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An improved space–time Conservation Element and Solution Element (CE/SE) scheme is constructed by
proposing a new structure of solution elements and conservation elements based on the rectangular
mesh. Furthermore, the improved CE/SE scheme was applied to dilute gas–particle two-phase flows.
A two-fluid model and two corresponding chemical reaction models, i.e., two-step reaction model and
detailed chemical reaction model, were used to describe the physical and chemical characteristics in
the two-phase flows. Shock wave reflection in gas, shock wave diffraction in air–sand mixture, explosive
synthesis of TiO2 nanoparticle and air–fuel two-phase detonation were simulated by the improved CE/SE
scheme and appropriate physical and chemical models. All the numerical results were compared and
discussed carefully. The results show that the improved CE/SE scheme is clear in physical concept, easy to
be implemented and high accurate for the above-mentioned problems. Thus, the improved CE/SE scheme
can be applied to gas–particle flows widely.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulations have become popular and are playing more and more important roles in the fluid dynamics research. But the
numerical simulations of gas–particle two-phase flows are very difficult due to the complex physical and chemical phenomena. Numerical
simulations of gas–particle flows need not only accurate numerical schemes but also appropriate physical and chemical models. Recently,
the numerical research of gas–particle flow is mainly focus on method research [1] and engineering application [2]. Method research
includes numerical schemes, single particle models, treatment of particle phase, turbulence models, etc. Engineering application involves
many areas, such as aerospace, industrial production and military defense, etc.

The space–time Conservation Element and Solution Element (CE/SE) method proposed originally by Chang [3,4] is a new high resolution
CFD (Computational Fluid Dynamics) method for conservation laws. It substantially differs from other traditional numerical methods by
possessing many features, e.g., unified treatment of space and time, new shock-capturing strategy, satisfaction of both local and global
flux conservations in space and time by introducing conservation elements (CEs) and solution elements (SEs). Simplicity, generality and
accuracy are the three main advantages of the CE/SE method [3]. The CE/SE method has gained great successes in simulations of inviscid
supersonic flows [5,6], steady viscous flows [7], MHD (Magneto-Hydro-Dynamic) flows [8,9], multi-material elastic–plastic flows [10],
chemically reacting flows [11–13], etc. However, the original CE/SE method also has some disadvantages, such as complicated mesh
structure for two-dimensional situation, and the shortage of high-accuracy schemes. Zhang et al. [6] have proposed quadrilateral and
hexahedral meshes for two- and three-dimensional CE/SE schemes and obtained satisfying results. Liu and Wang [14] have proposed
one-dimensional high-accuracy CE/SE schemes and analyzed the stability of the second-order CE/SE scheme. Wang et al. [15,16] proposed
two-dimensional high-accuracy CE/SE schemes based on the rectangular mesh.

The aim of the present work is to construct a simple and accurate two-dimensional CE/SE scheme for dilute gas–particle flows. A new
structure of CEs and SEs based on rectangular mesh is proposed and corresponding numerical schemes are constructed. To verify the
accuracy of the improved CE/SE scheme, shock wave reflection in gas, shock wave diffraction in air–sand mixture, explosive synthesis of
TiO2 nanoparticle and air–fuel two-phase detonation were simulated aiding with a two-fluid model and two chemical reaction models. All
numerical results were compared and discussed in detail.
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2. Numerical models

The number of particles in a two-phase flow may be very huge. So using Lagrangian method to trace all particles needs a lot of
computational source. And for some problems, such as the explosive synthesis of TiO2 nanoparticle, it is impossible to trace all particles
due to the large numbers of particles, which is approximately equals to 1018/m3 in our simulations. In this paper, a two-fluid model is
introduced for treating two-phase flows. The two-fluid model considers the particle phase as continuous medium, so continuous medium
mechanics can be used to describe the flow of particle phase. It is assumed that the characters of considered dilute gas–particle systems
in this paper as follows: the flow is unsteady; the initial temperature of the gas and the particle is the same; the radii of particles
are uniform; the phase of particles is considered as a continuous medium; the shape of particles always keeps to be spherical even in
process of growth, separation, evaporation, etc.; the temperature distribution in particles is uniform; the interactions between particles
are ignored; if chemical reaction occurs, the chemical energy is absorbed only by gas, which is considered as ideal.

