, and it
vanishes with the assumption of Hertzian contact pressure. The equation (22) thus
becomes:

; 4
F=A"— 3% (24)
When « = 0 we have the Hertz model and when x = 1 we have the DMT model.
So physically, it is clear that the DMT model simply superimposes the surface in-
teraction forces as an additional external load to the Hertz model. For rigid spheres
there is no elastic deformation and thus zero contact radius (A = 0), and equation
(24) becomes the Bradley model of F = —%K.

The above statement is summarized in Fig. 2. Unlike the adhesion map presented
by Johnson and Greenwood [17], which indicates the applicability ranges of the
different contact models, the main idea of Fig. 2 is to show how different contact
models relate and transit to one another in a clear mathematical way by varying
these three parameters.

Now let us examine how J and g influence the contact (k is thus set as zero
for the time being). Figure 3 shows the F—A curves with different J and g values.
Clearly, for fixed F and B, the larger is J the larger is A. Also for fixed F and J,
the larger is Bth larger is A. Physically, with the value of 2y fixed, larger values
of J and B gives greater (negative) total surface energy and larger tensile pressure
inside contact area as indicated in equations (14) and (17), which as a consequence
pulls more body parts into contact. As noticed in Fig. 3, J = 0 is the Hertz model,;
J =1and B =0 is the JKR model. In Fig. 4, J is fixed as 1 and g varies from O to
0.3. Again, for a given load F, the larger is § the larger is the contact radius A. The
pull-off force is, by definition, the tensile force required to separate two contacting
bodies, which is also the maximum tensile force [14, 36]. The pull-off points are
marked with a circle in Fig. 4. At 8 = 0, the pull-off force is Fpyj.off = —1 of the
JKR model and the pull-off force increases with 8. At B = 0.3, Fyuloff = —1.44,
which exceeds the DMT pull-off force of —4/3. Here we must emphasize that J
and B are two phenomenological parameters used to capture the curved contact
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Figure 2. Adhesion maps on the transition of the different contact models.

interface effect. So far, we do not know in details how they vary with the external
load, adhesion energy, contact body geometries, etc. The variations of 8 in Fig. 4
demonstrate that the curved contact interface effect can be a mechanism with the
capability to cover the pull-off force transition from the JKR value to the DMT
value. This is a different transition mechanism from the previous ones [13—15], in
which the pull-off force transition is shown with the variation of the Tabor number
(with different numerical factors). The dimensionless Tabor number, u, indicates
the ratio of (the order of) neck height to zg [11]. The Tabor number thus determines
whether or how much surface interaction force should be taken into account, for
example, Pygw = 0 for the JKR model and Pygw = 4Ry for the DMT model.
In both the JKR and DMT contacts, the contact area is flat. Now let us have a
dimensional analysis on 8 defined in equation (23). Clearly 8 is due to the a?/2R>
term in equation (20). Ignoring the numerical factor, we have 8 = ,u%o. W is the
Tabor number and zo/R is the size ratio, which are two independent basic variables
used in the nanoscale contact mechanics study [37, 38]. Therefore, either large n
or large zo/R gives a nontrivial 8 value.

It is also interesting to notice that in the experiments done by Horn et al. [46], all
their measured contact radii are larger than that predicted by the JKR model, which
resemble the dashed and dotted curves of 8 # 0 in our Fig. 4. Israelachvili et al. [29]
also observed that though the JKR model better describes the surface deformation
in contact before pull-off, the pull-off force is found to be more consistent with the



Y. Zhang / J. Adhesion Sci. Technol. 25 (2011) 1435-1464 1449

1.8 |

1.6

1.4

1.2

< 1r

0.8+

T

0.6

04+

T

0.2

0
-2

Figure 3. The evolution of the F'—A curves as J changes. Here two groups of 8 = 0 (solid lines) and
B = 0.1 (dashed lines) are studied. J =1 and 8 = 0 is the JKR contact model and J = 0 is the Hertz
contact model.

