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SUMMARY

On the basis of the projection method, a higher order compact finite difference algorithm, which possesses
a good spatial behavior, is developed for solving the 2D unsteady incompressible Navier–Stokes equations
in primitive variable. The present method is established on a staggered grid system and is at least third-order
accurate in space. A third-order accurate upwind compact difference approximation is used to discretize
the non-linear convective terms, a fourth-order symmetrical compact difference approximation is used
to discretize the viscous terms, and a fourth-order compact difference approximation on a cell-centered
mesh is used to discretize the first derivatives in the continuity equation. The pressure Poisson equation is
approximated using a fourth-order compact difference scheme constructed currently on the nine-point 2D
stencil. New fourth-order compact difference schemes for explicit computing of the pressure gradient are
also developed on the nine-point 2D stencil. For the assessment of the effectiveness and accuracy of the
method, particularly its spatial behavior, a problem with analytical solution and another one with a steep
gradient are numerically solved. Finally, steady and unsteady solutions for the lid-driven cavity flow are
also used to assess the efficiency of this algorithm. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of the unsteady incompressible Navier–Stokes (N-S) equations in primitive
variable form represents a difficult computational challenge. One major problem comes from the
pressure term in the momentum equations, which couples the momentum equations and must be
implicitly updated for the incompressibility to be satisfied. The projection method is a widely used
technique for solving viscous incompressible flow based on the primitive variable formulations.
This technique introduced originally and analyzed by Chorin [1, 2] is actually a fractional step
method or operator-splitting discretization scheme, in which the computations of the velocity
and the pressure are decoupled through a two-step predictor–corrector procedure. In the past
several decades, many improved projection methods were developed by some authors [3–9]. In
the first step, an intermediate velocity field is computed by solving the momentum equations
ignoring the pressure term and the incompressibility constraint. In the second step, according to
Helmholtz–Hodge decomposition theorem [10], the intermediate velocity is projected to the space
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of the divergence-free vector fields to get the pressure and the corrected velocity that satisfies the
incompressibility condition.

For many application problems it is desirable to use higher order numerical methods to obtain
accurate solution. Compact finite difference (FD) methods feature high order accuracy and smaller
stencils. Recently, there has been a renewed interest in the development and application of compact
FD methods for the numerical solution of the convection–diffusion and N-S equations [11–18]. It
is evident that they are not only accurate and effective but also can obtain satisfactory results with
a smaller grid mesh.

This paper is primarily aimed at developing a higher order compact FD algorithm, which
possesses a good spatial behavior for solving 2D unsteady incompressible N-S equations in primary
variable form based on the projection method. The method is constructed on a staggered grid
system and has at least third-order accuracy in spatial dimension. A third-order upwind compact
difference approximation proposed in [15] is used to discretize the non-linear convection terms, a
fourth-order symmetrical compact difference approximation is used to discretize the viscous terms,
and a fourth-order compact difference approximation on a cell-centered mesh is used to discretize
the first derivatives in the continuity equation. Especially, a new fourth-order compact difference
scheme for approximating the pressure Poisson equation and new explicit schemes for solving the
pressure gradient are proposed on the nine-point 2D stencil. Numerical experiments are performed
for the validation of accuracy and efficiency of the present algorithm.

2. MATHEMATICAL MODEL

The time-dependent incompressible N-S equations in primitive variable form can be written as

Vt +(V ·∇)V+∇ p = 1

Re
∇2V (1)

∇ ·V = 0 (2)

where p is the pressure, V= (u,v) represents the velocity vector, and Re is Reynolds number.
Most numerical methods for solving Equations (1) and (2) in terms of the primitive variable use

a fractional step approach. An approximation to momentum equation (1) is first made to determine
a provisional velocity field, and then an elliptic equation is solved that enforces the solenoidal
constraint (2) and determines the pressure.

According to Helmholtz–Hodge decomposition theorem [10], an intermediate velocity V∗ is
calculated by neglecting the contribution of the pressure gradient term. In this step, the explicit
Euler scheme is used:

V∗−Vn

�t
= 1

Re
∇2Vn −(Vn ·∇)Vn (3)

Then, the intermediate velocity V∗ can be decomposed into the sum of two vectors:

V∗ =Vn+1 ⊕∇� (4)

where vector Vn+1 with zero divergence denotes the velocity fields at the next time level, vector
∇� with zero curl. And then discretizing equation (1) and applying (3), we have

Vn+1 −V∗

�t
= −∇ pn+1 (5)

∇ ·Vn+1 = 0 (6)

The pressure field pn+1is obtained by taking the divergence of formula (5) and applying formula (6)

∇2 pn+1 = 1

�t
∇ ·V∗ (7)
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where p denotes a pseudo-pressure when used in a semi-implicit formulation. After solving
the pressure and pressure gradient, we can obtain the velocity fields at time level n+1 from
Equation (5).

3. HIGHER ORDER COMPACT SCHEMES OF MATHEMATICAL MODEL

The staggered mesh grid point system is given in Figure 1. We approximate the problem on
uniform spatial grids with step �x in x-direction and �y in y-direction. We denote by fi, j the
approximation of a function f at the mesh points (xi = i�x, y j = j�y). In addition, some difference
operators used in this paper are defined as follows:

�0
x fi, j =

fi+ 1
2 , j − fi− 1

2 , j

�x
(8)

�0
y fi, j =

fi, j+ 1
2
− fi, j− 1

2

�y
(9)

�0
x fi, j = fi+1, j − fi−1, j

2�x
(10)

�0
y fi, j = fi, j+1 − fi, j−1

2�y
(11)

�xx fi, j = fi+1, j −2 fi, j + fi−1, j

�x2
(12)

�yy fi, j = fi, j+1 −2 fi, j + fi, j−1

�y2
(13)

The first momentum equation is approximated at point (i + 1
2 , j), the second one at the point

(i, j + 1
2 ). The continuity equation and pressure are approximated at the point (i, j).

