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The effect of interfacial heat exchange on thermocapillary flow in a cylindrical liquid bridge of 1 cst sil-
icone oil (with Prandtl number 16.0) with aspect ratio 1.8 in microgravity, was investigated in an
extended range of Biot number. With both constant and linearly distributed ambient temperature, the
computed results predict that the marginal stability curve for the thermocapillary flow exhibits a roughly

convex trend. In the range of small Biot number, however, a sharp local maximum exists with a special
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oscillation mode of azimuthal wave number m = 0, in contrast to the other cases with m = 1. In addition,
the normalized “thermal” energy balance between the basic state and the critical perturbation of the
thermocapillary flow was investigated. Finally, the effect of the interfacial heat exchange on the thermo-
capillary flow in a liquid bridge of low Prandtl number fluid in microgravity was investigated as a

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A liquid bridge model consists of a liquid column floating be-
tween two differently heated solid rods (see Fig. 1). It was initially
introduced to mimic half of the floating zone technique for space
materials science [1], and has now become one of the typical mod-
els for the investigation, both experimentally and theoretically, of
the principles of thermocapillary flow. Motivated by the experi-
mental work of Chun and Wuest [2,3] and Schwabe et al. [4,5],
extensive theoretical studies (e.g. linear instability analyses
[6-9], energy stability analyses [10,11] and direct numerical simu-
lations [12-14]) have established that an axisymmetric (2D)
stationary thermocapillary flow first loses its stability to an asym-
metric (3D) stationary flow, then to an oscillatory flow in liquid
bridges of low Prandtl number fluids (Pr < 0.06), while it transits
to oscillatory flow directly in liquid bridges of higher Prandtl num-
ber fluids. However, the corresponding critical conditions deter-
mined through the theoretical studies do not give quantitative
agreement with the experimental results, especially for high Pra-
ndtl number fluids. It should be noted that most of the theoretical
studies were carried out with an adiabatic free-surface assump-
tion, in other words there is no interfacial heat exchange on the
free surface. In practice interfacial heat exchange in the experi-
ments, especially under high temperature conditions, may play
an important role in the fluid dynamics [15-20]. Kamotani et al.
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[15,19] investigated experimentally the effect of interfacial heat
exchange in liquid bridges of high Prandtl number fluids, taking
into account the ambient air flow. They calculated the average
interfacial heat transfer rate with respect to the dimensionless
average Biot number (Bi), and found that the critical Marangoni
number decreased with increasing heat-loss to the environment
in the range of average Bi less than 1.5, while the critical Marang-
oni number was only slightly affected by increasing heat-gain from
the environment. Melnikov and Shevtsova [17] investigated
numerically the effect of interfacial heat exchange on coupled ther-
mocapillary flow and buoyancy flow in a cylindrical liquid bridge
(Pr=14 and I' = 1.8) with a constant ambient temperature (the ef-
fect of free-surface deformation was ignored) [20]. They found that
the heat-loss serves as a stabilizing effect on the flow at large Bi
(Bi = 5) contrary to the destabilizing effect at small Bi (Bi < 2).
Kousaka and Kawamura [18] studied numerically thermocapillary
flow in a liquid bridge (Pr=28.1 and I" = 1.0) in microgravity with a
linearly distributed ambient temperature. The destabilization of
thermocapillary flow by interfacial heat-loss in the range of small
Bi (Bi < 1) was also found. However, due to the computational task
of 3D direct numerical simulations, the results available in Ref. [18]
are still fragmentary (there are only two data points in the range
0<Bi<1 where steep variation of the marginal curve occurs,
according to the present study). However, with the aim of manip-
ulation of oscillatory thermocapillary flow in a liquid bridge
through external application of forced gas flow, which closely re-
lates to the effect of interfacial heat exchange, a space experiment
co-operated by ESA and JAXA researchers is scheduled in ISS in the
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Nomenclature

A matrix in eigenvalue problem

B matrix in eigenvalue problem

Bi="!%  Biot number

Dy thermal dissipation

Esn “thermal” energy of disturbances

h heat transfer coefficient on free surface

h(z) free surface local radius

i V-1

Ji interactive term in “thermal” energy equation decom-

posed in cylindrical coordinates
thermal conductivity coefficient
height of the liquid bridge
Marangoni number
the outward-directed normal vector of the free surface
number of the grid points in axial direction
number of the grid points in radial direction
pressure
Prandtl number
cylindrical coordinate
radius of the liquid bridge
dimensionless stress tensor S = VU + (VU)”
dimensionless time
the unit vector tangent to the free surface in the (r, @)
plane
the unit vector tangent to the freesurface in the (r,z)
plane
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T dimensionless temperature