DMT value. The curved contact interface effect can offer an explanation for that.
As shown in their Fig. 6(a) by Attard and Parker [25], when two bodies are pressed
tightly (negative h), their contact interface profile is almost flat (our J =1 and
B = 0 case and the JKR model); when two bodies are pulled away from each other
(positive hg), the contact interface profile (suddenly) becomes very curved, which
results in the (sudden) increase of 8 and thus a larger pull-off force closer to the
DMT value. The plots of the pull-off force and radius as the functions of J and B
are shown in Figs 5 and 6, respectively. Because the pull-off force is always tensile
(negative value), in Fig. 5, the pull-off force monotonously decreases with J and 8.
In other words, the curved contact interface effect results in a larger tensile pull-off
force. On the other hand, the pull-off radius in Fig. 6 monotonously increases with
J and B.

Another possible issue caused by the curved contact interface is the anomalous
power-law dependence of the contact radius on the particle radius under zero exter-
nal load observed by Rimai et al. [22, 23]. In their experiments of soda-lime glass
particle contact with a highly compliant polyurethane substrate, Rimai et al. [22,
23] showed that the power-law exponents of some particles is 3/4 rather than 2/3
predicted by the JKR model. Because of the rigid-soft contact, the contact inter-
face is supposed to be a curved one as indicated by equation (15) [23]. Rimai e?
al. humbly call their analysis ‘superficial’: the introduction of equation (15) does
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Figure 4. The evolution of the F'—A curves as 8 changes from 0 to 0.3 and J is fixed as 1. The solid
line is the JKR contact model.

Dimensionless pull-off force

0

Figure 5. Plot of the dimensionless pull-off force as the function of J and 8.

explain the anomalous 3/4 power-law exponent phenomenon, however, the major
drawback in their model as pointed out by themselves is that the tensile contact
pressure is not accounted for [23].
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Figure 6. Plot of the dimensionless pull-off radius as the function of J and 8.

Now, we introduce both the tensile pressure and curved contact interface effects
to see how the power-law exponent can be influenced. For the convenience of com-
parison, the dimensional governing equation of equation (20) is used and by setting
Pygw = 0, it becomes:

P WP Y P (25)
— =167 a — ].

3R 4 2R?
The derivation of the above equation uses equation (5) and the tensile pressure is
thus incorporated. If the curved contact effect is eliminated, equation (25) becomes

the JKR model as:
p_ AE@ ’ 16nEya (26)
— =16nEya’.
3R v

When P = 0, equation (26) leads to the following relation of the contact radius
under zero external load: ag = (%TV)I/ 3R?/3, which is the JKR 2/3 power-law.
Equation (25) becomes as follows when P = 0:

9] :
@z VR2(1+2%). @n

In the experiment, ¥ & 0.04 J/m? and E is in the range between 3 x 10° Pa
and 5 x 10° Pa [22]. Therefore, 97ty /E is about 0.32—0.5 um. In Fig. 7, we set
M =9ny/E as 0.3 um, 0.5 pm and 2.66 um, respectively. The reason for setting
M =2.66 ym is that ayp &~ R when M =2.66 uym and a larger M will lead to the
unrealistic result of ap > R. Here R is taken as 3.8 pm, 10.1 pm, 21.1 pm, 43.9 pm,
60.6 um and 101.7 um [22], respectively. The least-square method was applied to
curve-fit the In(R)—-In(ap) data points derived from equation (27) as a straight line
of k1x 4 ky. Clearly, the slope k1 in Fig. 7 has no significant change and the JKR
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Figure 7. In(R)—In(ag) plot of a rigid particle contact with a compliant substrate. M is defined as
M =97y /E and a straight line of k1 x + k3 is used for curve-fitting.