Under the above assumptions the flow in gas–particle mixture is governed by Euler’s equations

∂Q

∂t
+ ∂E

∂x
+ ∂F

∂ y
= S. (1)

In Eq. (1), Q is the vector of conserved variables, E and F are conservation flux vectors in the x- and y-directions, S is the source term
vector.

If there is no chemical reaction and phase change, for example, air–sand mixture, the expressions of Q, E, F, S are as follows
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, (2)

where ρg is the mass density of gas phase, ug and v g are the velocity components of gas phase, p is the pressure, E g is the total
energy density of gas phase, ϕg is the volume percent of gas phase, ρp is the mass density of particle phase, up and v p are the velocity
components of particle phase, N is the particle number per unit volume, Fx and F y are the force components acting on particles.

The volume percent of gas phase is defined as

ϕg = 1 − ϕp = 1 − ρp

ρmatter
, (3)

where ϕp is the volume percent of particle phase; ρmatter is the density of compact material, such as solid sand ρsand , liquid fuel ρfuel and
solid TiO2 ρtitania in this work. According to our assumptions, ρp and ρmatter have the relation:

ρp = N × 4

3
πr3ρmatter, (4)

where r is the radius of particles.
The total energy density of gas phase, E , is defined as

E g = ϕg p

γ − 1
+ ρg

2

(
u2

g + v2
g

)
, (5)

where γ is the specific heat ratio.
The force components on particles are expressed as [17,18]

{
Fx = 0.5πr2C Dρg |V g − V p|(ug − up)N,

F y = 0.5πr2C Dρg |V g − V p|(v g − v p)N,
(6)

with

|V g − V p| = [
(ug − up)2 + (v g − v p)2]1/2

, (7)

C D =
⎧⎨
⎩

27 Re−0.84, Re < 80,

0.27 Re0.21, 80 � Re < 104,

2, Re � 104,

(8)

Re = 2ρpr|V g − V p|
μg

, (9)

where μg is the viscosity coefficient of gas phase, C D is the drag coefficient, Re means Reynolds number.
A two-step reaction model is adopted for the detonation synthesis simulations. The two-step reaction model simplifies the complicated

chemical reactions to an induction reaction and an exothermic reaction [19]. The progress parameters α and β , for the induction reaction
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and the exothermic reaction, respectively, are both equal to zero first, followed by increase of α to unit, then β increases until the
equilibrium state is reached. The rates of α and β , ωα and ωβ , are given as follows:

ωα = dα

dt
= kαρg exp

(
− Ea

RT

)
, (10)

ωβ =
⎧⎨
⎩

0, α < 1,

kβϕ2
g p2(1 − β)2 exp

(
− Eβ

RT

)
, α � 1,

(11)

where kα and kβ are the constants of reaction rate, Eα and Eβ are the activation energies, R is the gas constant, T is the temperature.
For the two-step reaction model, the governing equation (1) should consider the conservation of the progress parameters α and β . So

the expressions of Q, E, F, S are as follows:
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where I p is the density variation during phase change. Due to the chemical energy release, the total energy density of gas phase, E g , is
defined as

E g = ϕg p

γ − 1
+ ρg(u2

g + v2
g)

2
+ ρgβ Q (13)

where Q is the reaction energy. In the simulation of detonation synthesis, I p is the rate of particle growth, which is coupled with the
chemical reaction model [20].

A detailed chemical reaction model is used for simulating gas–droplet two-phase detonations in this paper. The detailed chemical
reaction model is extensively used to describe the transformation of reactants into products at the molecular level through a large number
of elementary steps. Concentrations of reactants, intermediates and products can be computed by integrating the sets of differential
equations describing the rates of formation and destruction of each species. The production rate of the ith chemical specie, ωi , is

ωi = W i

nr∑
k=1

(
v ′′

ki − v ′
ki

)
RPk, (14)

where W i is the molecular weight of the ith specie, nr is the number of elementary step, v ′
ki and v ′′

ki are the stoichiometric coefficients,
RPk is the rate of process variable of the kth element reaction whose detailed computing formula can be found in Ref. [21].

