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Gravity-Driven Instability in a Liquid Film Overlying an Inhomogeneous Porous
Layer *

ZHAO Si-Cheng(赵思诚)1, LIU Qiu-Sheng(刘秋生)1**, NGUYEN-THI Henri2, BILLIA Bernard2

1Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
2IM2NP, UMR CNRS 6137, Universitéd’Aix-Marseille III, 13397 Marseille Cedex 20, France

(Received 18 November 2010)
A new model consisting of a liquid film overlying a saturated and inhomogeneous porous layer is investigated. We
concentrate on effects of inhomogeneity on transition of instability modes. Influences of the averaged porosity and
the gradient of porosity distribution on the instability behaviors of a liquid-porous layer system are emphasized.
The average permeability of the porous layer is a key factor to determine the penetration of convection in the
system.

PACS: 47.20.Dr, 47.55.dm, 47.56.+r DOI: 10.1088/0256-307X/28/2/024702

The convective motion in a fluid film[1] can be trig-
gered by buoyancy force[2] (Rayleigh convection), or
surface tension force[3] (Marangoni convection). They
have the respective equivalences for the fluid satu-
rated in porous media.[4−6] Darcy’s law[7] is one of
the popular models to describe the motion of fluid in
the porous media with low porosity. In the high poros-
ity case, the Brinkman model[8] is often used, which
is considered as an extension of the Darcy’s equation
by adding a Laplacian term analogous to that appear-
ing in the Navier–Stokes equation. According to our
experience, when the porosity is not extremely high,
using the Brinkman model usually brings some prob-
lems of calculation, such as longer computation time,
more difficult for convergence, etc.

The onset of pure Rayleigh convection in the su-
perposed liquid-porous (homogeneous) layers, sand-
wiched by two horizontal infinite rigid and thermal
conductive wall, heated from the bottom, was first
investigated by Chen et al.[9] Darcy’s law together
with the Beaver-Joseph condition[10] are applied at
the liquid-porous interface. They indicated that the
neutral instability curve is normally bimodal, which
possesses two local minima. The ratio between the
depth of the liquid layer and that of the porous layer
ℎ is a key parameter of the system, and it has a crit-
ical value ℎ𝑐 = 0.13. When ℎ < 0.13 the instability
is the long-wave mode and the convection appears in
both liquid and porous layers, and when ℎ > 0.13
the instability is called the short-wave mode in which
the convection is confined in the liquid film. Later,
Straughan et al[11] and Desaive et al[12] studied the
coupled capillary and buoyancy driven instability in
the similar system.

The porous layer considered in the previous works
mentioned above was in general assumed being ho-
mogeneous. However, the naturally formed porous
media do not always have a constant porosity. For in-
stance, in the directional solidification of concentrated

alloys, a mushy zone consisting of dendrites immersed
in the melt always appears. The mushy layer sepa-
rates the complete melt region and the solid frozen
region, and in the theoretical and computational con-
siderations, it is often regarded as a porous layer with
variable permeability.[13] Based on our comprehension
to the problems, we are hereby going to focus on the
buoyancy-driven instability (Rayleigh convection) in
a liquid-porous double-layered system, and set the
porous layer to be inhomogeneous, i.e., the present
work is a combination of our previous ones.[14,15] Con-
sequently, the effect of inhomogeneity on the instabil-
ity mode transition is analyzed, and the distribution of
velocity and the average permeability of porous layer
are presented for two different instability modes.
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Fig. 1. Geometrical configuration.

The schema of the system is illustrated in Fig. 1.
An inhomogeneous porous layer with thickness 𝐻𝑚

underlies an incompressible liquid layer with thickness
𝐻𝑙. The two horizontal infinite layers are sandwiched
by two parallel, rigid and perfectly heat conductive
walls. Cartesian coordinates are introduced with its
origin at the fluid-porous interface and the 𝑧 axis as
the normal vector of the boundary walls, which is op-
posite to the direction of gravitational acceleration.
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The porosity profile is a single valued function of 𝑧,
i.e., it only varies vertically. In the present study, we
choose a linear function to describe it. The function is
𝜑(𝑧) = 𝜑0 + 𝜑𝑧 · 𝑧, where 𝑧 ∈ [−1, 0]. Here 𝑧 is in the
non-dimensional form shown later, 𝜑0 is the porosity
at the fluid-porous interface and is set to be 0.5, 𝜑𝑧 is
the gradient of porosity distribution.