2/3 power-law works fine in this relatively large range of M. In contrast to the con-
clusion by Rimai et al. [23], the curved contact interface effect in our study does not
have any significant impact on the JKR 2/3 power-law. It is also worth mentioning
that some particles still obey the JKR 2/3 power-law in Rimai’s experiments [23].
The JKR model is derived from the linear elasticity of the half-space model and it
thus only applicable to the scenario that the contact radius is small compared to the
contacting body dimensions [21]. Johnson also explicitly states that the JKR model
is established for two similar homogeneous solids [47], not for the soft-hard con-
tact scenario. In the Rimai’s experiments [22, 23], the compliant substrate almost
engulfs half of the hard glass particle and a large elastic or even plastic deformation
may occur in the substrate. The plastic deformation which leads to an 1/2 power-
law relation [48] is excluded as a reason causing the anomalous 3/4 power-law [22,
23]. The large meniscus height in Rimai’s experiments [22, 23] is noticed, which
causes sharp surface shape changes at the edge of contact region. This, according
to Tabor [11], involves a large elastic strain and the classical linear elasticity cannot
be strictly applied, which could be the reason causing the anomalous power-law.

We now examine how the surface interaction force P,qw influences the contact.
Therefore, we set J =1 and 8 = 0 in equation (22) and the following equation is
obtained after some simple manipulations:

; 16 16
F=A%—\[4A3 + e+ e, (28)
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Physically, equation (28) retains the JKR pressure of equation (5) and recovers the
JKR model when « = 0.

The JKR model assumes that the attractive forces are confined in the contact
region and zero outside.

The attractive forces results in the tensile contact pressure of py(1 — r2/a®)~1/2
of equation (5) and this tensile contact pressure produces a constant displacement,
which is to form a neck. If the neck height is large (compared with zgp), the sur-
face interaction force outside the contact region can be ignored. In comparison, the
DMT model assumes that all the attractive forces act outside the contact region and
there is only a compressive contact pressure inside the contact region. Tabor argues
[11] that when considering the surface interaction outside the contact region, the
attractive surface force around the contact edge is so large that some extra surfaces
must be pulled in the contact. A tensile contact pressure must exist inside the con-
tact region to form a neck to reduce/insulate the attractive surface interaction force.
Otherwise, the attractive surface interaction force around the contact edge will con-
tinue to pull more surface into contact forever. Also, in the viewpoint of fracture
mechanics [15, 24, 32, 33], an annulus of tensile cohesive zone around the contact
edge is needed to start the crack propagation. On the other side, the JKR model
ignores the surface interaction force outside contact region, and therefore, may not
be applicable when the contact area is small [33]. Horn ef al. [46] experimentally
observed that their measured data with small contact radii around the pull-off point
do not fit the JKR curve in an adhesive contact though their data does fit the Hertz
curve fairly well in a nonadhesive contact experiment. We call equation (28) the
hybrid equation which includes the attractive forces both inside and outside the
contact region.

Figure 8 presents the hybrid equation with k = 0.1, x = 0.3, the JKR and DMT
models respectively. The curves of the hybrid equation are both above the JKR
curve, which, again, is consistent with the experimental observation in reference
[46]. The surface interaction forces outside the contact region and the curved con-
tact interface both result in a larger contact radius. It is also noticed in Fig. 8 that
the hybrid equation closely matches the JKR model when the compressive external
load is relatively large; the difference only becomes larger in the tensile range of the
external load. Therefore, the hybrid equation is a modification and answer to Tang’s
concern that the JKR model may not be applicable in the small contact radius case
around the pull-off point [33]. The pull-off points are marked with a square, a trian-
gle and a circle, respectively. The pull-off force at ¥ = 0.3 is the same as the DMT
one (F = —4/3) and further increasing « will lead to larger pull-off force than the
DMT one. The term « = 4[;:‘1‘3"}“/ is defined in equation (23). R and y are fixed for
a given system. The reason for the « variation is due to Pyqw. The term Pyqw of
equation (4) is a function of z and physically, z is the separation distance at the con-
tact edge and z varies for different contact models because of the neck formation at
the contact edge [36].
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Figure 8. Comparison of the hybrid model with ¥ = 0.1 and 0.3, JKR and DMT model.