For the detailed chemical reaction model, the governing equation (1) should consider the conservations of every species. So the ex-
pressions of Q, E, F, S are as follows:
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where ρg,i (i from 1 to ns) is the density of the ith specie (especially, ρg,1 the density of fuel gas), ns is the number of considered specie.
For the detailed chemical reaction model, the total energy density of gas phase, E g , is defined as

E g = ρgh − ϕg p + ρg

2

(
u2

g + v2
g

)
(16)

where h is the enthalpy calculated by the thermochemical relation h = h(ρi, T ) [22].
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Fig. 1. Space–time geometrical configuration of the original two-dimensional CE/SE scheme (by Chang).

In the gas–droplet two-phase detonations, the evaporation and separation of fuel droplets should be considered. The density variation,
I p , can be obtained as [17,18]

I P = 12rN
λNu(T − T p)

L
+ 4πr3/2ρfuelN

(
ρgμg

ρfuelμp

)1/6(
μp

ρfuel

)1/2

|V g − V p|1/2, (17)

with

Nu = 2 + 0.6 Re1/2 Pr1/3, (18)

where λ is the heat conduction coefficient of gas, T p is the temperature of fuel droplets, L is the heat of evaporation of fuel droplets, ρfuel
is the density of fuel droplets, μp is the viscosity coefficient of droplet phase, Nu means Nusselt number and Pr means Prandtl number.
The first term of Eq. (17) describes the evaporation of fuel drops, and the second term describes the shattering of fuel drops.

In conclusion, if the two-fluid model is adopted, the governing equation of dilute gas–particle flows can be express as Eq. (1), thought
the three dilute two-phase problems, i.e., shock wave diffraction in air–sand mixture, explosive synthesis of TiO2 nanoparticle and air–fuel
two-phase detonation, need different physical and chemical models. So the improved CE/SE schemes will be constructed based on Eq. (1).

3. The improved CE/SE scheme

3.1. Numerical scheme

The construction of a CE/SE scheme includes the following steps: changing governing equations from differential form to integral form,
dividing space–time region as CEs and SEs, approximating flux vectors in SEs by Taylor expansions, obtaining relation equations between
the space derivatives and the time derivatives, and finally integrating the governing equations on CEs. So, different definitions of SEs and
CEs may construct different numerical CE/SE schemes. Fig. 1 shows the space–time geometrical configuration of Chang’s two-dimensional
CE/SE scheme [4]. Due to the obvious disadvantage that directions of space mesh are neither perpendicular each other nor coincident with
global Cartesian coordinate, this special designs of SEs and CEs are neither convenient to construct numerical schemes nor suitable for
three-dimensional extension.

We design a new type of SE and CE on the general hexahedrons mesh, which is different from that of the Chang’s [23] original CE/SE
method (see Fig. 1). The construction of the new numerical scheme is simpler than Chang’s and it is easy to be extended to three-
dimensional problems. A CE/SE scheme corresponding to the new definition of SE and CE would be easy to construct and direct to extend
to three-dimensional situation.

The space–time region is divided into the unified mesh points. For the two-dimensional scheme, let ( j,k,n) denote a set of space–time
mesh points, where n = 0,±1/2,±1,±3/2, . . . for time, j = 0,±1/2,±1,±3/2, . . . for x and k = 0,±1/2,±1,±3/2, . . . for y. Fig. 2(a)
shows the projection of mesh points on the x–y plane, in which the interval between the mesh points • and ◦ is �t/2 in the time
direction or 1/2 in the mesh number n. An SE (see Fig. 2(b)) is defined as the vicinity of a mesh point and the whole space–time region
is divided into non-overlapping CEs. Assume that the physical variables in every SE are approximated by the Taylor’s expansions at the
mesh point associated with the SE, and the conservation equations (1) are satisfied in every CE (a cuboid volume related to the SE, see
Fig. 2(c)).

Let x1 = x, x2 = y, x3 = t be considered as the coordinates of a Euclidean space E3. The conventional integral form of Eq. (1) is∫
V

∇ ·Hm dv =
∫
V

Sm dv, (19)

where ∇ = (∂/∂x, ∂/∂ y, ∂/∂t), Hm = (Em, Fm, Q m) is the space–time flux vector, where Em , Fm and Q m are the components of the vector
E, F and Q, respectively; Sm are the components of the source term vector.

