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Metallic glasses exhibit not only multiple failure modes but also differences
in ultimate strength, plastic strain to fracture and asymmetric deviation of
failure angles from 45� between tension and compression. The available
failure theories cannot fully characterize these phenomena and the
underlying physics has not been completely clarified. Here, based on the
short-range order structure in metallic glasses, we derive an inherent law
that determines when metallic glasses might yield or fracture. A unified
failure criterion is constructed which satisfactorily predicts the complex
failure behavior observed in metallic glasses. We show that the shear-
to-normal strength ratio � and the strength-differential factor �, charac-
terizing shearing resistance between atomic layers and shear-caused
dilatation, respectively, have dual control over whether metallic glasses
yield in a ductile manner or fracture in brittleness.

Keywords: failure criterion; strength-differential effect; brittle–ductile
transition; fracture mechanics; metallic glasses

1. Introduction

Bulk metallic glasses or amorphous alloys are a relatively new class of materials with
excellent properties and promising applications [1–4]. The potential applications of
metallic glasses (MGs) are closely dependent on their plastic flow and failure
behavior [5–13]. Due to the absence of long-range order and dislocation-like defects,
plastic deformation at room temperature is prone to be localized into nanoscale
shear bands [14–17]. The propagation of single or several dominant shear bands
leading to fracture of MGs and the concomitant failure phenomena have attracted
the intensive attention of researchers [18–23].

The failure of material starts at the onset of irreversible deformation [24].
It covers the whole process from yielding to final fracture and is usually classified
into ductile and brittle failure types. In ductile failure, distinct plastic deformation
(yield) is shown before final fracture, while, in brittle failure, fracture ensues
immediately after yielding with little plasticity. In crystalline solids, ductile or brittle
failure is relatively well understood in terms of movement of dislocations, and it is
sufficiently characterized by a single governing parameter, such as the theoretical
cleavage-to-shear strength ratio proposed by Kelly et al. [25], or the equivalent
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parameter representing whether a crack is atomically sharp or blunt by Rice and

Thomson [26]. These theories, however, are not suitable for MGs due to their unique

atomic structures and resultant failure behaviors, such as failure asymmetry between

tension and compression, and multiple fracture modes [27–29].
In MGs, the perplexing failure asymmetry between tension and compression

is mainly manifested by three aspects. First, MGs exhibit significant plasticity/

ductility difference. The compressive plasticity in MGs has been greatly improved

[30–32], but the plasticity in tension is still near-zero at room temperature. This

greatly impedes these materials from potential engineering applications. Second,

MGs fail along the plane at angle 45�5�T�90� under tension and 0���C�45�

under compression (Table 1). It is noted that such deviation from 45� is

asymmetrical. This implies that the failure of MGs is not solely controlled by the

Table 1. Tensile and compressive failure for different metallic glasses.

Tensile failure Compressive failure

Composites �T GPað Þ �T �ð Þ �C GPað Þ �C �ð Þ Ref.

Pd77.5Cu6Si16.5 1.44 50 1.51 45 [33]
Pd78Cu6Si16 1.45 55 1.54 45 [34]
Pd40Ni40P20 1.46 50 1.78 41.9 [35]

1.6 56 1.74 42 [36,37]
Zr40.1Ti12Ni9.3Cu12.2Be26.4 1.98 51.6 2.0 40.8 [38]
Zr41.2Ti13.8Ni10Cu12.5Be22.5 1.8 55 2.0 44 [16]

1.8 56 1.95 42 [39]
1.89 – 1.9 – [40]

Zr52.5Ni14.6Al10Cu17.9Ti5 1.65 54 1.88 44 [41]
1.66 60 1.82 42.5 [42]
1.66 56 1.76 42 [43]

Zr55Al10Cu30Ni5 1.53 53 1.77 41 [44]
1.6 – 1.8 – [45]
1.51 – 1.82 – [46]