For an isotropic medium, any physical property
has the relation ()𝑚 = ()𝑙𝜑 + ()𝑠(1 − 𝜑), where 𝜑 rep-
resents the local porosity, the subscript 𝑚 denotes the
averaged value, 𝑠 a property of the solid matrix, and 𝑙
the property of the interstitial liquid. In order to study
the Rayleigh convection, we introduce the Boussinesq
approximation

𝜌𝑙 = 𝜌0[1 − 𝛼(𝑇 − 𝑇0)], (1)

where 𝛼 is the bulk thermal expansion coefficient, 𝑇
is the temperature, and the subscript 0 represents the
value of ambience.

The continuity, momentum and energy equations
for liquid layer are

∇ · 𝑣𝑙 = 0, (2)

𝜌0

[︁𝜕𝑣𝑙

𝜕𝑡
+ (𝑣𝑙 · ∇)𝑣𝑙

]︁
= −∇𝑝𝑙 + 𝜇𝑙∇2𝑣𝑙 − 𝜌0𝑔[1

− 𝛼(𝑇𝑙 − 𝑇0)]𝑒𝑧, (3)

𝜕𝑇𝑙

𝜕𝑡
+ (𝑣𝑙 · ∇)𝑇𝑙 = 𝜅𝑙∇2𝑇𝑙. (4)

The equations for the porous layer are

∇ · 𝑣𝑚 = 0, (5)

𝜌0
𝜑

𝜕𝑣𝑚

𝜕𝑡
= −∇𝑝𝑚−𝜌0𝑔[1−𝛼(𝑇𝑚−𝑇0)]𝑒𝑧−

𝜇𝑙

𝐾
𝑣𝑚, (6)

(𝜌𝑐)𝑚
𝜕𝑇𝑚

𝜕𝑡
+(𝜌0𝑐𝑙)(𝑣𝑚 ·∇𝑇𝑚) = 𝜅𝑚(𝜌0𝑐𝑙)∇2𝑇𝑚. (7)

We introduce perturbations of velocities, pressure and
temperature to linearize the equations, and different
scales for their non-dimensional form. In the liq-
uid layer, the temperature is scaled by ∆𝑇𝑙𝜈𝑙/𝜅𝑙, the
length by 𝐻𝑙, the time by 𝐻2

𝑙 /𝜅𝑙, and the velocity
by 𝜈𝑙/𝐻𝑙. In the porous layer, they are ∆𝑇𝑚𝜈𝑙/𝜅𝑚0,
𝐻𝑚, 𝐻2

𝑚/𝜅𝑚0, and 𝜈𝑙/𝐻𝑚, where 𝜅𝑚0 = 𝑘𝑚0/(𝜌0𝑐𝑙) =
[𝑘𝑙𝜑0 + 𝑘𝑠(1 − 𝜑0)]/(𝜌0𝑐𝑙). According to the normal
mode technique,[16] we seek solutions for the vertical
velocity component and temperature in the form:

(𝑤𝑞, 𝑇𝑞)𝑇 = [𝑊𝑞(𝑧𝑞),Θ𝑞(𝑧𝑞)]𝑇 exp(𝜆𝑞𝑡𝑞 + 𝑖𝑎𝑞𝑥𝑞). (8)

The amplitudes 𝑊𝑞 and Θ𝑞 (where 𝑞 = 𝑙,𝑚) describe
the amplitude of the velocity and temperature, 𝑎𝑞 are
the dimensionless wavenumbers in the 𝑥-direction, and
𝜆𝑞 are the complex growth rates of the disturbance.
Then the equations (where D𝑞 = 𝑑/𝑑𝑧𝑞) become