By using the Gauss’ divergence theorem, Eq. (19) can be rewritten in the form of∮
S(V )

Hm ·ds =
∫
V

Sm dv, (20)

where S(V ) is the boundary of the space–time region V in E3, ds = dσ · n, in which dσ and n are the area and the unit outward normal
vector of a surface element on S(V ).
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Fig. 2. Space–time geometrical configuration of the improved two-dimensional CE/SE scheme.

For an arbitrary mesh point P ′( j,k,n) on which the variables are solved, define the solution element SE(P ′) constituted by the three
vertical planes intersecting at P ′( j,k,n) and their neighborhood space as demonstrated in Fig. 2(b). Suppose that Em , Fm and Q m at point
(x, y, t) in SE(P ′) are approximated by the first-order Taylor’s expansions at P ′( j,k,n), i.e.,⎧⎨

⎩
Q m(δx, δy, δt)P ′ = (Q m)P ′ + (Q mx)P ′δx + (Q my)P ′δy + (Q mt)P ′δt,

Em(δx, δy, δt)P ′ = (Em)P ′ + (Emx)P ′δx + (Emy)P ′δy + (Emt)P ′δt,

Fm(δx, δy, δt)P ′ = (Fm)P ′ + (Fmx)P ′δx + (Fmy)P ′δy + (Fmt)P ′δt,
(21)

where δx = x − xP ′ , δy = y − y P ′ , δt = t − tP ′ ; xP ′ , y P ′ and tP ′ are the position coordinates of point P ′ . (X)P ′ , (Xx)P ′ , (X y)P ′ and (Xt)P ′
are the values of X and its first-order derivatives respect to x, y and t at point P ′ , respectively, in which X denotes Q m , Em and Fm ,
respectively.

Substituting Eq. (21) into Eq. (1), we can obtain

(Q mt)P ′ = −(Emx)P ′ − (Fmy)P ′ + (Sm)P ′ . (22)

The above equation implies that the variables required in the computation are merely (Q m)P ′ , (Q mx)P ′ and (Q my)P ′ , because Em , Fm and
Sm are functions of Q m .

Define the conservation element CE(P ′) as demonstrated in Fig. 2(c). From Fig. 2(c), it can be seen that CE(P ′) is related to not only
SE(P ′) but also the SEs of SE(A), SE(C), SE(E) and SE(G). Note that the values of physical variables on mesh points A, C , E and G are
known. Assume that the integral conservation laws are satisfied in every CE. Integrating Eq. (20) on the surfaces of CE(P ′) with the aid of
Eq. (21), we can obtain

(Q m)P ′ − �t

4
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(24)

Using the continuous conditions at points A′ , C ′ , E ′ and G ′ , we have the derivatives of Q m with respect to x and y
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Fig. 3. Sketch map of computational grid.

To avoid numerical instability in discontinuous cases, replace Eq. (25) by

(Q mx)P ′ = W
[
(Q mx)

−
P ′ , (Q mx)

+
P ′ ,α

]
, (Q my)P ′ = W

[
(Q my)

−
P ′ , (Q my)

+
P ′ ,α

]
, (27)

where α is an adjustable constant and usually equals 1–2, and the weighted equation is

W [x−, x+,α] = |x+|αx− + |x−|αx+
|x+|α + |x−|α . (28)

Obviously, Eq. (27) is same as Eq. (25) when α = 0. In this work, α is equal to 1.
It should be noted that (Q m)P ′ cannot be obtained explicitly from Eq. (23) due to the source term (Sm)P ′ . As (Sm)P ′ is a function of

(Q m)P ′ , a local Newton iterative procedure is usually needed to determine (Q m)P ′ . In the present work, to avoid the iterative procedure
and save computation time, we replace (Sm)P ′ by their linear prediction of current time in Eq. (23), i.e.,⎧⎪⎪⎨

⎪⎪⎩
(Q m)P ′ = 1

4
Q̄ + �t

4�x
Ē + �t

4�y
F̄ + �t

2
S̃,

S̃ = S̄ + �t

2
S̄t,

(29)

where S̄t is the time derivative of S̄ . (Q m)P ′ can be solved directly without any iteration, since the time derivatives of (Sm)A , (Sm)C ,
(Sm)E and (Sm)G are all known at current time. In our numerical tests, the results of linear approximation agree with those of Newton
iteration, which indicates that the linear approximation of (Sm)P ′ is reasonable.