3.1. Discretization of the intermediate velocity

The convective terms in Equation (3) are discretized by using a third-order accurate upwind
compact FD approximation [15]. For example, the term u�u/�x is split as follows:

u
�u

�x
=u+ �u

�x
+u− �u

�x
(14)

Figure 1. The staggered grid system.
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where u± = (u±|u|)/2. The terms u+�u/�x and u−�u/�x are approximated at point (i + 1
2 , j) by

u+
i+ 1

2 , j
F+

i+ 1
2 , j

and u−
i+ 1

2 , j
F−

i+ 1
2 , j

, respectively. Here F+
i+ 1

2 , j
and F−

i+ 1
2 , j

can be approximated by the

following FD schemes:

F+
i− 1

2 , j
+2F+

i+ 1
2 , j

= 1

2�x
(−5ui− 1

2 , j +4ui+ 1
2 , j +ui+ 3

2 , j ) (15)

2F−
i+ 1

2 , j
+ F−

i+ 3
2 , j

= 1

2�x
(−ui− 1

2 , j −4ui+ 1
2 , j +5ui+ 3

2 , j ) (16)

The viscous terms are evaluated by using a fourth-order accurate symmetrical compact FD formu-
lation. For example, the term �2u/�x2 at point (i + 1

2 , j) is approximated with Si+ 1
2 , j and

1
12 Si− 1

2 , j + 5
6 Si+ 1

2 , j + 1
12 Si+ 3

2 , j =�xxui+ 1
2 , j (17)

To obtain Si+ 1
2 , j , a linear system of equation with a tri-diagonal matrix has to be solved.

In the same way, we can approximate other convection terms and viscous terms in momentum
equations. After all convection and viscous terms are evaluated, we can calculate the intermediate
velocity V∗ through

(u∗)i+ 1
2 , j = (un +�tG)i+ 1

2 , j (18)

(v∗)i, j+ 1
2
= (vn +�t H )i, j+ 1

2
(19)

where

G = 1

Re
(Si (u)+S j (u))−u−F−

i (u)−u+F+
i (u)−v−F−

j (u)−v+F+
j (u) (20)

H = 1

Re
(Si (v)+S j (v))−u−F−

i (v)−u+F+
i (v)−v−F−

j (v)−v+F+
j (v) (21)

where u±F±
i (g) and v±F±

j (g) are approximations of u±(�g/�x)i+ 1
2 , j and v±(�g/�y)i, j+ 1

2
, and

Si (g) and S j (g) are approximations of (�2g/�x2)i+ 1
2 , j and (�2g/�y2)i, j+ 1

2
, respectively, and u,v

in G, H denote the velocity at time level n.
In Equation (21), the value of velocity component v, which is defined at point (i, j + 1

2 ), needs
to be computed at the point (i + 1

2 , j). In this paper, vi+ 1
2 , j is calculated by fourth-order accurate

midpoint interpolation. In the same way, ui, j+ 1
2

can be calculated.

3.2. Discretization of the pressure field and the pressure gradient

The Poisson equation for pressure can be written as

∇2 p= 1

�t
D(V∗) (22)

where D(V∗)= (�u∗/�x)+(�v∗/�y), u∗, v∗ are the intermediate velocities. At point (i, j), Equation
(22) is discretized with a fourth-order difference approximation on the nine-point 2D stencil, which
can be expressed as follows:

1

12�x�y
{(�+�)(pi+1, j+1 + pi+1, j−1 + pi−1, j+1 + pi−1, j−1 −20pi, j )

+2(5�−�)(pi+1, j + pi−1, j )+2(5�−�)(pi, j+1 + pi, j−1)}

= 1

�t

{
Di, j + 1

12
[�x2(Dxx)i, j +�y2(Dyy)i, j ]

}
(23)
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where �=�x/�y, �=�y/�x , and

Di, j = �x u∗
i, j +�yv

∗
i, j (24)

�x u∗
i, j = 1

24�x
[27(u∗

i+ 1
2 , j

−u∗
i− 1

2 , j
)−(u∗

i+ 3
2 , j

−u∗
i− 3

2 , j
)] (25)

�yv
∗
i, j = 1

24�y
[27(v∗

i, j+ 1
2
−v∗

i, j− 1
2
)−(v∗

i, j+ 3
2
−v∗

i, j− 3
2
)] (26)

Equations (25) and (26) are fourth-order accurate [13]. For a fully fourth-order FD of Equation
(23) we need to approximate (Dxx)i, j and (Dyy)i, j with second-order accuracy, which is done as
follows:

(Dxx)i, j =
[(

�u∗

�x
+ �v∗

�y

)
xx

]
i, j

=
(

�3u∗

�x3
+ �3

v∗

�x2�y

)
i, j

(27)

(Dyy)i, j =
(

�3u∗

�x�y2
+ �3

v∗

�y3

)
i, j

(28)

Note that (
�3u∗

�x3

)
i, j

= �xx�
0
x u∗

i, j +O(�x2) (29)

(
�3

v∗

�y3

)
i, j

= �yy�
0
yv

∗
i, j +O(�y2) (30)

and

(
�3

v∗

�x2�y

)
i, j

= 1

�y

⎡
⎣(�2

v∗

�x2

)
i, j+ 1

2

−
(

�2
v∗

�x2

)
i, j− 1

2

⎤
⎦+O(�y2)

= 1

�y
(�xxv

∗
i, j+ 1

2
−�xxv

∗
i, j− 1

2
)+O(�x2+�y2)

= �xx�
0
yv

∗
i, j +O(�x2 +�y2) (31)(

�3u∗

�x�y2

)
i, j

= �yy�
0
x u∗

i, j +O(�x2 +�y2) (32)

we have

(Dxx)i, j = �xx[�0
x u∗

i, j +�0
yv

∗
i, j ]+O(�x2+�y2) (33)

(Dyy)i, j = �yy[�0
yv

∗
i, j +�0

x u∗
i, j ]+O(�x2+�y2) (34)

Substituting Equations (24), (25), (26), (33), and (34) into the right-hand side of Equation (23), we
obtain the following fourth-order FD scheme for the pressure Poisson equation (22) on staggered
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grid system:

1

12�x�y
[(�+�)(pi+1, j+1 + pi+1, j−1 + pi−1, j+1 + pi−1, j−1 −20pi, j )

+2(5�−�)(pi+1, j + pi−1, j )+2(5�−�)(pi, j+1 + pi, j−1)]

= 1

12�t�x

{
1

2
[27(u∗

i+ 1
2 , j

−u∗
i− 1

2 , j
)−(u∗

i+ 3
2 , j

−u∗
i− 3

2 , j
)]+(�x)3�xx[�0

x u∗
i, j +�0

yv
∗
i, j ]

}

+ 1

12�t�y

{
1

2
[27(v∗

i, j+ 1
2
−v∗

i, j− 1
2
)−(v∗

i, j+ 3
2
−v∗

i, j− 3
2
)]+(�y)3�yy[�0

yv
∗
i, j +�0

x u∗
i, j ]

}

(35)

For computing velocity field, we must know the value of pressure gradient at the same grid point.
As noted above, velocity components u and v are defined at points (i + 1

2 , j) and (i, j + 1
2 ) on

staggered mesh grid system, respectively. So the pressure gradient components �p/�x and �p/�y
should be calculated at points (i + 1

2 , j) and (i, j + 1
2 ). In the following text , we give the derivation

of FD schemes to approximate the (�p/�x)i+ 1
2 , j and (�p/�y)i, j+ 1

2
. For (�p/�x)i+ 1

2 , j , using Taylor

expansions of pi+1, j and pi, j to point (i + 1
2 , j), we have

(
�p

�x

)
i+ 1

2 , j
=�0

x pi+ 1
2 , j −

�x2

24

(
�3 p

�x3

)
i+ 1

2 , j

+O(�x4) (36)

Note that

�2 p

�x2
+ �2 p

�y2
= 1

�t
D(V∗) (37)

and

D(V∗)= �u∗

�x
+ �v∗

�y
(38)

Combining Equations (37) and (38), and substituting into the second term of the right-hand
side of Equation (36) and rearranging, we obtain the following fourth-order compact scheme to
approximate the pressure gradient (�p/�x)i+ 1

2 , j

(
�p

�x

)
i+ 1

2 , j
= �0

x pi+ 1
2 , j +

�x2

24

(
�3 p

�x�y2

)
i+ 1

2 , j

− �x2

24�t

(
�2u∗

�x2
+ �2

v∗

�x�y

)
i+ 1

2 , j

+O(�x4)

= �0
x pi+ 1

2 , j +
�x2

24
�yy�

0
x pi+ 1

2 , j −
�x2

24�t
[�xxu∗

i+ 1
2 , j

+�0
y�

0
xv

∗
i+ 1

2 , j
]

+O(�x4 +�x2�y2) (39)

Similarly, we can obtain the fourth-order accurate compact difference approximation of
(�p/�y)i, j+ 1

2(
�p

�y

)
i, j+ 1

2

= �0
y pi, j+ 1

2
+ �y2

24
�xx�

0
y pi, j+ 1

2
− �y2

24�t
[�yyv

∗
i, j+ 1

2
+�0

x�
0
yu∗

i, j+ 1
2
]

+O(�x2�y2 +�y4) (40)
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3.3. Solution of Poisson equation for pressure

The solution of the pressure Poisson equation (35) will cost the maximum of the whole numerical
calculating time, so people are trying to develop an efficient algorithm. In this paper we have
designed a line iterative approach with an alternating direction implicit (ADI) procedure that
enables us to obtain the solutions of the problems by application of the one-dimensional tridiagonal
Thomas algorithm with a considerable saving in computing time.

First, rewriting the discrete pressure equation in the following:

2(5�−�)p∗
i−1, j −20(�+�)p∗

i, j +2(5�−�)p∗
i+1, j = Si, j

2(5�−�)pi, j−1 −20(�+�)pi, j +2(5�−�)pi, j+1 = S
′
i, j

(41)

where

Si, j = −(�+�)(pi+1, j+1 + pi+1, j−1 + pi−1, j+1 + pi−1, j−1)−2(5�−�)(pi, j+1 + pi, j−1)

+�y

�t

{
1

2
[27(u∗

i+ 1
2 , j

−u∗
i− 1

2 , j
)−(u∗

i+ 3
2 , j

−u∗
i− 3

2 , j
)]+(�x)3�xx[�0

x u∗
i, j +�0

yv
∗
i, j ]

}

+�x

�t

{
1

2
[27(v∗

i, j+ 1
2
−v∗

i, j− 1
2
)−(v∗

i, j+ 3
2
−v∗

i, j− 3
2
)]+(�y)3�yy[�0

yv
∗
i, j +�0

x u∗
i, j ]

}
(42)

S
′
i, j = −(�+�)(p∗

i+1, j+1 + p∗
i+1, j−1 + p∗

i−1, j+1 + p∗
i−1, j−1)−2(5�−�)(p∗

i+1, j + p∗
i−1, j )

+�y

�t

{
1

2
[27(u∗

i+ 1
2 , j

−u∗
i− 1

2 , j
)−(u∗

i+ 3
2 , j

−u∗
i− 3

2 , j
)]+(�x)3�xx[�0

x u∗
i, j +�0

yv
∗
i, j ]

}

+�x

�t

{
1

2
[27(v∗

i, j+ 1
2
−v∗

i, j− 1
2
)−(v∗

i, j+ 3
2
−v∗

i, j− 3
2
)]+(�y)3�yy[�0

yv
∗
i, j +�0

x u∗
i, j ]

}
(43)

The first formula of (41) is the implicit iteration of (22) in x-direction, the second one in
y-direction. These two formulas should be iterated alternately in each time step. For periodical
boundary problems, the main works are to solve the two linear systems with circulant coefficient
matrix, which concerns about CTDMA (cyclic triple diagonal matrix algorithm). For non-periodical
boundary problems, it solves mainly the two linear systems with triple diagonal coefficient matrix,
which concerns about TDMA (triple diagonal matrix algorithm).