4. Instability Jump

The principal difference between the JKR and DMT models, as far as the pull-off
process is concerned, is that the JKR model predicts a sudden separation at a finite
contact radius, whereas the DMT model predicts a continuous separation at point
contact as shown in Fig. 8. This sudden jump-off phenomenon is observed in the
experiment of soft rubber contact [5] as well as for hard mica [8], also in the numer-
ical computation of the self-consistent method [25, 26, 30]. However, this jump-off
phenomenon is inconsistent with the viewpoint of fracture mechanics. When the ex-
ternal compression load reduces (or tension increases), the contact radius reduces,
which is viewed as a crack propagation process starting from the contact edge to-
wards the center [24, 32, 33]. The crack propagation should proceed in a continuous
way [31, 32], which is the case predicted by the DMT and Hertz models. How-
ever, the crack propagation may not be the only mechanism causing the separation.
Pashley [36] points out that the jump-off phenomenon in the cases with large Tabor
numbers (the quintessential JKR system) arises from the sharp fall in the surface
force as the contact area decreases and is not merely a result of the infinite tensile
stress around the periphery, which is responsible for crack propagation. Therefore,
surface deformation and crack propagation are the two mechanisms driving the sep-
aration. For the JKR system with its large adhesion and compliant-body, the surface
is prone to deform, and the changed surface interaction forces, together with the
tensile pressure around periphery, can cause jump-off; for the DMT system with
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its small-adhesion and hard-body, the crack propagation mechanism dominates and
the separation occurs in a continuous way. Based on the contact pressure profile
analysis, two new jumps are proposed here. One jump leads to the transition of the
JKR model to the DMT model and the other leads to the flaw-insensitive failure
mode [24, 32, 33]. Unlike jump-off, the two jumps proposed here do not lead to a
total separation of two contacting bodies.

Here rg is defined as the radial distance where the JKR pressure vanishes, i.e.,
p(ro) = 0. From equation (5), rg is found as follows:

ro=a,/14 py/ po. (29)

As shown in Fig. 9, p(r) is in compressive mode when r < rg and p(r) is in tensile
mode when a > r > rg. As for the JKR model, substitute pg =2Ea/(mtR) and p; =
—/4Ey /(ma) into equation (29) and then nondimensionalize it. The following
dimensionless form of equation (29) is obtained:

/ 2
Ro=A,/1— gA_3/2, (30)

where Ry =rg/ac. For Ry to be real, the item inside square root must be nonnega-
tive, therefore

A>(3/2)7%3. (31

Hence we define Ay = (3/2)_2/3 ~(.763. Clearly, if A < Amin, Ro does not ex-
ist in the real domain. Figure 9 plots the A—R( curve of equation (30) together
with a straight line of Ry = A. In Fig. 9, the pressure of the zone between the

straight line and the Ry = A,/1 —3A~3/2 curve which physically corresponds
to the annulus zone of a > r > ry, is tensile; the pressure of the zone below the

Ry=A,/1— %A—3/ 2 curve (the circular zone of < r() is compressive. Clearly, if
A < Anin and two bodies are still in contact, the JKR demarcation of tensile and
compressive zones inside the contact region can no longer exist. Logically, only two
scenarios are left for choice: either the whole contact pressure becomes compres-
sive (as in the case of the Hertz and DMT models) or the whole contact pressure
becomes tensile.

Figure 10 plots the surface interaction force per unit area, o of equation (3),
as a function of separation distance z and three contact scenarios. The term zg is
the equilibrium separation distance, i.e., 0(zg) = 0; z1 is the separation distance
where the maximum attractive o is reached, i.e., 0(z1) = og and z; = 1.255z¢ as
discussed before. Figure 10(a) is the JKR contact scenario: the separation distance
of the central parts is less than zg, which is in the repulsive zone of ¢ and this
leads to a compressive contact pressure; the separation distance of the peripheral
parts are larger than zo and therefore, the attractive o induces a tensile contact
pressure. Figure 10(a) was originally given by Tabor [11] and here the neck height
is exaggerated in the plot. Figure 10(b) is the Hertz/DMT contact scenario: the
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separation of whole contact region is less than zo and the repulsive o induces a
compressive contact pressure in the whole contact area. The neck height is also re-
duced in Fig. 10(b) for the DMT model. Figure 10(c) is the scenario that all the
contact pressure is tensile. The whole contact region is in the attractive zone of
z > zo. In general, the contact surface profiles are still curved ones (as indicated by
dashed line). The limit case is that the whole contact region becomes a cohesive
zone where the contact pressure is a constant of p = og; the whole contact region
becomes flat with a constant separation distance of z; as indicated by a solid line.
For p = —oyp is the maximum tensile contact pressure that the contacting bodies
can bear, further increasing the external tensile load will result in an abrupt jump-
off, which is the flaw-insensitive failure mode [24, 32, 33]. The difference between
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Figure 10. Surface force per unit area of LJ potential as a function of the separation distance z and
three contact scenarios: (a) the JKR contact pressure profile: the central parts are compressive and the
peripheral parts are tensile; (b) Hertz/DMT pressure profile: compressive pressure over all the contact
region; (c) Tensile pressure over all the contact region.