3.2. Boundary conditions

Fig. 3 shows the sketch map of computational grid for shock wave diffraction at a right angle edge. At an initial time, we should assign
physical quantities and their first-order derivatives at grid point Ai (i = 3–5,8–10,11–25) if the improved CE/SE scheme is adopted to
solve this problem. Physical quantities and their first-order derivatives at B j ( j = 3,4,7–16) can been calculated at the first half time step,
and physical quantities and their first-order derivatives at Ai (i = 9,14,17–19) can be calculated when a time step over. So the physical
quantities and their first-order derivatives at Ai (i = 3–5,8,10–13,15,16,20–25) should be assigned based on each special boundary
conditions.

(a) Solid boundary/wall boundary
The solid boundary is the most common boundary encountered in CFD. We consider a solid wall “A21 A25”, which is parallel to the

x-direction. The physical quantities and their first-order derivatives at point A23 can been gained by⎧⎨
⎩

ξA23 = ξA18 , ξx,A23 = ξx,A18 , ξy,A23 = ξy,A18 ,

u A23 = u A18 , ux,A23 = ux,A18 , u y,A23 = 0,

v A23 = 0, vx,A23 = 0, v y,A23 = v y,A18 ,

(30)

where ξ denotes ρg , ρi , p, α, β , ρp , N; u denotes ug and up ; v denotes v g and v p .
For the corner point, such as point A13, i.e. the straight line “A3 A13” and “A11 A13” are solid walls. The physical quantities and their

first-order derivatives at point A13 can been gained by⎧⎨
⎩

ξA13 = ξA19 , ξx,A13 = ξx,A19 , ξy,A13 = ξy,A19 ,

u A13 = 0, ux,A13 = ux,A14 , u y,A13 = 0,

v A13 = 0, vx,A13 = 0, v y,A13 = v y,A18 .

(31)

(b) Inlet/outlet boundary
The inlet and outlet boundaries are also the most common boundaries. Suppose the straight line “A11 A21” is an inlet boundary, and

the flow direction is uniformly from the left to the right (see Fig. 3). The physical quantities and their first-order derivatives at point A16
can been gained by
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Fig. 4. Structural scheme of the shock reflection problem.

Fig. 5. Density contour by improved CE/SE scheme (400 × 100).

⎧⎨
⎩

ξA16 = ξinlet, ξx,A16 = 0, ξy,A16 = 0,

u A16 = uinlet, ux,A16 = 0, u y,A16 = 0,

v A16 = vinlet, vx,A16 = 0, v y,A16 = 0,

(32)

where physical quantities with subscript “inlet” are the reference values of the inlet.
For the outlet boundary “A5 A25”, we suppose there is no back flow and the outside flow field does not affect the computational flow

field. The physical quantities and their first-order derivatives at point A15 can been gained by⎧⎨
⎩

ξA15 = ξA14 , ξx,A15 = 0, ξy,A15 = ξy,A14 ,

u A15 = u A14 , ux,A15 = 0, u y,A15 = u y,A14 ,

v A15 = v A14 , vx,A15 = 0, v y,A15 = v y,A14 .

(33)

4. Applications

4.1. Shock wave reflection

Shock wave reflection is a classical benchmark problem in CFD [24]. An oblique incident and a reflected shock wave can be generated
above a flat plate by imposing suitable upstream conditions. Fig. 4 shows the structural scheme and the exact solution of this problem.
The domain is a 4 × 1 rectangle. The left boundary conditions are ρinlet = 1.0, uinlet = 2.9, vinlet = 0, pinlet = 0.7143; the upper boundary
conditions are ρinlet = 1.7, uinlet = 2.6193, vinlet = −0.50632, pinlet = 1.5282 (the variables used in this case are dimensionless [24]). The
right boundary is free (outlet boundary); and the bottom boundary is solid wall. The total computing time is 2.5 with CFL number equals
to 0.4.