To mean temperature of the upper and lower ends

Tamb dimensionless ambient temperature

Teotd dimensionless temperature on the cold rod

U= (u, », w) dimensionless velocity vector

X vector composed of disturbance velocity, pressure and
temperature (v, i/, w,p/,T')"

X the basic steady axisymmetric state

Vo the liquid volume with cylindrical shape

Greek symbols
o thermal diffusivity coefficient
B thermal expansion coefficient
AT applied temperature difference
y negative temperature gradient of surface tension
r'=L  aspect ratio
dynamic viscosity coefficient
kinematic viscosity coefficient
o mean density
(m) the complex growth rate of the corresponding perturba-
tion mode
u dynamic viscosity coefficient
Q volume domain occupied by the liquid bridge
e thermal radiation

near future, and the corresponding preliminary theoretical studies
are necessary due to the scarce space experiment opportunities. In
the present study, linear stability analyses were conducted to
investigate the dependency of the critical conditions of thermocap-
illary flow on interfacial heat exchange in a liquid bridge of a high
Prandtl number fluid in microgravity, with both constant and line-
arly distributed ambient temperature. Moreover, the normalized
“thermal” energy balance between the basic state and the critical
perturbation of thermocapillary flow was investigated. Finally,
the effect of interfacial heat exchange on thermocapillary flow in
a liquid bridge of low Prandtl number fluid in microgravity was
investigated as a comparison.

2. Governing equations and numerical schemes
Fig. 1 shows a schematic diagram of the liquid bridge of the

1 cst silicone oil (I" = 1.8, Pr=16.0) adopted in the present study.
The thermo-physical properties of the silicone oil are listed in

Z

T+AT/2

T~AT/2 r

Fig. 1. Schematic of a cylindrical liquid bridge in microgravity.

Table 1. With the unitary volume ratio usually adopted in the space
experiment, the liquid column is cylindrical. The length, velocity,
pressure and time are scaled by R, “”ﬁT, AT and &, respectively. The
temperature measured with respect to Ty is scaled by AT. In the
cylindrical coordinates (r, ¢, z), the non-dimensional govern-

ing equations are as follows:

vU =0, (1)
o0 Ma - - ~

E+W(UV)U+VP:AU, (2)
oT Ma - 1

E—FF(UV)TfﬁAT 3)
The corresponding boundary conditions are as follows:

z=0, I': U=0, T:;%, (4)
r=1:il0=0, £Si=-fVT

)

t,Sii = —t, VT, fAVT = —Bi(T — Tom).

For the linear stability analysis, the basic axisymmetric steady
state, X = {U(r, z)=Ué, + We,,P(r,z),T(r,z)}, is first determined
for a given set of parameters (Ma and Bi). Then small three-
dimensional disturbances are imposed on the basic state, and the
corresponding equations are linearized by neglecting high orders
of the disturbances. The disturbances are assumed to be in the
normal modes:

Table 1
Thermophysical properties of 1 cst silicone oil.
0o 818 (kg/m?) B 0.00129 (K1)
v 1076 (m2/s) Y 5.63 x 107> (kg/s?)

K 2.4 %1072 (cal/m -s - k) Prandtl number 16.0
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Fig. 2. Biot number dependent streamlines (right) and isothermals (left) of the basic steady flow at corresponding Ma. for Ty, = —0.5.
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Fig. 3. Biot number dependent profiles of the critical Marangoni number.

um(r,z) The discrete form of the linearized equations can be written as a
Pl = Z p™(r,z) | exp[o(m)t +jmd]. 7) generalized eigenvalue problem:

T = \T™(r,2) g(x,X,Ma, m, Bi) = Ax = a(m)Bx. (8)
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. . . . . . . The eigenvalues and the related eigenfunctions of the problem