Zr56.2Ti13.8Nb5.0Ni5.6Cu6.9
-Be12.5 1.487 59 1.669 45 [47]
Zr57Cu15.4Ni12.6Al10Nb5 1.2 – 1.8 – [48]
Zr59Cu20Al10Ni8Ti3 1.58 54 1.69 43 [29]
Zr60Al10Cu20Pd10 1.68 55 1.88 45 [2]
Zr60Al10Cu25Ni5 1.63 – 1.76 – [44]
Co80Nb14B6 2.88 – 3.47 – [35]
Cu60Zr30Ti10 2.0 – 2.15 – [49]
Cu60Hf25Ti15 2.13 – 2.16 – [49]
Pd80Si20 1.33 90 – – [50]
(Al84Y9Ni5Co2)0.95Sn5 – 90 – [51]
La62Al14(Cu,Ni)24 0.55 90 0.56 40–45 [52]
Zr52.5Ni14.6Al10Cu17.9Ti5 – 90 – [28]
Zr59Cu20Al10Ni8Ti3 – 90 – [28]
Zr80Pd20 – 90 – [53]
Zr55Al10Ni5Cu30 Break or split [28]
Ti50Cu20Ni23Sn7 Break or split [28]
Fe65.5Cr4Mo4Ga4P12C5B5.5 Break [54]
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deviatoric stresses. The pressure or normal stress dependence of yielding is an
inherent characteristic in MGs [27,55–58]. Third, many experimental investigations
have shown that the failure strength of MGs in uniaxial compression (�C) is
normally greater than that in uniaxial tension (�T) (Table 1). This strength-
differential (S-D) effect, earlier discovered in a variety of steels with martensitic,
bainitic or Widmanstatten ferrite microstructure [59,60], was attributed to non-
linear–elastic interactions between dislocations or interstitial solute atoms [61] or
permanent volume expansion during plastic deformation [62]. Certainly, the extent
of tension–compression asymmetry in MGs shows a broad range, depending on a
variety of factors, such as their composition, presence/absence of inclusions and/or
other fracture-initiating features. The failure complexity in MGs is also reflected by
various fracture modes, e.g. shear failure, normal tensile fracture and split (Table 1).

These complicated failure behaviors mentioned above greatly challenge the
classical Tresca or von Mises criteria [63], both of which only predict shear failure.
The Mohr–Column (M-C) criterion has been widely used in the study of yielding or
fracture behavior of MGs due to its capability of capturing the S-D effect and the
normal stress effect on shear failure [28,29,35,64]. A complication is that this
criterion would predict a symmetric deviation of fracture angles from 45�, while, in
reality, an asymmetric deviation is usually observed in MGs [16,28,29,56].

Therefore, a number of important questions arise from these observations. What
is the origin of this failure asymmetry? What are the governing mechanisms of ductile
or brittle failure? Could we predict the diverse fracture modes? Zhang and Eckert [65]
proposed a unified tensile fracture criterion for MGs in which multiple tensile
fracture modes and the brittleness or ductility of MGs are characterized by the shear-
to-normal fracture strength ratio. Schroers and Johnson [30] suggested that the good
ductility of Pt-rich MG is due to its large Poisson ratio. Lewandowski et al. [66]
pointed out that the shear to bulk modulus ratio or Poisson ratio is correlated to the
plasticity in MGs. Poon et al. [67] further argued that, besides Poisson ratio, another
factor called the local shear modulus fluctuation also exerts an influence on the
intrinsic plasticity or ductility of MGs. It is also found that the ductile or brittle
fracture in MGs can be revealed by the fracture surface morphologies [16,68–74].
The viscous fracture patterns, such as microscale cell, river-like vein pattern or
nanoscale dimples, usually occur in ductile fracture [16,68–72], and they are
attributed to the fluid meniscus instability or local softening [16,68,75]. In contrast,
brittle fracture is reflected by relative smooth fractograph with nanoscale corruga-
tions or featureless mirror zones, suggesting a local cleavage mechanism
[16,73,74,76]. These pioneering works mentioned above provide important basics
for us to describe in a unified and quantitative fashion the whole failure process,
including plastic deformation and resultant fracture of MGs, which has not been
satisfactorily discussed as yet. Meanwhile, significant insights on the atomic structure
of MGs have been greatly developed in the last couple of years [77–85], which
enables us to build a bridge between the macro-failure behaviors and atomic
structures.

In this paper, we carry out an atomic interaction analysis based on the nature of
short-range order in MGs. Then, a failure criterion is naturally built involving
two critical factors: the shear-to-normal strength ratio � and the strength-differential
(S-D) factor �. This criterion not only unifies the failure phenomena observed in
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MGs but also reveals unambiguous correlations between the macro-failure and the
atomic structure, which provides new insights into the physics underlying failure and
plasticity in MGs.

2. Failure criterion for MGs

The deformation of material can be resolved into dilatation and distortion. Failure
usually starts from some weak planes due to dilatation-induced normal tension/
compression or the shear between the neighboring atomic planes. Weak planes
accompanied by localized shear bands or micro-cracks may be caused by atomic
bond damage or rupture. Atomic interactions inside materials control the whole
failure process, and the cohesive models have built a good bridge between the two
[86–90]. At a micromechanical level, plastic deformation in MGs occurs by local
shearing of atomic clusters. This shearing is accompanied by inelastic dilatation that
produces strain-softening, which results in the formation of intense localized shear
bands; fracture typically occurs along a dominant shear band with little plastic flow
in tension but appreciable plastic deformation in compression. In this way, we
consider an arbitrary atomic layer (radius Ru) inside initial homogeneous MGs
(Figure 1); atoms in the upper layer interact with those in the bottom block
(radius Rb), with the distance r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

. A virtualized cohesive interface is
assumed between the upper layer and the bottom block. Physically, those planes can
be failure planes induced by applied stress. Under an external load, the atomic layer
has local shearing u or normal displacement v beyond the initial distance, then the
distance r changes. It is reasonable to assume that the traction and separation
between the upper layer and bottom block obeys a cohesive law. This law describes
the whole failure process: with the change of r, the traction across the layer should
reach a maximum, then weaken (softening) and eventually vanish, permitting
complete decohesion. We next determine the cohesive law, taking into account the
fundamental atomic structure and the inter-atomic potential.