3.4. Boundary formulation for velocity and pressure

In order to match high order accuracy at boundary conditions for velocity and pressure, the high
order accuracy boundary schemes are designed. Various biased FD schemes are designed for
approximation to the first and second derivatives at boundary in this paper. For example, the first
derivative at the boundary j =1 satisfies the following formulation:

f
′
1 +� f

′
2 = 1

�x

k∑
i=1

ai fi (k =1,2, . . . , N ) (44)

The coefficients � and ai can be determined by applying Taylor expansion and coupling to necessary
of inner points scheme and accuracy. In this paper, the following biased schemes can be obtained,
and some relative schemes also can be found in [19].

a1 =−3+�+2a4

2
, a2 =2+3a4, a3 =−1−�+6a4

2
(45)
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where �, a4 are free parameters, the scheme has at least second accuracy. Similarly, the following
third-order and fourth-order schemes can be obtained as

a1 = −11+2�

6
, a2 = 6−�

2
, a3 = 2�−3

2
, a4 = 2−�

6
(third order) (46)

� = 3, a1 =−17

6
, a2 = 3

2
, a3 = 3

2
, a4 =−1

6
(fourth order) (47)

In Equation (46), set �=0, the third-order explicit biased scheme is defined by

f
′
1 = 1

6�x
(−11 f1 +18 f2 −9 f3 +2 f4) (48)

In Equation (45), set �=2, a4 =0, the third-order implicit biased scheme is defined by

f
′
1 +2 f

′
2 = 1

2�x
(−5 f1 +4 f2 + f3) (49)

With the same method, the second derivative at the boundary j =1 satisfies the following formu-
lation:

f
′′
1 +� f

′′
2 = 1

�x2

k∑
i=1

bi fi (k =1,2, . . . , N ) (50)

From Equation (50), the following second-order and third-order biased schemes with free param-
eters can be defined as

b1 = �+2+b5, b2 =−(2�+5+4b5), b3 =�+4+6b5, b4 =−(1+4b5) (51)

b1 = 11�+35

12
, b2 =−5�+26

3
, b3 = �+19

2
, b4 = �−14

3
, b5 = 11−�

12
(52)

Some widely used schemes are obtained from Equations (51) and (52)

� = 11, b1 =13, b2 =−27, b3 =15, b4 =−1, b5 =0 (third order) (53)

� = 10, b1 = 145

12
, b2 =−76

3
, b3 = 29

2
, b4 =−4

3
, b5 = 1

12
(fourth order) (54)

� = 0, b1 =2, b2 =−5, b3 =4, b4 =−1, b5 =0 (second order) (55)

� = 0, b1 = 35

12
, b2 =−26

3
, b3 = 19

2
, b4 =−14

3
, b5 = 11

12
(third order) (56)

the higher order boundary scheme can be defined by adding more stencil points in Equations (44)
and (50). The schemes (49) and (53) are implicit ones that can couple to inner scheme (15), (16)
to use.

Refer to Equation (44), the first derivative of pressure at boundary i =1 can be written as (�=0)(
�p

�x

)
1, j

= 1

�x

k∑
i=1

ai pi, j (k =1,2, . . . , N ) (57)

Then the boundary value of pressure at i =1 can be described as

p1, j = 1

a1

[
�x

(
�p

�x

)
1, j

−
k∑

i=2
ai pi, j

]
(58)
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It is easy to compute (�p/�x)1, j by projecting momentum equation to boundary normal direction.
If k =3 is set in Equation (58) and coupled to Equation (41), the value of inner points can be
calculated by using (�p/�x)1, j and without considering the boundary value. After finishing, to
compute the value of inner points, the boundary value can be obtained from Equation (57).

In this subsection, all the boundary schemes are designed for the left boundary; the other
boundary schemes can be designed similarly.

3.5. FD algorithm

The FD algorithm based on staggered grid system is now briefly outlined.

1. The first step: compute intermediate velocity V∗

(a) Applying upwind compact schemes (15) and (16) to compute convective terms and
symmetrical compact scheme (17) to compute viscous terms;

(b) Applying (18) and (19) to compute intermediate velocity V∗.

2. The second step: projection step

(a) Applying symmetrical compact scheme (35) to compute pressure p;
(b) Applying schemes (39), (40) to compute pressure gradient;
(c) Applying scheme (5) to compute new velocity field at time level n+1.

3. Repeat process 1–2.

4. NUMERICAL EXAMPLES

In this section, we perform numerical experiments to illustrate the accuracy and effectiveness of the
proposed higher order compact difference algorithm. The numerical results of three test problems
are given. All results were run on a SONY PCG-V505MCP computer using double precision
arithmetic.

Example 1
Consider N-S equations (1) and (2) with the initial condition [1]

u(x, y,0) = −cos(N x) sin(N y)

v(x, y,0) = sin(N x)cos(N y)
(59)

where 0�x�2� , 0�y�2�. The exact solution for this problem is given by

u(x, y, t) = −cos(N x) sin(N y)exp(−2N 2t/Re)

v(x, y, t) = sin(N x)cos(N y)exp(−2N 2t/Re)

p(x, y, t) = − 1
4 (cos(2N x)+cos(2N y))exp(−4N 2t/Re)

(60)

where N is an integer.

The numerical solutions are obtained under uniform grids (h =�x =�y) with different
mesh sizes and a fixed time step size (�t =0.002) and compared under the RMS (root mean
square) errors of the numerical solution with respect to the exact solution. The RMS error is
estimated by

errRMS =
√

1

Nx × Ny

∑
(�i, j comput

−�i, j exact
)2 (61)

where Nx and Ny are grid points in x- and y-directions, respectively, and � stands for u, v, p, and 	.
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Table I. RMS errors with the rate of convergence at t =2 for u, v, 	, p (Re=100, N =2).