. are solved by the Arnoldi method [21]. For a non-symmetric eigen-
T, value problem, a direct method like QZ algorithm destroys the
sparse structure of the problem and involves extensive computa-
tion task work which becomes impractical for large system. The
Arnoldi method finds the desired eigenvalues through subspace
iteration. Since we only concern about the extremal eigenvalue
in our linear stability analysis, and the sparse structure of the prob-
lem, the Arnoldi method is a proper method to be adopted. And the
success of its application has been demonstrated by our previous
work [20,22]. The critical Marangoni number (Ma.) is obtained
when the maximum of the real part of g(m) for all m is zero. In
practice, the azimuthal wave number m for the critical mode is
not very large, and we calculated only for 0 < m < 4. The details
of the linear stability analysis can also be found in [22]. In order

y y y - ; : ; to properly resolve the boundary layers at both solid ends, a
) ' - ’ ’ ’ ' non-uniform mesh with denser grid points near the solid ends

Fig. 4. Biot number dependent temperature gradient distribution at free surface at
the corresponding Ma, for Tgpp = —0.5.
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Fig. 5. (a) Streamlines (solid lines on right) and isothermals (solid lines on left) of the basic steady flow and velocity disturbances (vectors) in r-z plane; (b) distribution
density j; (right) and j, (left) in r-z plane; (c) velocity disturbances (vectors) and isolines of temperature disturbances (solid lines: positive temperature disturbance; dotted
lines: negative temperature disturbance; dash-dotted line: zero temperature disturbance.) at horizontal cut plane z = £ at the corresponding critical state at different Biot

number for T, = —0.5.
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and the free surface was adopted in this study. The total grid num-
ber is N, x N, = 81 x 141. The detailed code validation can be
found elsewhere [20,22].

To better understand the energy balance between the basic
state of thermocapillary flow and the critical temperature pertur-
bation, the rate of “thermal” energy change (E.,) of the critical dis-
turbance [7,9,10] was investigated: the thermal disturbance
equation was multiplied by the temperature disturbance and inte-
grated over the volume of the liquid bridge (),

] dEth
o Zhth -1
g =QH-1, ©)
where Ey, = [, 2dQ, Dy, = [, Y5¥T' dQ. Note that Eq. (9) is normal-
ized by the thermal dissipation (D¢y,). Q = — Pr‘gm §,Tds is the trans-
port of “thermal” energy through the free surface, | = — P[erIJip.
Jo@VTTAQ =], +], == M [ (wDT'dQ— Mo [ (wI)T'dQ is

the interactive term between the basic thermal state and the distur-
bance, which indicates the energy transfer from the basic thermal
field to the temperature disturbance field by the disturbance velocity.
Moreover, the distribution density of J; and J, can be introduced as j;
and j, through J, = [} dz [, j,dr and J, = [; dz [, j,dr. A similar pro-
cedure can be used for kinetic energy balance [10,20]. However, the
thermal energy balance is the focus for the liquid bridge of high
Prandtl number fluids as in the present study [10].

3. Results and discussion

We studied the thermocapillary flow in a cylindrical liquid
bridge in microgravity with heat transfer through the free surface.
First, the case with constant ambient temperature (Tsmp = Tcola)
[17] was investigated. Fig. 2 shows the isotherms and streamlines
of the basic steady axisymmetric field at the critical state for differ-
ent Biot number. The isotherms crowd at the cold corner and
nearly linearly distribute at the hot end except in the hot corner.
In this case, the interfacial heat transfer is always heat-loss from
the liquid bridge to the environment. The interfacial heat exchange
pulls up the isotherms at the cold corner and enhances the axial
temperature gradient at the hot end. Fig. 3 shows the Biot number
dependent critical Marangoni number. In the range of intermediate
and large Bi, the profile of the critical Marangoni number exhibits a
convex trend, i.e. the critical Marangoni number firstly decreases
with increasing Biot number up to Bi = 1.5, followed by an approx-
imately linear increase. However, in the parameter range studied,
the effect of heat-loss is not sufficiently intensive to stabilize
thermocapillary flow with respect to the adiabatic case [17]. On
the other hand, in the range of small Biot number, the critical
Marangoni number increases rapidly with decreasing heat-loss,
then drops sharply to that of the adiabatic case. This phenomenon
is qualitatively consistent with experimental predictions [19]
where Wang et al. also found that the critical Marangoni number
decreases substantially when the modified average Biot number
over the free surface changes from positive to zero.