In addition to randomness, the intra-cluster packing in MGs shows topologi-
cal short-range order (SRO) and such an organization beyond the level of individual
clusters (first neighbors) gives rise to the medium-range order (MRO) [82]. It was
found that the two-body correlation functions become weak and insensitive at a radial

Figure 1. Schematic diagram of a virtualized cohesive interface in MGs.
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distance beyond 1 nm [91]. Thus, atomic interactions within MGs should be on a sub-
nanometer scale, i.e. in the short-range to the low end of medium-range, as the
characteristic scale of the ‘‘structure’’ discussed by Sheng et al. [82]. Being the
fundamental building block, SRO greatly influences the physical properties and
mechanical response of the glass [92]. This local structure of MGs can be described by
the Gaussian radial distribution function (RDF), as suggested by Knuyt et al. [93,94]:

RDFðrÞ ¼ r=ð2�Þ1=2ðN1=r1�1Þ exp½�ðr� r1Þ
2=2�21 �: ð1Þ

Here, only the first shell is considered, with a mean position r1, a width �1, and the
number of atoms N1. Atoms are assumed to interact via a Lennard–Jones (L-J)
potential that is widely used in molecular dynamics simulation of MGs [27,95,96]:

V rð Þ ¼ 4"ð�m=rm � �n=rnÞ m4 n4 3ð Þ, ð2Þ

where " is the depth of the potential well, � the zero-potential distance, and r the
distance between two atoms. It should be pointed out that, if more sophisticated
atomic potentials are employed, higher-order information and multi-body interac-
tions of atoms [97] might be involved. Actually, the L-J potential captures the major
information on atomic interactions and is valid in studying the mechanical behavior
of MGs [96]. In particular, the simple form of the L-J potential renders the
mathematical derivation tractable.

We next study the interaction between the upper atomic layer and the bottom
block separated by a distance h, and first neglect the effect of the upper layer’s radius
(i.e. Ru�Rb). The energy due to the atomic interaction is given by V rð Þ in Equation
(2), we then obtain the cohesive energy (i.e. the energy per unit area of the upper
atomic layer) for the present model (Figure 1) as:

� hð Þ ¼ 2��u

Z 1
h

dx

Z 1
0

VðrÞRDFðrÞ=ð4�r2Þzdz, ð3Þ

where �u is the atomic density of the upper layer, and RDFðrÞ the atomic distribution
in the bottom block. To render the mathematical derivation tractable, we adopt a
step function to approximate the atomic density RDFðrÞ=ð4�r2Þ. The density around
the first neighbor is set as �l � N1=8�r

2
1�1, and the bulk density elsewhere is set as a

constant �h. As the cohesive energy is mainly contributed by the atomic interaction
in a relatively small r-internal, in particular the overlap region between the radial
distribution function and the inter-atomic potential range (e.g. 2–3.5 Å) [93], the
integration of Equation (3) can be simply expressed as:

� ¼ 4�"�u�
3

�l
�m�3

h m�3ð Þ m=2� 1ð Þ m� 3ð Þ
�

�n�3

h n�3ð Þ n=2� 1ð Þ n� 3ð Þ

� �
þ �h � �lð Þ

�
�m�3

r0 þ �1ð Þ
m�3ð Þ m=2� 1ð Þ m� 3ð Þ

�
�n�3

r0 þ �1ð Þ
n�3ð Þ n=2� 1ð Þ n� 3ð Þ

� �
2
664

3
775
ð4Þ

where the second term in the square bracket is a correction term with r0 ¼ r1 � h1=h0
being the upper bound of hþ �1, the equilibrium distance h0 ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þ= m� 2ð Þm�n

p
and the distance h1 ¼ � corresponding to the maximum cohesive stress by @�=@h ¼ 0
and @2�=@h2 ¼ 0, respectively. Usually, it is convenient to classify the cohesive
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energy into the harmonic (symmetric) part and the anharmonic (asymmetric) part;

the latter is closely related to the specific properties of amorphous metals [93,94].