Grid u-error Rate v-error Rate 	-error Rate p-error Rate

11×11 7.0070489 (−2) — 7.0070489 (−2) — 3.0677609 (−1) — 1.0764149 (−1) —
21×21 9.0692193 (−3) 3.16 9.0692193 (−3) 3.16 3.8426509 (−2) 3.21 1.0567607 (−2) 3.58
31×31 2.8851487 (−3) 2.94 2.8851487 (−3) 2.94 1.1948521 (−2) 3.00 2.9103288 (−3) 3.31
41×41 1.2238736 (−3) 3.06 1.2238736 (−3) 3.06 5.0439820 (−3) 3.08 1.1356134 (−3) 3.36
51×51 6.3063026 (−4) 3.03 6.3063026 (−4) 3.03 2.5915402 (−3) 3.05 5.3933641 (−4) 3.41

Note: 7.0070489(−2)=7.0070489−2, etc.

Table II. Errors with the rate of convergence at t =2 for p and CPU times
(Re=100, N =2).

Second-order method Present method

Grid size L2-error Rate CPU times L2-error Rate CPU times

11×11 1.405E−01 0.281 1.076E−01 0.344
21×21 4.160E−02 1.882 0.640 1.057E−02 3.588 0.875
31×31 1.897E−02 2.016 1.984 2.910E−03 3.312 2.625
41×41 1.073E−02 2.037 5.156 1.136E−03 3.364 6.266
51×51 6.869E−03 2.044 10.141 5.393E−04 3.413 12.015
61×61 4.759E−03 2.050 19.422 2.817E−04 3.627 22.375
71×71 3.483E−03 2.056 33.265 1.554E−04 3.918 37.172
81×81 2.654E−03 2.063 55.594 8.488E−05 4.590 60.640

0
-1.0

-0.5

0.0

0.5

1.0

a

b

x

cu

 a: N=1 exact
 a: N=1 numerical
 b: N=2 exact
 b: N=2 numerical
 c: N=4 exact
 c: N=4 numerical

1 2 3 4 5 6 7

Figure 2. Velocity component u at J =16 for N =1,2,4 and Re=100.

The comparison of numerical results is listed in Tables I and II. The rate of convergence is
estimated for velocity, vorticity, and pressure by using

rate=− log(err1/err2)

log(N1/N2)
(62)

where err1 and err2 are RMS errors with the grid system having (N1 +1)×(N1 +1) and (N2 +
1)×(N2 +1) points, respectively.

It clearly shows from Table I that these values are almost 3, i.e. the present algorithm is
third-order accurate in space. Table II shows the comparisons of the grid size and the CPU time
required to achieve similar accuracy by both the present method and the second-order method
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Table III. Grid dependence of u-velocity at the middle vertical line.

y
2� 33×33 65×65 97×97 129×129 161×161

t =6
0.125 −1.184842 −1.179558 −1.193791 −1.195409 −1.195281
0.375 1.118550 1.174393 1.190816 1.193237 1.193570
0.625 0.721181 0.675312 0.671645 0.671016 0.670807
0.875 −0.721712 −0.675761 −0.671872 −0.671161 −0.670914

t =8
0.125 −1.212727 −1.248724 −1.239336 −1.229696 −1.222598
0.375 1.205786 1.241997 1.235062 1.227654 1.222152
0.625 0.601131 0.569668 0.565301 0.564269 0.563725
0.875 −0.589285 −0.557180 −0.556850 −0.557907 −0.558628

t =10
0.125 −1.114304 −1.190062 −1.218252 −1.220469 −1.218174
0.375 1.108267 1.187827 1.216600 1.219821 1.218185
0.625 0.479549 0.319745 0.312882 0.313072 0.313879
0.875 −0.511503 −0.388838 −0.372990 −0.365419 −0.360031

Table IV. Grid dependence of v-velocity at the middle horizontal line.

x
2� 33×33 65×65 97×97 129×129 161×161

t =6
0.125 0.528987 0.573284 0.577703 0.579244 0.580072
0.375 0.286628 0.273020 0.268318 0.266371 0.265384
0.625 −0.563078 −0.588918 −0.588034 −0.586974 −0.586250
0.875 −0.248347 −0.256254 −0.257363 −0.258304 −0.258944

t =8
0.125 0.626262 0.688566 0.697838 0.700261 0.701517
0.375 0.430775 0.467724 0.470392 0.470401 0.470019
0.625 −0.677859 −0.709125 −0.712632 −0.711363 −0.710431
0.875 −0.408829 −0.448764 −0.457935 −0.461006 −0.462497

t =10
0.125 0.661511 0.670398 0.675042 0.679404 0.682410
0.375 0.554838 0.589328 0.580261 0.578208 0.577004
0.625 −0.633699 −0.644967 −0.649541 −0.656733 −0.662788
0.875 −0.499663 −0.558352 −0.562290 −0.564907 −0.566180

(i.e. the convective and viscous terms in the momentum equations and the pressure Poisson
equation are approximated by using the standard second-order central formula). Note that the
computed solutions from the present method are more accurate than that from the second-
order method at the same mesh size. It is clear that the second-order method requires almost
the same CPU time as does the present method for the same mesh size. It is also clear that
the second-order method requires a much finer grid, hence much longer CPU time, to achieve
similar accuracy as the present method. For example, in the case of 41×41 grid points, the
present method requires only 6.266 s to achieve an accuracy of 1.136e−03, whereas the second-
order method requires a grid of 81×81 and 55.594 s of CPU time to achieve an accuracy of
2.654e−03. The results in Table II show the superiority of the present method over the second-order
method.