Noting that the disturbances must vanish at the solid ends, the
magnitude of the disturbances near the solid ends should be smal-
ler than in the bulk region. The stability properties of the basic flow
are mainly determined by the “effective” temperature difference in
the middle part of the liquid bridge [23] where the largest distur-
bances exist. From this viewpoint, the temperature gradient at the
middle part of the free surface was investigated (see Fig. 4). It was
discovered that the temperature gradient at the middle part of the
free surface increases with increasing Biot number in the range
Bi > 0.4. Hence with the same applied temperature difference
the effective temperature difference at the middle part of the free
surface is larger for the case with larger Bi, and the corresponding

basic flow tends to be destabilized. On the other hand, according to
the boundary condition of the thermal perturbation at the free
surface:

AVT = —Bix T, (10)

whenever a positive temperature disturbance arises somewhere on
the free surface, it is accompanied by an increase of heat-loss
through that part, and vice versa. Therefore, interfacial heat ex-
change restrains development of the temperature disturbance. To
verify these remarks, Fig. 3 also shows the computed results with
the Bi in Eq. (10) (but not in the basic state equations) set to zero.
With the same basic flow, the interfacial heat exchange significantly
stabilizes thermocapillary flow, and the stabilization effect becomes
intensive with increasing Biot number. Practically, the major con-
vex tendency of the Ma, profile could be due to competition of
the two mechanisms mentioned above. However, the appearance
of the local maximum of Ma, in the range of small Biot numbers,
could not be explained either in experimental studies [15,19] or
in the present study. Some interesting phenomena should be noted.
One is that the temperature gradient distribution exhibits an undu-
lation at the middle part of the free surface in the range of small Biot
number (see Fig. 4). This configuration transition coincidentally cor-
responds to appearance of the local maximum of the Ma. profile.
The other phenomenon is a special axisymmetric oscillation mode
with azimuthal wave number m = 0 that dominates the peak region
of the neutral stability boundary, contrary to the other cases with
m = 1. Fig. 5¢ shows the corresponding distributions of the velocity
and temperature disturbances at the horizontal middle plane z = £.
For the Bi = 0.3 case, the axisymmetric nature of the perturbations is
obvious. There is no azimuthal velocity disturbance and the other
disturbances are equally distributed azimuthally. However, the de-
tailed relationships between the above phenomena and the local
maximum of the Ma,. profile need further investigation.

To better understand energy transfer between the basic thermal
field and the temperature disturbance of the thermocapillary flow,
the normalized “thermal” energy balance was investigated. In all
cases studied, the term Q which indicates the energy transfer
through the free surface is relatively small (in the order of 10~2).
The temperature disturbances on the free surface are strongly re-
strained. Fig. 5a shows that the radial temperature gradient of the
basic thermal field is significant in the center and both the hot
and cold corners of the liquid bridge, while the axial temperature

— Bi=0
== Bi=0.2
© Bi=0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
z

Fig. 6. Biot number dependent temperature gradient distribution at free surface at
corresponding Ma, for linear Tgmp.
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Fig. 7. (a) Streamlines (solid lines on right) and isothermals (solid lines on left) of the basic steady flow and velocity disturbances (vectors) in r-z plane; (b) distribution
density j; (right) and j, (left) in r-z plane; (c) velocity disturbances (vectors) and isolines of temperature disturbances (solid lines: positive temperature disturbance; dotted

lines: negative temperature disturbance; dash-dotted line: zero temperature disturbance) at horizontal cut plane z = £ at the corresponding critical state at different Biot
number for linear Tgpp.

gradient is significant in the hot end and cold corner. According to the liquid bridge, and makes the major contribution to the distur-
Eq. (9), J; is the energy transfer to the temperature disturbance bance energy which always serves as the destabilizing effect. J,
from the radial temperature distribution of the basic thermal field has its maximum distribution density in the cold corner, and com-
by the radial velocity disturbance, while J, is the energy transfer pared to J; makes a less important contribution to the disturbance
to the temperature disturbance from the axial temperature distri- energy. For instance, J; is 0.75 and 1.1 for Biot number 0.2 and 0.5
bution of the basic thermal field by the axial velocity disturbance. respectively, and correspondingly J, is 0.25 and —0.1, respectively.
Therefore, for the cases with the oscillatory mode of m=1 (see On the other hand, for the cases with oscillatory mode of m =0, in
Fig. 5b), J; has its maximum distribution density in the center of the center of the liquid bridge, the velocity disturbance is nearly
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parallel to the basic thermal contours, and both J; and J, have max-
imum distribution density in the cold corner. In the case of Bi = 0.3,
for instance, J; equals 0.1 and J, equals 0.9, so that the major contri-
bution to the disturbance energy is from J, instead of J;.