In �ðhÞ expressed by Equation (4), these two kinds of energy are totally coupled,

thereby we make a satisfactory approximation of �ðhÞ by introducing a simple

function �ðhÞ ¼ C sinð�ðh�h1Þ2ðh1�h0Þ
Þ þD	, where the first term in the right-hand side is

harmonic (symmetric, �s) and the second term is anharmonic (asymmetric, �a) with

the normal deviation v ¼ h� h0. The coefficients C and D stand for the magnitude of

harmonic energy and the gradient of anharmonic energy, respectively. They are

determined by �ðh0Þ ¼ � h0ð Þ and �ðh1Þ ¼ � h1ð Þ, given by:

C ¼ 4�"�u�l�
3 m� 2

n� 2

� �n�3=m�n
2

n� 2ð Þ n� 3ð Þ
�

2

n� 2ð Þ m� 3ð Þ

� �
� C1

" #
ð5aÞ

D ¼ � h1ð Þ ¼ 4�"�u�l�
3 2

m� 2ð Þ m� 3ð Þ
�

2

n� 2ð Þ n� 3ð Þ

� �
þ C1

� ��
�� h0ð Þ ð5bÞ

in which

C1 ¼
�h
�l
� 1

� �
�m�3

r0 þ �1ð Þ
m�3ð Þ m=2� 1ð Þ m� 3ð Þ

�
�n�3

r0 þ �1ð Þ
n�3ð Þ n=2� 1ð Þ n� 3ð Þ

� �
:

Now, we impose the bottom block a shear displacement u deviated from the

equilibrium position. Equation (4) is independent of u because sliding does not

change the interaction for Ru � Rb. In reality, Ru is not much smaller than Rb, and

the influence of shear on the cohesive energy should be considered. Here, we

introduce an effective shearing �u, and the new distance is h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh0 þ vÞ2 þ ð�uÞ2

q
,

where � measures the shear resistance between two atomic layers. A larger � means a

more difficult shear or a stronger internal friction inside the materials. The cohesive

normal and shear stresses can thus be calculated by:

� ¼
@ 

@v
¼ C cos

� h� h1ð Þ

2 h1 � h0ð Þ

� �
�

2 h1 � h0ð Þ

h0 þ v

h
þD ð6aÞ


 ¼
@ 

@u
¼ C cos

� h� h1ð Þ

2 h1 � h0ð Þ

� �
�

2 h1 � h0ð Þ

�2u

h
: ð6bÞ

Interestingly, we find that these two stress components follow the cohesive law as

below:

ð�= ��0 þ �Þ
2
þ ð
=ð� ��0ÞÞ

2
¼ cos2ð�ðh� h1Þ=2ðh1 � h0ÞÞ ð7Þ

in which the two critical parameters ��0 and � are expressed explicitly as:

��0 ¼ C�=2ðh1 � h0Þ ð8Þ

and

� ¼ �D= ��0 ð9Þ
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The intrinsic length scale � ¼ 2h1 � h0 is associated with debonding.

In Equation (7), with increasing surface separation h (h � �), the right-hand term

(measuring the extent of cohesion) reaches a maximum when h ¼ h1, then decreases

to zero when h ¼ �, leading to macro-failure. It describes the whole process from

elastic deformation to initial softening and then to final fracture. When the applied

stresses overcome the effective cohesive strength, the cohesion starts to weaken and

failure ensues. Thereby, a failure criterion can be derived as:

ð�= ��0 þ �Þ
2
þ ð
=ð� ��0ÞÞ

2
¼ 1: ð10Þ

We note that the two terms of the left hand determine whether materials yield in

ductile manner or fracture in ideal brittleness. When the first term plays a leading

role, a normal-stress dominant failure should occur, suggesting the brittle nature of

the materials. Otherwise, shear yielding would lead to ductile failure in materials.

As a failure criterion, it should cover the failure characterization ranging from totally

ductile to extremely brittle, and unify yielding in the ductile range with fracture in the

brittle range [98]. In this criterion, the ductile or brittle behavior actually depends

upon the material parameters � and �, which will be discussed in the following

sections.
It is noted that criterion (10) involves three factors �, �, and ��0, and they are

correlated with the atomic structure and potential. Geometrically, this failure

criterion constructs the eccentric ellipse-like failure envelope in the 
 � � stress space

(Figure 2). Therefore, the three factors can be also related to the macro-strengths

as follows: ��0 ¼ ð�
T
max þ �

C
f Þ=2, � ¼ �
0= ��0 and � ¼ ð�Cf � �

T
maxÞ=ð�

C
f þ �

T
maxÞ,

corresponding to the long half axis, ellipticity and the eccentricity ratio of the

ellipse, respectively. �Tmax is the theoretical tensile strength and �Cf can be regarded as

Figure 2. Eccentric ellipse-like failure envelope in the 
 � � stress space: (a) shear failure with
45�5�T590� and 0�5�C545�; (b) normal tensile fracture with �T ¼ 90�.
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a fictive theoretical compressive strength, which might be inaccessible in real MGs.