𝜆𝑙

𝑃𝑟𝑙
(D2

𝑙 − 𝑎2𝑙 )𝑊𝑙 = (D2
𝑙 − 𝑎2𝑙 )2𝑊𝑙 − 𝑎2𝑙𝑅𝑎𝑙Θ𝑙, (9)

𝜆𝑙Θ𝑙 = 𝑊𝑙 + (D2
𝑙 − 𝑎2𝑙 )Θ𝑙, (10)

𝜆𝑚

𝜑𝑃𝑟𝑚
(D2

𝑚 − 𝑎2𝑚)𝑊𝑚

= − 1

𝛿20
𝑓1(𝑧𝑚)

[︁
(D2

𝑚 − 𝑎2𝑚)𝑊𝑚 +
1

𝜑

𝑑𝜑

𝑑𝑧𝑚
D𝑚𝑊𝑚

]︁
− 𝑅𝑎𝑚

𝛿20
𝑎2𝑚Θ𝑚 +

1

𝛿20
𝑓1(𝑧𝑚)𝑓2(𝑧𝑚)D𝑚𝑊𝑚, (11)

𝜆𝑚𝐺𝑚0𝑓3(𝑧𝑚)Θ𝑚

=𝑌 · 𝑓−1
4 (𝑧𝑚)𝑊𝑚 + 𝑓4(𝑧𝑚)(D2

𝑚 − 𝑎2𝑚)Θ𝑚

+ 𝑓5(𝑧𝑚)D𝑚Θ𝑚. (12)

The dimensionless parameters are

𝑃𝑟𝑙 =
𝜈𝑙
𝜅𝑙

, 𝑃 𝑟𝑚 =
𝜈𝑙
𝜅𝑚0

, 𝑋 =
𝜅𝑙

𝜅𝑚0
=

𝑘0
𝑘𝑚0

,

𝛿0 =

√︀
𝐾(𝜑0)

𝐻𝑚
, 𝐺𝑚0 =

(𝜌𝑐)𝑚0

𝜌0𝑐𝑙
, 𝑌 =

𝐻𝑚

𝑘𝑚0

∫︀ 0

−𝐻𝑚
𝑘−1
𝑚 𝑑𝑧

,

𝑅𝑎𝑚 =
𝛼𝜌0𝑔∆𝑇𝑚𝐻𝑚𝐾(𝜑0)

𝜇𝑙𝜅𝑚0
, 𝑅𝑎𝑙 =

𝛼𝜌0𝑔∆𝑇𝑙𝐻
3
𝑙

𝜇𝑙𝜅𝑙
.

The Prandtl number 𝑃𝑟 and the Rayleigh number 𝑅𝑎
have their respective definitions in the liquid layer (de-
noted by the subscript 𝑙) and in the porous layer (by
𝑚). 𝑋 is the ratio of thermal diffusivity (conduc-
tivity), and 𝛿0 is the Darcy number. The functions
𝑓1(𝑧𝑚) to 𝑓5(𝑧𝑚) are defined as

𝑓1(𝑧𝑚) =
𝐾(𝜑0)

𝐾(𝜑(𝑧𝑚))
, 𝑓2(𝑧𝑚) =

1

𝐾(𝑧𝑚)

𝑑𝐾(𝑧𝑚)

𝑑𝑧𝑚
,

𝑓3(𝑧𝑚) =
(𝜌𝑐)𝑚
(𝜌𝑐)𝑚0

, 𝑓4(𝑧𝑚) =
𝑘𝑚
𝑘𝑚0

, 𝑓5(𝑧𝑚)=
1

𝑘𝑚0

𝑑𝑘𝑚
𝑑𝑧𝑚

.

Equations (9)–(11) give rise to a tenth-order system
with the following associated boundary conditions.
At 𝑧𝑚 = −1:

𝑊𝑚 = 0, Θ𝑚 = 0.