our second jump scenario and the flaw-insensitive failure mode should be empha-
sized here. The dimensionless parameter used to indicate the flaw-sensitive and
flaw-insensitive regimes is [y E/ (Rcylcr02)]2 (Rcy1 is the cylinder radius) by Gao et
al. [24] and ogRcy1/(2ES:) (8¢ is the critical separation distance) by Hui et al.
[32]. For a given system, Gao and Hui’s dimensionless parameters will tell whether
the crack propagation failure mode (flaw-sensitive) or the jump-off failure mode



1458 Y. Zhang / J. Adhesion Sci. Technol. 25 (2011) 1435-1464

1.8

— Stable
- = Unstable| |

1.4}

1.2} 1

0.8

Amin

0.6 1

0.4

02} ]

0 ! \ !
-1.5 -1 -0.5 0 0.5 1
F

Figure 11. Jump phenomenon: the JKR curve loses stability at S| (—1, 1) when external loading force
P is a control parameter. Instead of jumping directly to S3 (—1, 0), there is an alternative to jump
from S1 to S (—1, 0.69) on the DMT curve and follow through to the separation of S4 (—4/3,0). U
(—0.89,0.763) is the point below which in the JKR model the tensile contact pressure can no longer
exist and it is also the intersection of the JKR and DMT curves. Uy (—5/9, 0.481) is the instability
point when § is the control parameter.

(flaw-insensitive), occurs. Our second jump is applied to such scenario: at the be-
ginning, the contact radius reduces as the crack propagation failure mode until the
JKR pressure pattern can no longer exist; and then the contacting surfaces jump into
the attractive zone; if the external tensile load is further increased, the jump-off fail-
ure mode occurs. In short, our second jump is a transition from the flaw-sensitive
failure mode to the flaw-insensitive failure mode.

Figure 11 plots the jump from the JKR curve to the DMT curve. Here the state
variable expression [49] for the points in Fig. 11 is used. For example, S1 = S
(=1, 1) is the JKR pull-off point when the external load F is the controlling para-
meter [21] and Uy (—0.89, 0.763) (Amnin = 0.763) is the critical point below which,
as analyzed above, the JKR pressure profile cannot exist. It should be noticed that
U is the intersection point of the JKR curve and the DMT curve because the DMT
model assumes no tensile contact pressure [19]. Because there is a gap between S
and Uy, we propose the following jump: instead of a jump of total separation from
S1 to 83 (—1,0), the jump from S; to S (—1,0.69) on the DMT curve occurs,
and then follows the DMT curve until the final separation of the contact point at
S4 (—4/3,0). This new jump scenario of S; to S, is similar to the mode jumping
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scenario of a buckled beam on a nonlinear elastic foundation, in which the modal
amplitudes at a fixed load jump to other finite values instead of reducing to zero
[49]. Here we emphasize that this new jump occurs as the external load F is the
controlling parameter. If the approach distance § is the controlling parameter, the in-
stability of the JKR model occurs at U (—5/9, 0.481) [21], not S;. The jump from
S1 to S, which occurs under a tensile external load, corresponds to the jump sce-
nario from Fig. 10(a) to 10(b). The S; to S> jump reduces the contact radius a (A)
and causes the whole contact pressure to become (compressive) Hertzian. At S,, the
compressive elastic restoring force due to the compressive contact pressure by no
means balances the tensile external load and the attractive surface force outside the
contact region must be brought in to balance the tensile external load. Therefore,
the S to Sy jump also induces the surface profile change: the neck height (dramat-
ically) reduces as schematically plotted in Fig. 10(a) and 10(b). Because the above
instability jump analysis is based on the JKR pressure of equation (5), it is also pos-
sible in the real world to have a smooth transition as shown in Fig. 12, instead of an
instability jump. The JKR model applies in the range of © > 5 and the DMT model
applies in the range of u < 0.1. A MD curve with the intermediate range of u can
intersect the DMT curve at Uj. Instead of following the total separation route of
jumping from Uj to S5, the MD curve may smoothly transit to the DMT curve and
then follow the DMT curve to the final separation at S4. In general, the jump from
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Figure 12. The scenario of smooth transition between the MD and DMT models. In this scenario that
the instability point of MD model coincides with U1, the MD curve will smoothly transit to the DMT
curve instead of jumping from Uj to Ss.
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Figure 13. The comparison of the contact pressure profiles: the JKR contact pressure and the real
contact pressure (as observed in the self-consistent methods).