As the short half axis, �
0 is the generalized shear strength, which can be reduced to

the pure shear strength 
0 if one ignores the S-D effect. In this case, � is equivalent to

the ratio proposed by Kelly et al. [25], or Zhang and Eckert [65]. Physically, the

generalized normal strength ��0 represents the normal resistance to surface failure; the

ratio of shear-to-normal strength � reflects the internal friction inside material;

and �, which relates to the asymmetrical cohesive behavior, characterizes the tensile/

compressive S-D effect and, hence, the dilatant property [62]. The variance of � and

� from 0 to 1 can represent not only MGs with minor pressure sensitivity (i.e. �!0

and �!0) but also those with substantial pressure sensitivity. Since the normal

strength ��0 only controls the overall failure strength and has no effect on failure

modes, it will not be involved in following discussions.

3. Unified characterization of failure behavior

In this section, failure criterion (10) presents a unified description of multiple failure

behavior in MGs, where the complex failure asymmetry and modes are well covered.

Figure 2a and b illustrate failure cases with different shaped ellipses dependent on �
and �. These Mohr circles 1 and 2 represent the uniaxial stress states in tension and

compression, respectively. Once the Mohr circles contact the failure envelop at

tangent points A or B, the material fails with failure angles and strengths marked as

�T, �T or �C, �C. Figure 2a illustrates the shear failure which produces the failure

angles of 45�5�T590� with respect to the uniaxial tensile axis and 0�5 �C 5 45�

with respect to the compressive axis. Failure planes in cylindrical samples in tension

(A) and compression (B) are, respectively, displayed as insets, which appear

asymmetrical deviations from 45�. A majority of MGs have been observed to fail in

this ductile manner (Table 1), and the fracture surface morphology exhibits a

characteristic ‘‘cell’’ or ‘‘vein’’ pattern [16,68–72]. Figure 2b, in which the Mohr

circle is tangential to the ellipse at its right apex point A, indicating �T ¼ 90�

and �T ¼ �Tmax, denotes normal tensile fracture. In some materials, such as La-, and

Al-based MGs [51,52], samples follow this ideally brittle mode in tension, where the

fracture plane is generally perpendicular to the load axis. On the fractograph,

relatively smooth fracture morphology is usually observed with cleavage-like regions

[16,74,76]. Split, as an ideally brittle fracture mode, is observed occasionally in

special MGs under uniaxial compression [28], in which the failure plane is parallel to

the load axis. This will be discussed in more detail latter. Figure 2a,b show that

�C 4 �T, and also the failure-angle deviation from 45� between tension and

compression, is not necessarily symmetric.
To shed light on the underlying mechanisms of failure, a failure map (Figure 3) is

constructed from Equation (10). From the map, we find that factors � and �
cooperatively control those complicated failure behaviors in MGs. First, the diverse

failure modes observed so far are well characterized; second, the transformation

threshold from ductile failure to ideally brittle failure is clearly displayed; third, the

asymmetrical deviation of failure angles from 45� in tension and compression is

quantitatively shown.
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In Figure 3, two clusters of isolines of failure angles in uniaxial tension (45�–90�)
and compression (45�–0�), respectively, in change with � and �, are presented. The
isolines of tensile failure angles range from 45� to 90�, which denotes the process
from shear failure to normal tensile fracture. On the other hand, the isolines of
compressive failure angles change from 45� to 0�, which shows a gradual
transformation from shear failure to split. Accordingly, we can demonstrate four
typical failure modes, i.e. shear failure (I) and normal tensile fracture (II) in tension,
and shear failure (III) and split (i.e. �C!0�, IV) in compression. In this way, MGs
respectively following I&III (blue region), II&III (white region), and II&IV (�C!0�)
are unified in the map. Note that the red line is the threshold from which fracture
occurs along the 90� plane with respect to the load axis. This brittle-ductile transition
satisfies:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ=2

p
ð11Þ

where � and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ=2

p
, respectively, represent the resistance of shearing and

normal tension between atomic layers, and the competition of the two terms
determines the final failure mode. Shearing plays as the dominant failure mode when
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ=2

p
. Otherwise, normal tensile fracture would precede shear yielding,

and catastrophic failure occurs. Increasing � means a more difficult activation of
shear motion. With an increase in �,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ=2

p
decreases, implying that dilatation

promotes normal tensile fracture. Along the transition line, � decreases from
ffiffiffiffiffiffiffiffi
1=2
p

to 0 when � increases from 0 to 1, indicating a higher possibility of ideally brittle
fracture. It suggests that tensile ductility not only depend on � but also on � and an
increase in any one weakens tensile ductility. Interestingly, if the S-D effect is not