At 𝑧𝑙 = 𝑧𝑚 = 0:

𝑊𝑙 = ℎ𝑊𝑚, 𝑌 ℎΘ𝑙 = 𝑋2Θ𝑚,

𝑌 D𝑙Θ𝑙 = 𝑋D𝑚Θ𝑚,

D2
𝑙𝑊𝑙 − 𝛽

ℎ

𝛿0
D𝑙𝑊𝑙 + 𝛽

ℎ3

𝛿0
D𝑚𝑊𝑚 = 0,

𝜆𝑙

𝑃𝑟𝑙
D𝑙𝑊𝑙 − 𝜆𝑚

ℎ4

𝜑0𝑃𝑟𝑚
D𝑚𝑊𝑚

= D𝑙(D
2
𝑙 − 𝑎2𝑙 )𝑊𝑙 +

ℎ4

𝛿20
D𝑚𝑊𝑚.

At 𝑧𝑙 = 1:

𝑊𝑙 = 0, Θ𝑙 = 0, D𝑙𝑊𝑙 = 0.

The calculations are carried out using the physical
properties of water at temperature 𝑇 = 297.15 K. Its
Prandtl number is 6.34. The solid matrix consists of
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glass beads with a nominal diameter of 3mm.[17] The
Permeability 𝐾(𝜑) of such a porous medium is ob-
tained using the Kozeny–Carman relation[18]

𝐾(𝜑) =
𝑑2

172.8

𝜑3

(1 − 𝜑)2
, (13)

where 𝑑 is the diameter of the glass beads. The depth
of the whole system is 40 cm, and the depth ratio
ℎ = 0.05.
Table 1. Physical properties of water and glass.

𝜌0 = 0.997× 103 kg/m3 𝜌𝑠 = 2.5× 103 kg/m3

𝑐𝑙 = 4.16× 103 J/kg·K 𝑐𝑠 = 0.84× 103 J/kg·K
𝜅𝑙 = 0.145× 10−6 m2/s 𝜅𝑠 = 0.201× 10−6 m2/s
𝜈𝑙 = 0.919× 10−6 m2/s

The linearized equations (9)–(12) together with
their boundary conditions are discretized using the
spectral method (Tau-Chebyshev)[19] and are resolved
as the general eigenvalue problem. This method has
been compared with the published article[9] and veri-
fied to be practical with high computational precision
in our previous works.[14,15]

a1
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1
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Fig. 2. Marginal curves of instability for different porosity
gradient 𝜑𝑧 .

Figure 2 illustrates the marginal curves of insta-
bility (denoted by 𝑅𝑎𝑙 and 𝑎𝑙) of the system under
the cases of different distribution gradient (𝜑𝑧) in the
inhomogeneous porous layer. In a liquid-porous lay-
ered system with the homogeneous porous material,
the neutral curves are always bimodal, which is first
pointed out by Chen et al.[9] Therefore, every neu-
tral curve possesses two branches, and each of them
has a local minimum. When the local minimum with
small wavenumber is the least value of the whole curve,
the convection instability is called the long-wave mode
and the convection flow is triggered in both liquid and
porous layers. The other case is called the short-wave
mode, since the convection appears only in the liq-
uid layer. As shown in Fig. 2, the similar instability
modes are also found in the system with an inhomo-
geneous porous layer, but the transition of instability
mode from long-wave to short-wave is rather evident
during the increase of 𝜑𝑧 for different porosity dis-
tributions. The variation of 𝜑𝑧 only influences the
long-wave branch of each neutral curve. The local

minimum of the short-wave branch maintains almost
the same. This phenomenon can be seen as the ef-
fect of permeability of the porous layer. According to
the above definition, as a gradient value, 𝜑𝑧 is a key
parameter which can operate directly the distribution
of porosity, and furthermore, the permeability (from
Eq. (13)). The porosity at the liquid-porous interface
is 0.5, and the depth ratio is kept at 0.05. Hence,
the permeability of the porous layer might be the solo
factor which has a evident effect on activating the liq-
uid in the porous layer to convect after the system
destabilizes.