Fig. 5 shows the density contour computed by the improved CE/SE scheme on 400 × 100 uniform meshes. The numerical shock wave
location agrees well with the exact solution (Fig. 4). In order to evaluate the accuracy of the improved CE/SE scheme further, we also
calculated the shock reflection problem under the same conditions using the first-order Roe scheme and the second-order MUSCL scheme.
Fig. 6(a) shows the distributions of the pressure coefficient C p (= 2(p/p∞ − 1)/(γ M2∞)) at y = 0.5 using different numerical schemes,
and the exact solution is also provided. Fig. 6(b) gives a local enlargement vision of Fig. 6(a). From Fig. 6 we can find that the accuracy
of the improved CE/SE scheme is higher than the first-order Roe scheme and the second-order MUSCL scheme on the same 400 × 100
meshes. Fig. 6 also shows numerical results using the improved CE/SE scheme with 200 × 50 meshes and 800 × 200 meshes, respectively.
The numerical results converge to the exact solution as the number of computing meshes increases.

4.2. Shock wave diffraction in gas–particle mixtures

Shock wave propagation and diffraction phenomena in gas–particle mixtures were the subject of numerous experimental, theoretical
and numerical studies in recent decades. In this paper, the problem considers a flat duct with an abrupt expansion of the cross section,
filled with air–sand mixture. The governing equations for the air–sand two-phase flow are Eq. (1) and Eq. (2). The computation model is
shown in Fig. 7. The length of “AB” is 0.8 m, “BC” 0.4 m, “CD” 0.4 m, “DE” 0.2 m. The computational mesh number is 800 × 400. The
boundary of “AF” is inlet, the others are solid boundaries. The velocities of gas phase and particle phase are zero at the initial time (ug = 0,
v g = 0, up = 0, v p = 0). The initial density, temperature and pressure of the gas phase are 1.186 kg/m3, 298 K and 1.01325 × 105 Pa,
respectively. A shock wave with Mach number Ma = 3.0 is generated at “AF” in the initial time. The inlet physical quantities of gas phase
can be gained based on the shock relations. The density of particle phase, ρp , is 0.5 kg/m3, and the particle radius, r, is 50 μm. The
density of sand, ρsand , is 2000 kg/m3. The particle number per unit volume, N , can be gained by Eq. (4).

Fig. 8 shows the pressure contours (Fig. 8(a)), density field of gas phase (Fig. 8(b)) and density field of particle phase (Fig. 8(c)) at
0.70 ms. The leading shock wave includes three parts, incident shock (IS), diffracted shock (DS), and reflected shock with Mach stem
(MS). An expansion fan (EF) is formed in the neighborhood of the backward-facing step. The flow behind the backward-facing step is
characterized by the presence of a vortex (V), secondary shock (SS), contact surface (CS, see the dashed line in Fig. 8(a) or see Fig. 8(b)), and
attached shock (AS). In order to compare the numerical results, a shock wave diffraction (Ma = 3) in gas is also simulated by solving the
two-dimensional Euler equation using the improved CE/SE scheme. Fig. 9 can agree well with corresponding research [25,26] and shows
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Fig. 6. Pressure coefficients at y = 0.5 by different numerical schemes and computational meshes.

Fig. 7. The schematic computation model.

the accuracy of the improved CE/SE schemes. Comparing Fig. 8 with Fig. 9, we can find that typical features of shock wave diffraction in
a dilute gas–particle mixture are similar to shock wave diffraction in gases, and Fedorov et al. reached the same conclusion [27].

From Fig. 8(c) we can find that the maximum density of particle phase is appear near the secondary shock (SS). And the change
of particle phase density near the shock wave front is smooth, which is different with the density of gas phase (see Fig. 8(b)). Fig. 10
shows the particle number, gas phase velocity and particle phase velocity at y = 0.3 m. We can find that the velocity of gas phase
increases immediately as the shock wave passes (which is similar to shock wave propagating in gas). However, the velocity of particle
phase increases slowly and achieves the maximum value at x = 0.414 m. The reason is that the density of sand is much bigger than the
density of gas, so the force acting on the sand particles cannot accelerate the sand particle immediately. From Fig. 10, we also can find
that the particle number achieves the maximum value at the region near x = 0.42 m, and then decreases almost to zero. The reason is
that there is no particle supplying to the flow field (the boundary “AF” is just an inlet for gas phase).