the MD model to the DMT model is less dramatic. The contact pressure difference
between the MD model and JKR model is that the maximum tensile pressure of o
is reached in a peripheral annulus of the cohesive zone in the MD model; whereas
the JKR pressure approaches infinity, unrealistically, at the contact edge as shown
in Fig. 13. The real pressure profile at the contact periphery, as computed by the
self-consistent methods [25, 26, 30], is also demonstrated schematically in Fig. 13
as a dashed line. Instead of going to infinity as does the JKR pressure, the real pres-
sure reaches a maximum and then reduces rapidly approaching zero as the radial
distance r increases.

There are several instability and hysteresis jumps shown by Greenwood (e.g.,
in his Fig. 2(a)) [30]. However, none of Greenwood’s jumps correspond to our
jump because in Greenwood’s jump study, the approach distance § is the control-
ling parameter and jumps occur with the change of external load. The P-4 curve
presented in the self-consistent methods and § used as the controlling parameter
[25-27, 30] makes it very difficult, if not impossible, for us to find the direct evi-
dence in the numerical computation of the self-consistent method to corroborate the
newly proposed jump scenario. The slowly varying deformation assumption used in
the self-consistent method [25] may also disguise the jump because there must be a
sudden surface profile change accompanying this Sy to S> jump, as analyzed above.
The difference between the JKR pressure and the real one may also make this insta-
bility jump less obvious in the self-consistent method. At the same time, observing
the jump, experimentally, from S; to S may be very difficult because of the tran-
sient effect induced by the jump. All our contact analyses here are static ones and
the dynamic transient effect can cause a significant deviation to the static theory
from the experimental observation in a micro-structure instability jump study [50].
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Due to the dynamic transient effect, the contact bodies may not be able to jump
from S; to S and then stay on the DMT curve. Instead, the contacting bodies will
have a total separation as observed in the JKR experiments [5]. Nevertheless, this
new jump scenario offers an explanation for the experimental observations by Is-
raelachvili et al. [29] that the JKR model better describes the surface deformation of
contacting bodies before pull-off and the DMT model gives a more accurate pull-off
force value. Again, keep in mind that all of the classical hard contact models fail to
capture the abrupt contact surface profile change just before pull-off [25, 26]. The
introduction of this new jump in essence is to capture such a change, which may
serve as a guide for a more refined study of self-consistent methods in the future.
In an analysis of a self-consistent method very similar to our equation (30),
Muller, Yushchenko and Derjaguin have foreseen the scenario of ro =0 at a # 0 as
a possibility without a detailed discussion [13]. When the scenario of ro =0 ata # 0
occurs, Muller, Yushchenko and Derjaguin postulated that only the attractive forces
act in the contact region [13], which induces only tensile contact pressure as shown
in Fig. 10(c). In a self-consistent method, Feng [26] shows in his Fig. 5(b) that
there is a pressure distribution (with © = 0.01) which becomes all tensile, whereas
others obey the JKR pattern. Similarly, Attard and Parker [25] show that two pres-
sure distributions with the largest positive so’s become all tensile in their Fig. 6(c)
and the others still keep the JKR pattern. Zhang [19] shows that the tensile contact
pressure occupies more and more of the contact region when the contact radius is