In Figure 2, the variation of the exact and numerical horizontal velocities u with x at y =�/2
for N =1,2,4 is given. One can hardly distinguish the numerical solutions from the analytical
ones. This figure shows again that the present method can give the satisfying result for this
problem.
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Table V. Percentage difference of u-velocity at the middle vertical line with respect to the
results on a gird of 161×161.

y
2� 33×33 65×65 97×97 129×129

t =6
0.125 0.873 1.315 0.125 0.011
0.375 6.285 1.607 0.231 0.028
0.625 7.509 0.672 0.125 0.031
0.875 7.571 0.722 0.143 0.037
t =8
0.125 0.807 2.137 1.369 0.581
0.375 1.339 1.624 1.056 0.450
0.625 6.635 1.054 0.280 0.097
0.875 5.488 0.259 0.318 0.129
t =10
0.125 8.527 2.308 0.006 0.188
0.375 9.023 2.492 0.130 0.134
0.625 52.782 1.869 0.318 0.257
0.875 42.072 8.001 3.600 1.497

Table VI. Percentage difference of v-velocity at the middle horizontal line with respect to the
results on a gird of 161×161.

x
2� 33×33 65×65 97×97 129×129

t =6
0.125 8.807 1.170 0.408 0.143
0.375 8.005 2.877 1.105 0.372
0.625 3.952 0.455 0.304 0.124
0.875 4.092 1.039 0.611 0.247
t =8
0.125 10.727 1.846 0.525 0.179
0.375 8.349 0.488 0.079 0.081
0.625 4.585 0.184 0.310 0.131
0.875 11.604 2.969 0.986 0.322
t =10
0.125 3.063 1.760 1.080 0.440
0.375 3.842 2.136 0.564 0.209
0.625 4.389 2.689 1.999 0.914
0.875 11.748 1.383 0.687 0.225

Example 2
The next problem is set up to test the behavior of the discretization for non-stationary situations
when steep gradients are involved. This is a doubly periodic double shear layer flow problem taken
from [3], the initial conditions are taken as

u(x, y,0) =
{

tanh[(y−�/2)/
] 0�y��

tanh[(3�/2− y)/
] ��y�2�

v(x, y,0) = �sin(x)

(63)

where 
=�/15 is the thickness of shear layer, �=0.05 is the initial perturbation which will grow
with time and leads to a roll up of the shear layer. This problem, which has the characteristic
of large gradient for Re=10000, is an excellent case to verify the precision and stability of the
numerical scheme at high wavenumbers.
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(a) (b)

(c) (d)

Figure 3. Vorticity contours for �x =�y =2�/64: (a) t =4; (b) t =6; (c) t =8; and (d) t =10.

The incompressible N-S equations (1) and (2) with periodic boundary conditions are solved
by using the present method. The calculated values of horizontal velocity u along the vertical
centerline and the calculated values of vertical velocity v along the horizontal centerline at t =6,8
and 10 are listed in Tables III and IV for the grids of 33×33, 65×65, 97×97, 129×129, and
161×161. Based on the finest grid (161×161) solutions, the deviations of the results on the
relatively coarser grids are shown in Tables V and VI. The solutions on a grid of 129×129 are
very close to that on the finest grid, and the differences are small enough. It is believed that the
grid of 129×129 points is appropriate in the present computations.

Computed vortices at different time levels for �x =�y =2�/64 (i.e. 65×65 grid points) and
�x =�y =2�/128 (i.e. 129×129 grid points) are given in Figures 3 and 4, respectively. It is seen
that very good resolution is obtained on the medium grids (e.g. 129×129 grid points). The present
results are very smooth and the integration is very stable. Results from Figures 3 and 4 show that
the present method is efficient for solving this problem with a steep gradient. For comparison,
Figure 5 shows the flows computed at t =10 by using the two second-order methods, named as
the CDS1 (i.e. the spatial derivatives of velocities are approximated by the second-order difference
scheme and the pressure Poisson equation is approximated by the fourth-order difference scheme)
and the CDS2 (i.e. the spatial derivatives of all variables are approximated by the second-order
difference scheme), respectively. Clearly, the second-order method on a grid of 161×161 has
difficulty in capturing the thin shear layers, resulting in unphysical noise visible in the shear region
and from the blurring effect on shear layers in the vortex core. On the contrary, the present method,
even in the case of 65×65 grid points, performs very well and can capture the thin shear layers on
a grid of 129×129 (see Figure 4) requiring 6787.26 s CPU time. Note also that the CDS1 method
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(a) (b)

(c) (d)

Figure 4. Vorticity contours for �x =�y =2�/128: (a) t =4; (b) t =6; (c) t =8; and (d) t =10.

Figure 5. Vortex contours computed at t =10 with (left) the second-order scheme for the velocities whereas
the fourth-order scheme for the pressure and (right) the second-order scheme for all variables.

and the CDS2 method spend 14169.75 s and 12359.98 s CPU time, respectively. The numerical
results from this example indicate that the present method is far superior to the second-order
methods (i.e. the CDS1 and the CDS2), especially in computational accuracy, efficiency, and
resolution.
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Figure 6. Profiles of u-velocity along vertical line and v-velocity along horizontal line through geometric
center in cavity for (a) Re=1000; (b) Re=3200; (c) Re=5000; and (d) Re=7500.

Example 3
Finally, the two-dimensional lid-driven cavity problem is considered. Over the years, this problem
is often used [6, 20–26] to demonstrate the accuracy and efficiency of numerical methods for
incompressible flows. This problem is of great scientific interest because it displays almost all fluid
mechanical phenomena for incompressible viscous flows in the simplest of geometric settings.

Computational region is 0�x�1 and 0�y�1, the boundary conditions are taken as{
u =1 v=0 y =1

u =0 v=0 x =0, 1 and y =0

Let

�umax(n�t)=max[(un+1
i, j −un

i, j )
2 +(vn+1

i, j −vn
i, j )

2]
1
2

denote the root square error at the (n+1) time level. When �umax(n�t)�10−8, the solution is
qualified as steady. And in each time level, to obtain the convergent solutions for the pressure,
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Figure 7. The steady-state streamline contours: (a) Re=1000; (b) Re=3200; (c)
Re=5000; and (d) Re=7500.

more iterations are used until

�Pm
max =max |Pm+1

i, j − Pm
i, j |�10−6

where m denotes the iteration number.
Numerical solutions for the driven-cavity flow are obtained at different Reynolds numbers. In

present computation, the grid mesh spacing is equal to 1
128 and 1

256 and the time increment is equal
to 0.001.