4.3. Synthesis of TiO2 nanoparticle

In this section, detonation synthesis of nanosized titania (TiO2) particle is simulated. The materials for the synthesis are TiCl4, O2 and
H2. The chemical reaction in the reaction vessel can be described as

TiCl4(gas) + O2(gas) + 2H2(gas) → TiO2(solid) + 4HCl(gas). (34)
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Fig. 8. Shock wave diffraction in gas–particle mixtures (Ma = 3.0, t = 0.70 ms). (IS: incident shock, DS: diffracted shock, MS: Mach stem, EF: expansion fan, AS: attached
shock, SS: secondary shock, V: vortex, CS: contact surface.)

Fig. 9. Shock wave diffraction in gas (Ma = 3.0, t = 0.68 ms).

The rate of particle growth I p is coupled with the chemical reaction model [20]

I p = Nk0 exp

(
− Ea

RT

)
c(TiCl4), (35)

where the constant rate k0 = 8.29 × 104 s−1, Ea = 88.8 kJ/mol, c(TiCl4) is the molarity of TiCl4.
The computation model is a closed channel (length 50 mm, width 50 μm). The number of computational grids is 2000 × 2. So this

computation can be seen as a one-dimensional situation. The molarity ratio of the three gaseous materials is c(TiCl4):c(O2):c(H2) = 1:1:2
at the initial time. The initial density, pressure and temperature are 2.0 kg/m3, 1.01325 × 105 Pa and 343 K, respectively. In order to
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Fig. 10. Particle number and the velocities profiles at y = 0.3 m.

Fig. 11. Profile of physical quantities at t = 3.0 × 10−5 s.

form a detonation wave, there is a high initial pressure and temperature (2.0265 × 106 Pa and 6860 K, respectively) region in the channel
left (1 mm). The other computing parameters are given as below: ρtitania = 4300 kg/m3, Q = 6.5 × 105 J/kg, μg = 2.07 × 10−5 Pa s,
μp = 3.5 × 10−4 Pa s.

Fig. 11 shows the gas density, velocity, pressure and temperature at 30 μs. The profiles of gas velocity (see Fig. 11(a)), pressure and
temperature (see Fig. 11(b)) are very similar to the structure of a gaseous detonation wave. But the profile of gas density (see Fig. 11(a))
has a sudden reduce due to the phase transition from gas to solid particle. Fig. 12 shows the local enlargement profiles of the particle
radius and the progress parameter of chemical reaction. The process of detonation synthesis can been observed from Figs. 11 and 12. The
particle radius increases rapidly near the detonation front where the maximum pressure and temperature appear (see Fig. 11). Further
more, the rate of particle growth is closely related to the rate of chemical reaction (see Fig. 12).

The particle radius in our simulation is about 29.3 nm and keeps this size behind the C-J point. In the same experiment condition, the
TiO2 sample includes octahedrite (68.37%) and titanic schorl (31.63%). And the average grain size of anatase and rutile calculated by XRD
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Fig. 12. Local enlargement profiles of the particle radius and the progress parameters of chemical reactions.

using the Scherrer equation [28] is between 20 and 40 nm [29]. The peak pressure in our simulation is 2.17 MPa, which also can agree
well with the experimental data 2.03 MPa [29] (the relative error is 5.85%).

4.4. Propagation of gas–droplet two-phase detonation

In this section, two-phase planar detonations in dilute oxygen–droplet system are simulated. The fuel droplets are made of kerosene
and with a uniform radius. Kerosene is an extremely complex mixture with many components and their exact composition and properties
vary from batch to batch. Wang had proposed a one-formula surrogate fuel (C12H24) formulation and corresponding chemical kinetics
models were given [30]. The detail of the reduced reaction mechanism can be found in Ref. [30].