Figure 3. (Color online). Failure map of MGs: dependence of tensile and compressive failure
angles on � and �. Typical failure modes, i.e. shear failure (I) and normal tensile fracture (II) in
tension, and shear failure (III) and split (IV) in compression, are demonstrated.
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taken into account, i.e. � ¼ 0, Equation (11) can reduce to the transition condition of
tensile fracture mode proposed by Zhang and Eckert [65], i.e. 
0=�

T
max ¼

ffiffiffiffiffiffiffiffi
1=2
p

.
On the other hand, an ideally brittle fracture in compression, such as split, is found
when �!1. Several typical samples of MGs [2,16,29,33,49,52] are marked on
the map. Their � values are in the range 0.2–0.5, while � varies from 0.3 to 0.6.
We note that ductile MGs, i.e. Zr-, and Pd-based MGs, usually correspond to
relative small � and �, while brittle MGs, i.e. La-based MG, usually have large
values of � and �. The asymmetrical deviation of angles is also well
reflected. Take Zr41.2Ti13.8Ni10Cu12.5Be22.5 MG [16], for example; the material
fails along the 55� plane in uniaxial tension, but in the 44� plane in compression,
which deviate 9� and 1�, respectively, from the maximum shear stress plane.
Apparently, both � and � are critical in determining the overall ductility and
multiple failure modes of MGs. A smaller � leads to better ductility, either in
tension or in compression, due to easier formation of shear bands; a larger
� enhances tensile brittleness and ductility difference. Such a failure map may
provide useful guidelines to optimize the global ductility in MGs through proper
design of � and �.

Since the elastic moduli reflect the inherent strengths of materials, the shear-to-
normal strength ratio � virtually represents the competition between shear and
normal elastic moduli. A smaller � corresponds to a smaller G/K and a larger
v denoting better plasticity. This trend is consistent with previous results [30,66].
The S-D factor � describes the difference in strengths or normal elastic moduli
between tension and compression, revealing plasticity asymmetry. For different
values of � and �, the unified failure criterion can be classified into several typical
cases. If the S-D effect is excluded from our criterion, namely setting � ¼ 0,
the tensile part of the ellipse criterion right reduces to the unified tensile
criterion proposed by Zhang and Eckert [65]; specifically, when �!0, the
failure angles �T!45� and �C!45�, which is consistent with the Tresca and von
Mises criteria. These criteria are also used to describe the failure behaviors in MGs
with minor pressure sensitivity [38,99,100]. If � 6¼ 0, when � 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ=2

p
, normal

tensile stress triggers an ideally brittle fracture in MGs and the normal tensile failure
will occur along the plane perpendicular to the tensile axis, i.e. �T ¼ 90�. This means
that the maximum normal stress criterion is one of the special cases for the present
criterion. Otherwise, when 05�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ=2

p
, �T will range from 45� to 90� and �C

will change from 0� to 45�, which agrees well with the M-C criterion.

4. Prediction of failure strength

As an important mode of failure asymmetry, the strength difference between tension
and compression is widely observed in soil, concrete, polymers as well as MGs.
According to criterion (10), the tensile and compressive failure strength in uniaxial
loading can be expressed, respectively, as:

�T= ��0 ¼
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þð1� �2Þ

p
� �2�

� 	
, �5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ=2

p� 	
1� �, � 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ=2

p� 	
8<
: ð12Þ
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�C= ��0 ¼
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þð1� �2Þ

p
þ �2�

� 	
, ð�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ð Þ=2

p
Þ

1þ �, ð� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ð Þ=2

p
Þ:

(
ð13Þ

From Equations (12) and (13), we see that the ratio � influences the two failure

strengths when �5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ=2

p
. However, when � 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ=2

p
, the effect of � on

the tensile strength disappears.
Figure 4 presents the dependence of �T and �C on � for fixed �, from which

general trends can be drawn. Along the black curve (� ¼ 0), we find that �T ¼ �C is

always satisfied and that both strengths increase with � until they reach ��0 at

� ¼
ffiffiffiffiffiffiffiffi
1=2
p

. The two clusters of color curves, respectively, show the dependence of �T

and �C on � for � ¼ 0:3, 0:4, 0:5, 0:6. When � ¼ 0, the curves overlap, indicating

�T ¼ �C. When � increases, the difference between the two strengths becomes more

significant until it reaches a constant value 2� ��0. In fact, we note that, in crystalline

metals, pressure or normal stress exerts little effect on the whole failure, namely

�!0. In this situation, shear is prior, both in compression and in tension, and the

effect of � is restrained. However, when � is large enough, for example in MGs, the

normal stress plays a non-neglected role in the failure process; thus, the influence of �
becomes prominent. The same result is also clear from Figure 3, where both of �T

and �C change more quickly with � when � increases. This explains why a single

governing parameter is sufficient for crystalline metals but not for MGs.