Comparisons of some characteristic flow variables are made with previous numerical results
obtained by Ghia et al. [25] for different values of the Reynolds number, 1000�Re�7500. In
Figure 6, comparisons of the vertical velocities on the horizontal centerline and the horizontal
velocities on the vertical centerline of the square cavity are exhibited for 1000�Re�7500 with
those of Ghia et al. [25]. Noted that velocity profiles obtained by the proposed method on the
grid mesh spacing 1

128 match very well with those of Ghia et al. [25]. In [25], the computation is
carried out on the fine grid mesh spacing 1

256 .
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Figure 8. The steady-state pressure contours: (a) Re=1000; (b) Re=3200;
(c) Re=5000; and (d) Re=7500.

Figure 7 exhibits the streamline contours for the cavity flows with Reynolds numbers 1000,
3200, 5000, and 7500. In these graphs, the typical separations and secondary vortices at the
bottom corners of the cavity as well as at the top left can be seen. These stream function
profiles are in very good agreement with the benchmark results of Ghia et al. [25] and other
established results [6, 20, 21, 24] thereby confirming that the present method yields quantita-
tively accurate solutions. Figure 8 shows pressure contours for 1000�Re�7500. Our pressure
contours are compared with established results in [20]. Again, a pretty consistent comparison is
obtained.

To further validate the present method quantitatively, the minimum values umin and the corre-
sponding location coordinate ymin of horizontal velocity along the vertical centerline, the maximum
values vmax and the corresponding location coordinate xmax of vertical velocity along the horizontal
centerline, and the values of streamfunction at the primary vortex center and the corresponding
locations obtained numerically are collected and listed in Table VII for different Reynolds numbers
(1000�Re�7500). The available comparison data from the literature are also given in this table.
In Table VIII, the location of the center of secondary vortices and the value of streamfunction
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Table VII. The minimum values of the velocity component u along x =0.5 and the corresponding
y-coordinate ymin, the maximum values of the velocity component v along y =0.5 and the corresponding
x-coordinate xmax, and the stream function 	 and the location coordinates (x, y) of the center of primary

vortex for different Reynolds numbers 1000�Re�7500.

Re References Grid size umin ymin vmax xmax 	 x y

1000 Present 129×129 −0.38134 0.1719 0.36907 0.1563 −0.116985 0.5313 0.5625
Present 257×257 −0.38373 0.1719 0.37181 0.1602 −0.117610 0.5313 0.5625
Ghia et al. [25] 129×129 −0.38289 0.1719 0.37095 0.1563 −0.117929 0.5313 0.5625
Sahin and
Owens [27]

257×257 −0.38810 0.1727 0.37691 0.1573 −0.118800 0.5335 0.5639

Bruneau and
Jouron [21]

257×257 −0.37640 0.1602 0.36650 0.1523 −0.116300 0.5313 0.5586

3200 Present 129×129 −0.42328 0.0938 0.41825 0.1016 −0.118514 0.5156 0.5391
Present 257×257 −0.43050 0.0938 0.42703 0.0977 −0.120475 0.5195 0.5391
Ghia et al. [25] 129×129 −0.41933 0.1016 0.42768 0.0938 −0.120377 0.5156 0.5469
Sahin and
Owens [27]

257×257 −0.43540 0.0921 0.43245 0.0972 −0.121628 0.5201 0.5376

5000 Present 129×129 −0.43056 0.0781 0.42814 0.0781 −0.118148 0.5156 0.5313
Present 257×257 −0.44153 0.0742 0.44095 0.0820 −0.121062 0.5156 0.5352
Ghia et al. [25] 257×257 −0.43643 0.0703 0.43648 0.0781 −0.118966 0.5117 0.5352
Sahin and
Owens [27]

257×257 −0.44731 0.0741 0.44691 0.0799 −0.122050 0.5134 0.5376

Bruneau and
Jouron [21]

257×257 −0.43590 0.0664 0.42590 0.0762 −0.114200 0.5156 0.5313

7500 Present 129×129 −0.43294 0.0625 0.43335 0.0703 −0.117218 0.5156 0.5313
Present 257×257 −0.44873 0.0625 0.45143 0.0664 −0.121605 0.5117 0.5313
Ghia et al. [25] 257×257 −0.43590 0.0625 0.44030 0.0703 −0.119976 0.5117 0.5322
Sahin and
Owens [27]

257×257 −0.45605 0.0610 0.45805 0.0670 −0.122302 0.5134 0.5289

Bruneau and
Jouron [21]

257×257 −0.43790 0.0508 0.41790 0.0625 −0.111300 0.5156 0.5234

at vortex center obtained in the present computation are compared with data from the literature
[20, 21, 23, 25, 28, 29] at Reynolds numbers 1000, 3200, 5000, and 7500. It is clear from all these
comparisons that the results of the present numerical method are reliable and the algorithm can
be used to solve unsteady viscous incompressible flows.

A further illustration of the accuracy and the efficiency of the present method is given by compu-
tation of the unsteady flow at higher Re=10000 on the grid mesh spacing 1

128 . Auteri et al. [30]
has found that the critical Reynolds number Rec of Hopf bifurcation from stationary state to
non-stationary periodic state lies in the interval 8017.6<Rec<8018.8. Thus for the computations
at Re = 10 000 we expect the flow to show unsteady periodic behavior. Starting from steady-state
solution obtained at Re = 7500, the solution reaches its asymptotic periodic state at about t =1240
(t =n�t). A series of nine instantaneous iso-streamfunction contours for one complete cycle is
displayed in Figure 9. It is shown that the iso-vorticity contours are better resolved through the
use of higher order compact schemes for a given fixed grid 129×129. Note that the computed
solution is smooth in most of the remaining domain. The reason for this is that there are sharp
gradients close to the upper moving wall. All the features shown by Fu et al. [15] are well repre-
sented. As observed by Fu et al., persistent oscillations develop at secondary and tertiary vortices,
particularly the appearance and the disappearance of the two tertiary vortices at the bottom and top
lift side.