(a) (b) 

z
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Fig. 3. Amplitudes of velocity (a) and of temperature (b)
for different porosity gradient 𝜑𝑧 .

The profiles of velocity 𝑊𝑞 and temperature Θ𝑞

are shown in Fig. 3, respectively. We can see that the
porosity gradient 𝜑𝑧 influences significantly the veloc-
ity distribution only in the case of long-wave mode
instability, in which 𝜑𝑧 is negative. When 𝜑𝑧 turns
positive, the convection in the liquid layer is indepen-
dent of the porosity distribution and the instability of
the system corresponds to the short-wave mode. Dif-
ferent from the Marangoni convection in the system
with a free surface at the liquid layer, the buoyancy-
driven instability is triggered in the whole system gen-
erally, simultaneously and instantaneously. The con-
vection penetrates most deeply in the porous layer
with large porosity. For example, in this system when
𝜑𝑧 = −0.4, the largest porosity is at 𝑧𝑚 = −1 and
of value 0.9. Through the amplitudes of temperature,
we know that the porosity distribution operates less
significantly than it for the velocity in the long-wave
mode. Although the temperature perturbation like-
wise penetrates most deeply in the case of 𝜑𝑧 = −0.4,
the peak value of its amplitude is not apart from the
middle of porous layer very much. It is because water
has a relatively stronger viscous effect than its thermal
diffusivity (𝑃𝑟𝑙,𝑚 > 1), and the influence of inhomo-
geneous permeability is mainly achieved through the
viscous resistance imposed on liquid by solid matrix
of the porous layer.

In order to study our problem more thoroughly, we
introduce the average porosity defined as

𝜑average =

∫︁ 0

−1

𝜑(𝑧𝑚)𝑑𝑧𝑚. (14)

Accordingly, a double-layered system mentioned
above has a correspondence, where the inhomogeneous
porous layer is replaced by a homogeneous one with
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its constant porosity identical to the average value
in the former case through the definition of Eq. (14).
Hereby, the comparison of neutral curves in the two
corresponding systems is illustrated in Fig. 4. We can
see that when 𝜑𝑧 is negative, the two local minima
of the marginal curves overlap each other, though the
forms of the curves are different. However, in each pos-
itive 𝜑𝑧 case, only the local minima of the short-wave
branch overlap each other. The long-wave branches
diverge obviously. These results indicate that, in the
case of linearly distributed porosity, its average value,
or say, the average permeability, is the key factor to
determine the mode of instability.

(a) φz=-0.4 (b) φz=-0.2

(c) φz=0.2 (d) φz=0.4
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Fig. 4. Comparison of neutral curves between the sys-
tems with inhomogeneous porous medium and the cases
with the corresponding averaged porosity.

Furthermore, the results in Fig. 4 also indicate the
mechanism of the two branches on the neutral curves.
The short-wave branch represents the convection of in-
stability only in the liquid layer. Therefore, its char-
acteristics are determined mainly by the properties
of the liquid itself. According to the definition of
Beavers-Joseph interface condition[10] used, we know
that the influence of the porous layer on the liquid
layer is realized through the depth ratio ℎ, the expe-
riential coefficient 𝛽 and the Darcy number at the in-
terface 𝛿0, fundamentally determined by the porosity
there 𝜑0. During our discussion, these three param-
eters are given and fixed. Hence, the characteristics
of the short-wave mode instability can be considered
to be independent of the porous layer. This can ex-
plain the reason why on the two marginal curves, the
local minima, even the shape and trend of the short-
wave branch maintain the same always. Contrarily,
the long-wave mode instability has a completely differ-
ent case, because it primarily lies on the porous layer.
When and only when the convection can take place in

the whole system (corresponding the negative 𝜑𝑧 cases
in this study), the local minima of long-wave mode on
the two curves can achieve the same value. However,
even though at this time, the shapes and trends of the
branches are evidently different from each other. The
more acutely the porosity varies, i.e., the larger the
𝜑𝑧 is, the more profound the diversity will be. The
shape of the long-wave branch just reflects the differ-
ent porosity distribution.