The channel walls are still considered as solid boundaries (length 0.2 m, width 0.2 mm). The number of computational grids is 2000×2.
At initial time, the gas density, pressure and temperature are 1.3 kg/m3, 1.01325×105 Pa and 298 K, respectively. The density of kerosene,
ρfuel , equals to 800 kg/m3. The radii of the droplets, r, equals to 10 μm. The equivalent ratio of the O2–C12H24 system is equal to 1.0.
The density of particle phase equals to 0.382 kg/m3 and the droplet number per unit volume equals to 9.11 × 108. The other computing
parameters of the stoichiometric O2–C12H24 system are given as below: λ = 0.10 W K−1 m−1, L = 5.27 × 105 J/kg, μg = 2.07 × 10−5 Pa s,
μp = 3.50 × 10−4 Pa s, Pr = 0.74. Detonation wave is generated by igniting in the left (1 mm) with a high initial pressure and temperature
as 1.01325 × 106 Pa and 2980 K, respectively.

Fig. 13 shows the distributions of the density of gas phase, the velocity of gas phase, the pressure and the temperature in x direction
at different time. It can be seen that the DDT (Deflagration-to-Detonation Transition) process completes at about 20 μs, which is much
longer than DDT time of gas case. For the similar ignition condition, the DDT process in stoichiometric H2–O2 mixture completes less
than 1 μs in our simulations. The profiles of the density, velocity and are similar to those of gaseous detonations, but values of physical
quantities are higher than those of gaseous detonations. That is because the kerosene has higher energy density than hydrogen. Fig. 13(d)
shows that the peak temperature is behind the detonation front. That is because the separation and evaporation of kerosene droplets take
a considerable time and the chemical reaction rate of hydrocarbon fuel is less than hydrogen.

In order to verify the accuracy of the improved CE/SE scheme in two-phase detonations, we also simulated two-phase planar detona-
tions in O2–C6H14 system with different equivalence ratios (ϕ = 0.3,0.35,0.41,0.49,0.56 and 0.68). Fig. 14 shows detonation velocities
at different equivalence ratios with corresponding results from C-J theory and experiments [31,32]. From Fig. 14 we can find that the
numerical results and C-J theory results have the same trend, but the experiment results have an obvious error near ϕ = 0.5. The ex-
perimental errors in two-phase detonations are much larger than that in gaseous detonations, because the experimental conditions of
two-phase detonations, such as the sizes and distribution of droplets, are quite difficult to be well-proportioned. But people prefer to trust
in experimental results because errors of C-J theory which ignores two-phase effects are larger [32]. The relative errors of simulations and
C-J theory are also shown in Fig. 14 (see the dash lines). The relative errors of C-J theory are greater than 13.5% in all the six cases, and
the maximum relative error is 22.9%. The relative errors of simulations range from −16.8% to 8.9%, especially the numerical results can
agree well with experiment date at φ = 0.5–0.6. So we think the numerical simulations are more accurate than the C-J theory for the
two-phase planar detonation problems.

5. Conclusion

In this paper, the improved CE/SE scheme are developed for dilute gas–particle flows. This scheme is based on the rectangular mesh
and can be constructed easily. The two-fluid model is used to describe the gas–particle two-phase system, and two chemical reaction
models and their governing equations were introduced for detonation synthesis and two-phase detonation propagation. Obviously, other
chemical and physical models can be added to the current frame conveniently.

The main advantages of the improved CE/SE scheme are clear in physical concept, easy to be extended to three-dimensional situations,
accurate for capturing shock wave and convenient to implement boundary conditions. In the applications to dilute gas–particle flow sim-
ulations, this scheme combines chemical reaction models with physics models conveniently and treats source items easily. The numerical
results show that the improved CE/SE scheme can simulate dilute gas–particle flows accurately. Thus, the improved CE/SE scheme can be
applied to dilute gas–particle flow simulations for academic explore and engineering extensively.
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Fig. 13. Physical quantity profiles of O2–C3H6O two-phase detonation wave at t = 1 × 10−3 s (4000 meshes).

Fig. 14. O2–C6H14 two-phase detonation velocities at different equivalence ratios (solid line for detonation velocity, dash line for relative error).
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