Secondly, the case with linearly distributed ambient tempera-
ture (Tamp = z/I" — 0.5) [18] was investigated. In this case, heat-loss
to the environment occurs at the lower part of the free surface,
while heat-gain occurs from the environment at the upper part.
With increasing interfacial heat exchange, the isotherms and
streamlines of the two-dimensional axisymmetric convection
(not shown) at the corresponding Ma. behave quite similarly to
the case with the constant ambient temperature (Tgmp = Tcold),
and likewise for the temperature gradient distributions on the free
surface (see Fig. 6). Fig. 3 shows the heat transfer dependent Ma..
(Fig. 3 also shows the computed results with Bi in Eq.(10) set to
zero). The Ma. profile exhibits a roughly similar tendency to the
case with constant ambient temperature, except for the much flat-
tened slope of the profile in the range of large Bi. Moreover, the
special oscillation mode of m=0 dominates the peak region of
the neutral stability boundary, unlike the other cases with m = 1.
Fig. 7 shows the computed results for the disturbances distribu-
tion. Similar to the constant ambient temperature case, in the glo-
bal energy contributions of the terms in Eq. (9), energy transfer
through the free surface Q is relatively small (in the order of
1072), while the major contribution to the disturbance energy for
the cases of m =1 is from J; which always serves as a destabilizing
effect. J, also makes a contribution to the disturbance energy, but
with less importance compared to J;. On the other hand, for the
cases of m =0, the major contribution to the disturbance energy
is from J,, and J; makes a much smaller contribution to the distur-
bance energy.

Finally, the effect of the interfacial heat exchange on the ther-
mocapillary flow in liquid bridge of low Prandtl number fluid in
microgravity was also studied as a comparison. The details of the
physical model and mathematical formulation can be found in
[24]. Fig. 8 shows the computed results for a liquid bridge
(I' =2.0) of molten tin (Pr=0.009). The melting point of tin is
750 K. The ambient temperature is assumed to be 300 K, hence
thermal radiation (¢ is assumed to be 0.1) plays the major role in
interfacial heat exchange in this case. With the adiabatic melt free
surface, the critical Reynolds number is determined as Re, = 2819
with critical oscillation frequency f. = 0.468 Hz. When interfacial
radiation is taken into account the critical Reynolds number is
determined as Re. = 2828 with f.=0.474 Hz. The deviation be-
tween the critical Reynolds numbers is less than 1%. Consequently,
unlike the case of the liquid bridge of high Prandtl number fluids,
the effect of interfacial heat exchange on the onset of oscillatory
thermocapillary flow in a liquid bridge of low Prandtl number flu-
ids in microgravity is insignificant.

15 Pr=0.009, As=2 and Gr=0

—@— with adiabatic
10F_A  with radiation

/
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Reo= i Reg=

2819 2828
I3 S N S R P |
2000 2500 3000 3500 4000 4500

Re[-]

Fig. 8. Critical Reynolds number for liquid bridge of Pr=0.009 with adiabatic and
radiative free surface.

4. Conclusions

The effect of interfacial heat exchange on the onset of oscilla-
tory thermocapillary flow in a cylindrical liquid bridge formed by
1 cst silicone oil (Pr=16.0) with aspect ratio 1.8 in microgravity
was investigated in an extended range of Biot number. With both
constant and linearly distributed ambient temperatures, the com-
puted results predict that interfacial heat exchange plays an
important role in oscillatory thermocapillary flow in liquid bridges
of high Prandtl number fluids. The corresponding marginal stabil-
ity boundary exhibits a roughly convex trend with increasing Biot
number. However, a sharp local maximum exists in the range of
small Biot number where a special oscillation mode of m = 0 dom-
inates, contrary to the other cases with m = 1. For the case of m =1,
the major destabilizing contribution to the disturbance energy is
from the energy transfer from the radial temperature distribution
of the basic thermal field in the center of the liquid bridge by the
radial velocity disturbance. For the case m = 0 the major destabiliz-
ing contribution is from the energy transfer from the axial distribu-
tion of the basic thermal field in the cold corner of the liquid bridge
by the axial velocity disturbance. Moreover, the effect of interfacial
heat exchange on thermocapillary flow in a liquid bridge of low
Prandtl number fluid in microgravity was also investigated as a
comparison, and predicted to be insignificant.
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