reduced. Also from Fig. 9, the slope of Ry = A,/1 — %A‘3/ 2 becomes steep around

Anmin and the limit case is that at A = Apj, the contact pressure becomes all tensile.
Again, if the external load P is the controlling parameter, there is a gap between
S1 and Uy, and there will be an instability jump for the JKR pressure pattern of
Fig. 10(a) to become the all tensile pressure scenario of Fig. 10(c). While, if 4 is the
controlling parameter as in many self-consistent methods [25, 26, 30], U, is below
U, and the smooth transition can thus be achieved. When the contact pressure be-
comes all tensile (i.e., large negative §), both the contact radius and the forces due
to elastic deformation are very small. The dominant forces are the attractive surface
interaction forces and the Bradley model thus applies. This can offer an explanation
for Greenwood’s observation [30] that for the system with a fixed Tabor number
(n = 2), the JKR model is applicable when § is positive or slightly negative and the
Bradley models are applicable when § is large and negative.

It is also necessary for us to have a brief discussion on the jump-on phenomenon
[26, 30]. In contrast to jump-off occurring in the separation process, jump-on oc-
curs when two bodies approach each other. The contact equilibrium can be viewed
as the elastic restoring force due to deformation balancing the combined effects of
the surface interaction forces and external load [36]. The jump-on phenomenon is
the same as the pull-in instability of micro-structures [S0-52]. When two bodies ap-
proach each other, the attractive surface interaction forces increase nonlinearly and
dramatically, which is the same scenario as seen when the van der Waals (vdW)
force increases nonlinearly as the separation distance of two nanotubes reduces



1462 Y. Zhang / J. Adhesion Sci. Technol. 25 (2011) 1435-1464

[51]; or as the electrostatic force increases nonlinearly when the gap distance be-
tween the micro-structure and substrate decreases [50, 52]. When a critical point
is reached, at which the elastic restoring force due to deformation can no longer
balance the vdW or electrostatic force, the pull-in instability occurs: the structure
experiences an abrupt snap-through jump to reach a new equilibrium. The jump-on
phenomenon in contact mechanics is a pull-in instability jump at which the elastic
restoring force cannot balance the nonlinearly increasing surface interaction forces.

5. Concluding Remarks

Johnson and Greenwood are very cautious to prescribe their adhesion map only in
the compressive external load range [17]. Yao et al. extended Johnson and Green-
wood’s adhesion map to a tensile external load range by considering the adhesion
strength [18]. However, in the small sign-changing range of external load (or § or
ho), the surface profiles of two bodies have dramatic shape changes as observed
in many self-consistent computations, which, as a result, causes the significant
changes of the total surface energy and surface interaction forces. This is a ma-
jor reason as to why the classical hard contact models fail in this small range,
especially for the large-adhesion, compliant-body cases [25]. The self-consistent
method also finds that in this small range, for a system with a fixed Tabor number,
the JKR model is applicable in one portion and the DMT applicable in the other
[30]. Therefore, when the range of external tensile load is included in the adhe-
sion map, using the Tabor number (or equivalently, the elasticity number) and P
(P = P/(AyR)) only, it is not enough to demarcate the applicability ranges of dif-
ferent classical hard contact models. J, 8 and « together with the two new jump
scenarios are thus introduced to capture the significant surface deformation in that
small sign-changing range and also provides a better approximation for the rigid-
soft contact with a small contact radius. The introduction of J, § and « establishes
a new hybrid model and a framework to correlate different classical hard contact
models. The hybrid model also provides the explanations for the differences be-
tween the self-consistent method, experimental data and the classical hard contact
models. The adhesion map presented in our Fig. 2 systematically shows how dif-
ferent classical hard contact models relate and transit to one another by varying J,
B and «. At the same time, the physical meaning of varying the three parameters
is also given. By doing this, we hope that this paper can offer, to readers, a helpful
review of classical hard contact models as approached from a different angle.
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