Table IX lists the comparisons of the grid size and the CPU time required to achieve accurate
results (with respect to the benchmark solution [25]), at Re=5000, by both the present method
and the second-order method (CDS1) (i.e. the spatial derivatives of velocities are approximated
by the second-order difference scheme and the pressure Poisson equation is approximated by the
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Table VIII. Comparison of the results of secondary vortex at different Reynolds numbers.

Bottom left Bottom right

Re References 	 x y 	 x y

1000 Present1 2.20E−04 0.0859 0.0781 1.67E−03 0.8594 0.1094
Present2 2.23E−04 0.0820 0.0781 1.69E−03 0.8672 0.1133

Ghia et al. [25] 2.31E−04 0.0859 0.0781 1.75E−03 0.8594 0.1094
Schreiber and Keller [28] 2.17E−04 0.0857 0.0714 1.70E−03 0.8643 0.1071

Hou et al. [20] 2.22E−04 0.0902 0.0784 1.69E−03 0.8667 0.1137
Bruneau and Jouron [21] 3.25E−04 0.0859 0.0820 1.91E−03 0.8711 0.1094

Gupta and Kalita [23] 2.02E−03 0.0875 0.0750 1.70E−03 0.8625 0.1125

3200 Present1 1.08E−03 0.0781 0.1250 2.76E−03 0.8281 0.0859
Present2 1.10E−03 0.0820 0.1172 2.79E−03 0.8281 0.0859

Ghia et al. [25] 9.78E−04 0.0859 0.1094 3.14E−03 0.8125 0.0859
Gupta and Kalita [23] 1.03E−03 0.0813 0.1188 2.86E−03 0.8125 0.0875

5000 Present1 1.35E−03 0.0703 0.1406 3.01E−03 0.8047 0.0703
Present2 1.36E−03 0.0742 0.1367 3.04E−03 0.8086 0.0742

Ghia et al. [25] 1.36E−03 0.0703 0.1367 3.08E−03 0.8056 0.0742
Hou et al. [20] 1.35E−03 0.0784 0.1313 3.03E−03 0.8078 0.0745

Bruneau and Jouron [21] 2.22E−03 0.0664 0.1484 4.65E−03 0.8301 0.0703
Gupta and Kalita [23] 1.32E−03 0.0750 0.1313 2.96E−03 0.8000 0.0750

7500 Present1 1.50E−03 0.0625 0.1563 3.18E−03 0.7891 0.0625
Present2 1.53E−03 0.0625 0.1563 3.22E−03 0.7930 0.0664

Ghia et al. [25] 1.47E−03 0.0645 0.1504 3.28E−03 0.7813 0.0625
Hou et al. [20] 1.45E−03 0.0706 0.1529 3.20E−03 0.7922 0.0667

Bruneau and Jouron [21] 1.76E−03 0.0703 0.1289 8.32E−03 0.8828 0.0820
Gupta and Kalita [23] 1.60E−03 0.0688 0.1500 3.05E−03 0.7813 0.0625

Notes: 1. Solved with 129×129 grid size; 2. Solved with 257×257 grid size.

fourth-order difference scheme). It is clear that the computed solutions from the present method are
more close to the benchmark solution [25] than those from the second-order method at the same
mesh size. Note that from Table IX, in order to obtain excellent agreement with the benchmark
solutions, the present method requires a grid of 161×161 and 17798.249 s of CPU time, whereas
the second-order method (CDS1) requires a grid of 257×257 and 38114.438 s of CPU time.
The results in Table IX also exhibit the superiority of the present method over the second-order
method.

5. CONCLUSIONS

In this work we have developed a new high order accurate compact FD projection algorithm for
solving the incompressible N-S equations in primitive variables based on the staggered grid system.
The present algorithm has at least third-order accuracy in spatial direction. Especially, the fourth-
order compact difference scheme is proposed for approximating the pressure Poisson equation.
The simple line iterative or line iterative SOR technique with an ADI procedure enables one to
deal with only diagonally dominant tri-diagonal systems which can be solved by application of
the one-dimensional tridiagonal Thomas algorithm with a considerable saving in computing time.
This permits combining the computational efficiency of the lower order methods with superior
accuracy inherent in high order approximations. The proposed discretization technique may be
applicable to three-dimension case.

Numerical experiments are performed to demonstrate high accuracy and efficiency of the present
method. The computational results show that, besides the excellent performances in computational
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Figure 9. Continuous streamline contours for Re=10000.

accuracy, efficiency, and stability, the method has the advantage of better scale resolution with
smaller number of grid nodes. It is shown that the current method has large potential of extending to
direct numerical simulation of the complex flows, including the flow problems with large gradient
and high Reynolds number.

This work may be regarded as a first step towards the establishment of high order accurate
and efficient algorithms for the solution of the incompressible N-S equations in primitive vari-
ables. Higher order explicit operator-splitting discretizations for temporal variables and high order
compact difference schemes with high resolution for spatial variables will be the subject of forth-
coming developments. In addition, we mention that the usage of non-uniform mesh becomes an
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Table IX. Comparison of the velocity results of the second-order method (CDS1) with the present
third-order method for lid-driven cavity flow at Re=5000 and the percentage differences with respect to

the benchmark solution [25].

Grid size umin Difference (%) vmax Difference (%) CPU time

Second-order method
128×128 −0.40375 −7.49 0.40152 −8.01 6651.400
160×160 −0.41862 −4.08 0.41720 −4.42 9857.816
192×192 −0.42722 −2.11 0.42654 −2.28 17049.468
256×256 −0.43720 0.18 0.43665 0.04 38114.438

Third-order method
128×128 −0.43056 −1.34 0.42184 −1.91 11844.687
160×160 −0.43619 −0.05 0.43463 −0.42 17988.249
192×192 −0.43859 0.50 0.43754 0.24 28390.206
256×256 −0.44153 1.17 0.44095 1.02 51709.853

essential aspect for dealing with irregular domain problems [31–33]. Based on the approaches
proposed in [31, 32], the present scheme can be extended to the irregular case.
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