In summary, in a new model of a double-layered
system, the linearly distributed porosity with a vari-
able gradient 𝜑𝑧 in a porous layer can make evidently
the transition of instability mode from a short-wave
mode to a long-wave mode. The solid matrix of the
porous layer can provide the extra viscous dissipation
which is strongly dependent on the permeability. The
fluid motion in the porous layer with a small porosity
is normally more difficult to form than in the case of
large porosity. Nevertheless, the effect of solid matrix
on the temperature perturbation is much less evident.
In addition, we find that the average porosity of the
porous layer is the key factor which determines the
penetration of convection. The inhomogeneity of the
porous layer merely significantly affects the distribu-
tion of velocity, and only in the cases that the sys-
tem destabilizes in the long-wave mode. Accordingly,
we can conclude that the average permeability of the
porous layer determines the mode of instability, and
the inhomogeneity of the porous layer influences the
velocity distribution of fluid convection in the porous
layer.

References
[1] Bénard H 1900 Rev. Gen. Sci. Pur. Appl. 11 1261
[2] Rayleigh L 1916 Phil. Mag. 32(6) 529
[3] Pearson J R A 1958 J. Fluid Mech. 4 489
[4] Horton C W and Rogers G T 1945 J. Appl. Phys. 16 367
[5] Lapwood E R 1948 Proc. Camb. Philos. Soc. 44 508
[6] Hennenberg M, Saghir M Z, Rednikov A and Legros J C

1997 Transport in Porous Media 27 327
[7] Nield D A and Bejan A 1998 Convection in Porous Media

2nd edn (New York: Springer)
[8] Brinkman H C 1947 Appl. Sci. Res. A 1 27
[9] Chen F and Chen C F 1988 J. Heat Transfer 110 403

[10] Beavers G S and Joseph D D 1967 J. Fluid Mech. 20 197
[11] Straughan B 2001 J. Comput. Phys. 170 320
[12] Desaive T and Lebon G 2001 Phys. Rev. E 64 066304
[13] Worster M G 1991 J. Fluid Mech. 224 335
[14] Zhao S C, Liu R and Liu Q S 2008 Chin. Phys. Lett. 25

620
[15] Zhao S C, Liu Q S, Liu R, Nguyen-Thi H and Billia B 2010

Int. J. Heat Mass Tran. 53 2951
[16] Colinet P, Legros J C and Velarde M G 2001 Nonlinear

Dynamics of Surface-Tension-Driven Instabilities (Berlin:
Wiley-VCH)

[17] Chen F and Chen C F 1992 J. Fluid Mech. 234 97
[18] Combarnous M A and Bories S A 1975 Adv. Hydrosci. 10

231
[19] Orszag S A 1971 J. Fluid Mech. 50 689

024702-4

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn
http://dx.doi.org/10.1017/S0022112058000616
http://dx.doi.org/10.1063/1.1707601
http://dx.doi.org/10.1023/A:1006564129233
http://dx.doi.org/10.1115/1.3250499
http://dx.doi.org/10.1017/S0022112067001375
http://dx.doi.org/10.1006/jcph.2001.6739
http://dx.doi.org/10.1103/PhysRevE.64.066304
http://dx.doi.org/10.1017/S0022112091001787
http://dx.doi.org/10.1088/0256-307X/25/2/072
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.04.003
http://dx.doi.org/10.1017/S0022112092000715
http://dx.doi.org/10.1017/S0022112071002842

	Title
	Fig. 1
	Eq. (1)
	Eq. (2)
	Eq. (3)
	Eq. (4)
	Eq. (5)
	Eq. (6)
	Eq. (7)
	Eq. (8)
	Eq. (9)
	Eq. (10)
	Eq. (11)
	Eq. (12)
	Eq. (13)
	Table-1
	Fig. 2
	Fig. 3
	Eq. (14)
	Fig. 4
	References