Furthermore, one expects that tension/compression asymmetry (� 6¼ 0) is broadly

inherent, whether in crystalline metals or in MGs. The ignorable tension/compres-

sion asymmetry in crystalline metals may be attributed to their small � (i.e. the shear

strength is far smaller than the cleavage strength), which conceals the truth.
Equation (10) indicates that tensile and compressive failure is controlled by both

normal stress � and shear stress 
, but the dependence of shear stress 
 on normal

Figure 4. (Color online). Dependence of �Tand �C on � for fixed � ¼ 0, 0:3, 0:4, 0:5, 0:6.
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stress � is nonlinear. In contrast to the M-C criterion, the unified criterion presents
two advantages for the failure prediction of MGs. First, the special failure modes,
such as normal tensile fracture and split, which cannot be predicted by the M-C
criterion, are well covered in the new one. Second, prediction of the S-D effect from
our criterion is better than that from the M-C criterion. Here, we collected data on
MGs with all four failure parameters (�T, �T, �C, �C) being available (Table 1).
The magnitude of the S-D effect is simply deduced from the experimental failure
angles of the MGs. For the unified failure criterion, it is given by:

�C � �T

�C þ �T

� �
Unified

¼
cos 2�C


 �
� cos 2�T


 �
2� cos 2�Cð Þ � cos 2�Tð Þ

ð14Þ

and for the M-C criterion, it is:

�C � �T

�C þ �T

� �
M�C

¼ sin 2�T �
�

2

� 	
: ð15Þ

Figure 5 shows the S-D values, respectively, deduced from the unified
criterion (10), the M-C criterion and experiments. It was found that the present
criterion gives a more reasonable prediction of the S-D effect (8–24%) than the
M-C criterion (17–50%), since the experimental result is 1–10%. Considering the
inevitable test error and scatter of experimental data, the S-D effect estimated by our
criterion is acceptable.

5. Physical mechanisms behind failure

At the microscopic level, we reveal that factors � and � characterize different
motions of atomic clusters and thus determine the finial distinct failure behavior
in MGs. In an atomic cluster, as illustrated in Figure 6, shear transformation

Figure 5. (Color online). Magnitudes of the S-D effect, respectively, predicted by the unified
failure criterion and M-C criterion versus experimental results.
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is visualized as two rows of atoms around free volume sites, with the atoms in the

layers sliding an average atomic distance by overcoming the shear resistance

measured by �. This shear operation is activated in atomic clusters when the shear

strength is far smaller than normal tensile strength. These shear transformation

zones (STZs) induce shear bands to cause shear fracture [5,14,17,101,102], as shown

in Figure 2a. During the shear process, the surrounding atoms are pushed apart and

new excess free volume is created, which activates tension transformation zones

(TTZs) [16,71,72] and leads to shear-caused dilatation (characterized by �).
When the atomic bonding is relatively weak, the dilatation-induced tension causes

bond rupture in a quasi-cleavage way (Figure 6). Note that this local quasi-cleavage

fracture in MGs is not a strictly long-range cleavage and hardly forms a pure

cleavage fracture surface as normally found in crystalline materials. Usually, the

cleavage-like regions with nanoscale features observed in MGs [73,74,76] are a

coupled result of quasi-cleavage and shear due to their shear-dilatancy property [16].

Being independent of direction, the shear operation in STZs contributes to the

harmonic cohesive energy �s, while the other part �a is due to the asymmetrical

behavior of TTZs between tension and compression. A smaller �s (or �) indicates a
lower activation barrier of STZs and, hence, easier shearing. A larger �a (or �),
facilitating the activation of TTZs, corresponds to a stronger dilatation. We find that

the magnitudes of � and � are closely dependent on atomic structure and inter-

atomic potential.
The ratio � estimates the difficulty of shear between two atomic layers within

materials. In polycrystalline metals, shearing can easily occur along the directions of

slip systems, leading to a small �. However, in MGs, due to the lack of long range

order, no distinct slip systems exist and the slip between two atomic layers always

needs to push surrounding atoms apart, which results in a large �. MGs normally

exhibit poorer plasticity than polycrystalline metals, and the plasticity of polycrys-

talline metals decreases sequentially with the lattice type of their grains: face-centered

cubic (fcc), body-centered cubic (bcc) and hexagonal close-packed (hcp) [103].

It confirms that small � facilitates plasticity.

Figure 6. (Color online). Illustration of shear and local quasi-cleavage fracture in atomic
scale.
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The shear-caused dilatation reflected by � relies on the SRO structure

characteristic of atomic packing density �l, mean position r1, and packing

dispersion �1. From Equation (9), the dependence of the S-D factor � on the

short-range atomic density �l (for a given 6–12 L-J potential and r1 ¼ h0) and r1 (for

a given 6–12 L-J potential and �h=�l ¼ 0) are, respectively, illustrated by Figures 7

and 8. It is obvious that either decreasing �l or increasing r1 leads to the increase in �
in favor of the S-D effect, indicating that the denser short-range atomic packing or

smaller deviation of mean atomic position from r0 corresponds to a weaker S-D

effect. Since the atoms residing in the equilibrium position show a balance between

Figure 8. (Color online). Effects of dimensionless mean atomic position r1=h0 on the S-D
factor � with fixed �h=�l ¼ 0 and the 6–12 L-J potential for �1=� ¼ 0, �1=� ¼ 0:1, and
�1=� ¼ 0:2, respectively.

Figure 7. (Color online). Effects of �h=�l on the S-D factor � with fixed r1=h0 ¼ 1 and the
6–12 L-J potential for �1=� ¼ 0, �1=� ¼ 0:1, and �1=� ¼ 0:2, respectively.

Philosophical Magazine 4549

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
] 

at
 2

0:
33

 2
1 

M
ar

ch
 2

01
2 



tension and compression, the S-D effect should be caused by the atoms distribut-

ing far from h0. We can see that the S-D effect � increases with increasing �h=�l
(Figure 7). In the crystalline state, as all nearest neighbor distances in this state tend

to be equal to h0, a minor S-D effect or dilatation is displayed. An extreme case is

found when r1 ¼ h0, �1=�!0 and �h=�l ¼ 0, in such a perfect ordered structure, the

atomic energy should be totally harmonic and the S-D effect should disappear

(�!0). Note that the dependence of � on �l and r1 is significantly weakened when

the atomic packing dispersion (�1=� ¼ 0, 0:1, 0:2) is increasing. This suggests that
the atomic packing dispersion plays a critical role in shear dilatation.

Figure 9 illustrates the change in � on the dimensionless atomic dispersion �1=�
for the 4–8 (black), 6–12 (red), and 7–14 (blue) L-J potentials when r1 ¼ h0 and

�h=�l!0. The general trend is that � increases with increasing �1=�. The wider

atomic dispersion means a greater topological disorder. It is inferred that more a

disordered structure or equivalently, introducing a larger amount of free volume,

would enhance the S-D effect in materials and result in better compressive ductility

but poorer tensile ductility. In fact, this mechanism has been effectively used to

improve the compressive ductility of MGs [30–32]. When �1=�!0 (shown by the red

mark), �!0, which indicates that the ductility difference vanishes in a perfect

ordered structure. As for MGs, �1=� is approximately 0.1 [93,94]; thus, the S-D effect

ranges from 0.3 to 0.5 (Figures 7 and 8), which is consistent with the experimentally

deduced values (i.e. 0.3–0.6) presented in Figure 3.
It is apparent that a disordered structure renders a relatively larger � and S-D

effect than a traditional crystal structure. Usually, STZ operations occur preferen-

tially in MGs, as a relatively small dilatation is required, which leads to shear failure.

As an extreme case, when � 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ=2

p
in tension, the process of STZs is

restrained and that of TTZs is greatly promoted; thus, the material suffers an

extreme dilatation but little shearing, resulting in an ideally brittle fracture. It is

obvious that the final failure mode results from the competition of STZs and TTZs,

Figure 9. (Color online). Dependence of factor � on the dimensionless atomic dispersion
width �1=� with fixed �h=�l ¼ 0 and r1=h0 ¼ 1, respectively, for the 4–8, 6–12, and 7–14 L-J
potentials.
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which are, respectively, the elementary process of ductile failure [8,75,104,105] and
the basis of quasi-cleavage [16,71,72]. Moreover, TTZs arouse pressure sensitivity of
plastic flow in MGs [106]. Therefore, the more TTZs that are activated (i.e. larger �),
the larger the plasticity difference between tension and compression. This might
resolve why in MGs (�4 0) tensile ductility is normally much poorer than
compressive ductility.

6. Conclusions

We propose a unified failure criterion for MGs based on an atomic interaction
analysis. Using this new criterion, the observed complex failure phenomena,
including multiple failure modes, asymmetrical deviation of failure angles from
45� and the S-D effect between tension and compression, are perfectly characterized.
In particular, we find that ductile and brittle failure of MGs is under the dual control
of the shear-to-normal strength ratio � and the S-D factor �. Both factors are closely
structure-dependent. The disordered structure of MGs results in a relatively large
� and �, which implies difficult shearing between atomic layers and significant shear
caused dilatation. A single factor, irrespective of � or �, is insufficient to characterize
failure behavior of MGs. Tension/compression ductility asymmetry is attributed to
factor �, i.e. large � or strong dilatation exerts a negative effect on tensile ductility.
The connections between macroscopic failure and the unique atomic structure, as
outlined in this paper, should assist in the design of ductile MGs.
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